// SPDX-License-Identifier: GPL-2.0+ // Copyright (c) 2016-2017 Hisilicon Limited. #include "hclge_mbx.h" #include "hclgevf_main.h" #include "hnae3.h" static void hclgevf_reset_mbx_resp_status(struct hclgevf_dev *hdev) { /* this function should be called with mbx_resp.mbx_mutex held * to prtect the received_response from race condition */ hdev->mbx_resp.received_resp = false; hdev->mbx_resp.origin_mbx_msg = 0; hdev->mbx_resp.resp_status = 0; memset(hdev->mbx_resp.additional_info, 0, HCLGE_MBX_MAX_RESP_DATA_SIZE); } /* hclgevf_get_mbx_resp: used to get a response from PF after VF sends a mailbox * message to PF. * @hdev: pointer to struct hclgevf_dev * @resp_msg: pointer to store the original message type and response status * @len: the resp_msg data array length. */ static int hclgevf_get_mbx_resp(struct hclgevf_dev *hdev, u16 code0, u16 code1, u8 *resp_data, u16 resp_len) { #define HCLGEVF_MAX_TRY_TIMES 500 #define HCLGEVF_SLEEP_USECOND 1000 struct hclgevf_mbx_resp_status *mbx_resp; u16 r_code0, r_code1; int i = 0; if (resp_len > HCLGE_MBX_MAX_RESP_DATA_SIZE) { dev_err(&hdev->pdev->dev, "VF mbx response len(=%d) exceeds maximum(=%d)\n", resp_len, HCLGE_MBX_MAX_RESP_DATA_SIZE); return -EINVAL; } while ((!hdev->mbx_resp.received_resp) && (i < HCLGEVF_MAX_TRY_TIMES)) { if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state)) return -EIO; usleep_range(HCLGEVF_SLEEP_USECOND, HCLGEVF_SLEEP_USECOND * 2); i++; } if (i >= HCLGEVF_MAX_TRY_TIMES) { dev_err(&hdev->pdev->dev, "VF could not get mbx resp(=%d) from PF in %d tries\n", hdev->mbx_resp.received_resp, i); return -EIO; } mbx_resp = &hdev->mbx_resp; r_code0 = (u16)(mbx_resp->origin_mbx_msg >> 16); r_code1 = (u16)(mbx_resp->origin_mbx_msg & 0xff); if (mbx_resp->resp_status) return mbx_resp->resp_status; if (resp_data) memcpy(resp_data, &mbx_resp->additional_info[0], resp_len); hclgevf_reset_mbx_resp_status(hdev); if (!(r_code0 == code0 && r_code1 == code1 && !mbx_resp->resp_status)) { dev_err(&hdev->pdev->dev, "VF could not match resp code(code0=%d,code1=%d), %d", code0, code1, mbx_resp->resp_status); return -EIO; } return 0; } int hclgevf_send_mbx_msg(struct hclgevf_dev *hdev, u16 code, u16 subcode, const u8 *msg_data, u8 msg_len, bool need_resp, u8 *resp_data, u16 resp_len) { struct hclge_mbx_vf_to_pf_cmd *req; struct hclgevf_desc desc; int status; req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data; /* first two bytes are reserved for code & subcode */ if (msg_len > (HCLGE_MBX_MAX_MSG_SIZE - 2)) { dev_err(&hdev->pdev->dev, "VF send mbx msg fail, msg len %d exceeds max len %d\n", msg_len, HCLGE_MBX_MAX_MSG_SIZE); return -EINVAL; } hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false); req->msg[0] = code; req->msg[1] = subcode; memcpy(&req->msg[2], msg_data, msg_len); /* synchronous send */ if (need_resp) { mutex_lock(&hdev->mbx_resp.mbx_mutex); hclgevf_reset_mbx_resp_status(hdev); status = hclgevf_cmd_send(&hdev->hw, &desc, 1); if (status) { dev_err(&hdev->pdev->dev, "VF failed(=%d) to send mbx message to PF\n", status); mutex_unlock(&hdev->mbx_resp.mbx_mutex); return status; } status = hclgevf_get_mbx_resp(hdev, code, subcode, resp_data, resp_len); mutex_unlock(&hdev->mbx_resp.mbx_mutex); } else { /* asynchronous send */ status = hclgevf_cmd_send(&hdev->hw, &desc, 1); if (status) { dev_err(&hdev->pdev->dev, "VF failed(=%d) to send mbx message to PF\n", status); return status; } } return status; } static bool hclgevf_cmd_crq_empty(struct hclgevf_hw *hw) { u32 tail = hclgevf_read_dev(hw, HCLGEVF_NIC_CRQ_TAIL_REG); return tail == hw->cmq.crq.next_to_use; } void hclgevf_mbx_handler(struct hclgevf_dev *hdev) { struct hclgevf_mbx_resp_status *resp; struct hclge_mbx_pf_to_vf_cmd *req; struct hclgevf_cmq_ring *crq; struct hclgevf_desc *desc; u16 *msg_q; u16 flag; u8 *temp; int i; resp = &hdev->mbx_resp; crq = &hdev->hw.cmq.crq; while (!hclgevf_cmd_crq_empty(&hdev->hw)) { if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state)) { dev_info(&hdev->pdev->dev, "vf crq need init\n"); return; } desc = &crq->desc[crq->next_to_use]; req = (struct hclge_mbx_pf_to_vf_cmd *)desc->data; flag = le16_to_cpu(crq->desc[crq->next_to_use].flag); if (unlikely(!hnae3_get_bit(flag, HCLGEVF_CMDQ_RX_OUTVLD_B))) { dev_warn(&hdev->pdev->dev, "dropped invalid mailbox message, code = %d\n", req->msg[0]); /* dropping/not processing this invalid message */ crq->desc[crq->next_to_use].flag = 0; hclge_mbx_ring_ptr_move_crq(crq); continue; } /* synchronous messages are time critical and need preferential * treatment. Therefore, we need to acknowledge all the sync * responses as quickly as possible so that waiting tasks do not * timeout and simultaneously queue the async messages for later * prcessing in context of mailbox task i.e. the slow path. */ switch (req->msg[0]) { case HCLGE_MBX_PF_VF_RESP: if (resp->received_resp) dev_warn(&hdev->pdev->dev, "VF mbx resp flag not clear(%d)\n", req->msg[1]); resp->received_resp = true; resp->origin_mbx_msg = (req->msg[1] << 16); resp->origin_mbx_msg |= req->msg[2]; resp->resp_status = req->msg[3]; temp = (u8 *)&req->msg[4]; for (i = 0; i < HCLGE_MBX_MAX_RESP_DATA_SIZE; i++) { resp->additional_info[i] = *temp; temp++; } break; case HCLGE_MBX_LINK_STAT_CHANGE: case HCLGE_MBX_ASSERTING_RESET: case HCLGE_MBX_LINK_STAT_MODE: /* set this mbx event as pending. This is required as we * might loose interrupt event when mbx task is busy * handling. This shall be cleared when mbx task just * enters handling state. */ hdev->mbx_event_pending = true; /* we will drop the async msg if we find ARQ as full * and continue with next message */ if (hdev->arq.count >= HCLGE_MBX_MAX_ARQ_MSG_NUM) { dev_warn(&hdev->pdev->dev, "Async Q full, dropping msg(%d)\n", req->msg[1]); break; } /* tail the async message in arq */ msg_q = hdev->arq.msg_q[hdev->arq.tail]; memcpy(&msg_q[0], req->msg, HCLGE_MBX_MAX_ARQ_MSG_SIZE * sizeof(u16)); hclge_mbx_tail_ptr_move_arq(hdev->arq); hdev->arq.count++; hclgevf_mbx_task_schedule(hdev); break; default: dev_err(&hdev->pdev->dev, "VF received unsupported(%d) mbx msg from PF\n", req->msg[0]); break; } crq->desc[crq->next_to_use].flag = 0; hclge_mbx_ring_ptr_move_crq(crq); } /* Write back CMDQ_RQ header pointer, M7 need this pointer */ hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CRQ_HEAD_REG, crq->next_to_use); } void hclgevf_mbx_async_handler(struct hclgevf_dev *hdev) { enum hnae3_reset_type reset_type; u16 link_status; u16 *msg_q; u8 duplex; u32 speed; u32 tail; u8 idx; /* we can safely clear it now as we are at start of the async message * processing */ hdev->mbx_event_pending = false; tail = hdev->arq.tail; /* process all the async queue messages */ while (tail != hdev->arq.head) { if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state)) { dev_info(&hdev->pdev->dev, "vf crq need init in async\n"); return; } msg_q = hdev->arq.msg_q[hdev->arq.head]; switch (msg_q[0]) { case HCLGE_MBX_LINK_STAT_CHANGE: link_status = le16_to_cpu(msg_q[1]); memcpy(&speed, &msg_q[2], sizeof(speed)); duplex = (u8)le16_to_cpu(msg_q[4]); hdev->hw.mac.media_type = (u8)le16_to_cpu(msg_q[5]); /* update upper layer with new link link status */ hclgevf_update_link_status(hdev, link_status); hclgevf_update_speed_duplex(hdev, speed, duplex); break; case HCLGE_MBX_LINK_STAT_MODE: idx = (u8)le16_to_cpu(msg_q[1]); if (idx) memcpy(&hdev->hw.mac.supported, &msg_q[2], sizeof(unsigned long)); else memcpy(&hdev->hw.mac.advertising, &msg_q[2], sizeof(unsigned long)); break; case HCLGE_MBX_ASSERTING_RESET: /* PF has asserted reset hence VF should go in pending * state and poll for the hardware reset status till it * has been completely reset. After this stack should * eventually be re-initialized. */ reset_type = le16_to_cpu(msg_q[1]); set_bit(reset_type, &hdev->reset_pending); set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); hclgevf_reset_task_schedule(hdev); break; default: dev_err(&hdev->pdev->dev, "fetched unsupported(%d) message from arq\n", msg_q[0]); break; } hclge_mbx_head_ptr_move_arq(hdev->arq); hdev->arq.count--; msg_q = hdev->arq.msg_q[hdev->arq.head]; } }