// SPDX-License-Identifier: (GPL-2.0 OR MIT) /* Google virtual Ethernet (gve) driver * * Copyright (C) 2015-2019 Google, Inc. */ #include "gve.h" #include "gve_adminq.h" #include #include #include #include static inline void gve_tx_put_doorbell(struct gve_priv *priv, struct gve_queue_resources *q_resources, u32 val) { iowrite32be(val, &priv->db_bar2[be32_to_cpu(q_resources->db_index)]); } /* gvnic can only transmit from a Registered Segment. * We copy skb payloads into the registered segment before writing Tx * descriptors and ringing the Tx doorbell. * * gve_tx_fifo_* manages the Registered Segment as a FIFO - clients must * free allocations in the order they were allocated. */ static int gve_tx_fifo_init(struct gve_priv *priv, struct gve_tx_fifo *fifo) { fifo->base = vmap(fifo->qpl->pages, fifo->qpl->num_entries, VM_MAP, PAGE_KERNEL); if (unlikely(!fifo->base)) { netif_err(priv, drv, priv->dev, "Failed to vmap fifo, qpl_id = %d\n", fifo->qpl->id); return -ENOMEM; } fifo->size = fifo->qpl->num_entries * PAGE_SIZE; atomic_set(&fifo->available, fifo->size); fifo->head = 0; return 0; } static void gve_tx_fifo_release(struct gve_priv *priv, struct gve_tx_fifo *fifo) { WARN(atomic_read(&fifo->available) != fifo->size, "Releasing non-empty fifo"); vunmap(fifo->base); } static int gve_tx_fifo_pad_alloc_one_frag(struct gve_tx_fifo *fifo, size_t bytes) { return (fifo->head + bytes < fifo->size) ? 0 : fifo->size - fifo->head; } static bool gve_tx_fifo_can_alloc(struct gve_tx_fifo *fifo, size_t bytes) { return (atomic_read(&fifo->available) <= bytes) ? false : true; } /* gve_tx_alloc_fifo - Allocate fragment(s) from Tx FIFO * @fifo: FIFO to allocate from * @bytes: Allocation size * @iov: Scatter-gather elements to fill with allocation fragment base/len * * Returns number of valid elements in iov[] or negative on error. * * Allocations from a given FIFO must be externally synchronized but concurrent * allocation and frees are allowed. */ static int gve_tx_alloc_fifo(struct gve_tx_fifo *fifo, size_t bytes, struct gve_tx_iovec iov[2]) { size_t overflow, padding; u32 aligned_head; int nfrags = 0; if (!bytes) return 0; /* This check happens before we know how much padding is needed to * align to a cacheline boundary for the payload, but that is fine, * because the FIFO head always start aligned, and the FIFO's boundaries * are aligned, so if there is space for the data, there is space for * the padding to the next alignment. */ WARN(!gve_tx_fifo_can_alloc(fifo, bytes), "Reached %s when there's not enough space in the fifo", __func__); nfrags++; iov[0].iov_offset = fifo->head; iov[0].iov_len = bytes; fifo->head += bytes; if (fifo->head > fifo->size) { /* If the allocation did not fit in the tail fragment of the * FIFO, also use the head fragment. */ nfrags++; overflow = fifo->head - fifo->size; iov[0].iov_len -= overflow; iov[1].iov_offset = 0; /* Start of fifo*/ iov[1].iov_len = overflow; fifo->head = overflow; } /* Re-align to a cacheline boundary */ aligned_head = L1_CACHE_ALIGN(fifo->head); padding = aligned_head - fifo->head; iov[nfrags - 1].iov_padding = padding; atomic_sub(bytes + padding, &fifo->available); fifo->head = aligned_head; if (fifo->head == fifo->size) fifo->head = 0; return nfrags; } /* gve_tx_free_fifo - Return space to Tx FIFO * @fifo: FIFO to return fragments to * @bytes: Bytes to free */ static void gve_tx_free_fifo(struct gve_tx_fifo *fifo, size_t bytes) { atomic_add(bytes, &fifo->available); } static void gve_tx_remove_from_block(struct gve_priv *priv, int queue_idx) { struct gve_notify_block *block = &priv->ntfy_blocks[gve_tx_idx_to_ntfy(priv, queue_idx)]; block->tx = NULL; } static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx, u32 to_do, bool try_to_wake); static void gve_tx_free_ring(struct gve_priv *priv, int idx) { struct gve_tx_ring *tx = &priv->tx[idx]; struct device *hdev = &priv->pdev->dev; size_t bytes; u32 slots; gve_tx_remove_from_block(priv, idx); slots = tx->mask + 1; gve_clean_tx_done(priv, tx, tx->req, false); netdev_tx_reset_queue(tx->netdev_txq); dma_free_coherent(hdev, sizeof(*tx->q_resources), tx->q_resources, tx->q_resources_bus); tx->q_resources = NULL; if (!tx->raw_addressing) { gve_tx_fifo_release(priv, &tx->tx_fifo); gve_unassign_qpl(priv, tx->tx_fifo.qpl->id); tx->tx_fifo.qpl = NULL; } bytes = sizeof(*tx->desc) * slots; dma_free_coherent(hdev, bytes, tx->desc, tx->bus); tx->desc = NULL; vfree(tx->info); tx->info = NULL; netif_dbg(priv, drv, priv->dev, "freed tx queue %d\n", idx); } static void gve_tx_add_to_block(struct gve_priv *priv, int queue_idx) { int ntfy_idx = gve_tx_idx_to_ntfy(priv, queue_idx); struct gve_notify_block *block = &priv->ntfy_blocks[ntfy_idx]; struct gve_tx_ring *tx = &priv->tx[queue_idx]; block->tx = tx; tx->ntfy_id = ntfy_idx; } static int gve_tx_alloc_ring(struct gve_priv *priv, int idx) { struct gve_tx_ring *tx = &priv->tx[idx]; struct device *hdev = &priv->pdev->dev; u32 slots = priv->tx_desc_cnt; size_t bytes; /* Make sure everything is zeroed to start */ memset(tx, 0, sizeof(*tx)); tx->q_num = idx; tx->mask = slots - 1; /* alloc metadata */ tx->info = vzalloc(sizeof(*tx->info) * slots); if (!tx->info) return -ENOMEM; /* alloc tx queue */ bytes = sizeof(*tx->desc) * slots; tx->desc = dma_alloc_coherent(hdev, bytes, &tx->bus, GFP_KERNEL); if (!tx->desc) goto abort_with_info; tx->raw_addressing = priv->raw_addressing; tx->dev = &priv->pdev->dev; if (!tx->raw_addressing) { tx->tx_fifo.qpl = gve_assign_tx_qpl(priv); if (!tx->tx_fifo.qpl) goto abort_with_desc; /* map Tx FIFO */ if (gve_tx_fifo_init(priv, &tx->tx_fifo)) goto abort_with_qpl; } tx->q_resources = dma_alloc_coherent(hdev, sizeof(*tx->q_resources), &tx->q_resources_bus, GFP_KERNEL); if (!tx->q_resources) goto abort_with_fifo; netif_dbg(priv, drv, priv->dev, "tx[%d]->bus=%lx\n", idx, (unsigned long)tx->bus); tx->netdev_txq = netdev_get_tx_queue(priv->dev, idx); gve_tx_add_to_block(priv, idx); return 0; abort_with_fifo: if (!tx->raw_addressing) gve_tx_fifo_release(priv, &tx->tx_fifo); abort_with_qpl: if (!tx->raw_addressing) gve_unassign_qpl(priv, tx->tx_fifo.qpl->id); abort_with_desc: dma_free_coherent(hdev, bytes, tx->desc, tx->bus); tx->desc = NULL; abort_with_info: vfree(tx->info); tx->info = NULL; return -ENOMEM; } int gve_tx_alloc_rings(struct gve_priv *priv) { int err = 0; int i; for (i = 0; i < priv->tx_cfg.num_queues; i++) { err = gve_tx_alloc_ring(priv, i); if (err) { netif_err(priv, drv, priv->dev, "Failed to alloc tx ring=%d: err=%d\n", i, err); break; } } /* Unallocate if there was an error */ if (err) { int j; for (j = 0; j < i; j++) gve_tx_free_ring(priv, j); } return err; } void gve_tx_free_rings(struct gve_priv *priv) { int i; for (i = 0; i < priv->tx_cfg.num_queues; i++) gve_tx_free_ring(priv, i); } /* gve_tx_avail - Calculates the number of slots available in the ring * @tx: tx ring to check * * Returns the number of slots available * * The capacity of the queue is mask + 1. We don't need to reserve an entry. **/ static inline u32 gve_tx_avail(struct gve_tx_ring *tx) { return tx->mask + 1 - (tx->req - tx->done); } static inline int gve_skb_fifo_bytes_required(struct gve_tx_ring *tx, struct sk_buff *skb) { int pad_bytes, align_hdr_pad; int bytes; int hlen; hlen = skb_is_gso(skb) ? skb_checksum_start_offset(skb) + tcp_hdrlen(skb) : skb_headlen(skb); pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, hlen); /* We need to take into account the header alignment padding. */ align_hdr_pad = L1_CACHE_ALIGN(hlen) - hlen; bytes = align_hdr_pad + pad_bytes + skb->len; return bytes; } /* The most descriptors we could need is MAX_SKB_FRAGS + 3 : 1 for each skb frag, * +1 for the skb linear portion, +1 for when tcp hdr needs to be in separate descriptor, * and +1 if the payload wraps to the beginning of the FIFO. */ #define MAX_TX_DESC_NEEDED (MAX_SKB_FRAGS + 3) static void gve_tx_unmap_buf(struct device *dev, struct gve_tx_buffer_state *info) { if (info->skb) { dma_unmap_single(dev, dma_unmap_addr(&info->buf, dma), dma_unmap_len(&info->buf, len), DMA_TO_DEVICE); dma_unmap_len_set(&info->buf, len, 0); } else { dma_unmap_page(dev, dma_unmap_addr(&info->buf, dma), dma_unmap_len(&info->buf, len), DMA_TO_DEVICE); dma_unmap_len_set(&info->buf, len, 0); } } /* Check if sufficient resources (descriptor ring space, FIFO space) are * available to transmit the given number of bytes. */ static inline bool gve_can_tx(struct gve_tx_ring *tx, int bytes_required) { bool can_alloc = true; if (!tx->raw_addressing) can_alloc = gve_tx_fifo_can_alloc(&tx->tx_fifo, bytes_required); return (gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED && can_alloc); } /* Stops the queue if the skb cannot be transmitted. */ static int gve_maybe_stop_tx(struct gve_tx_ring *tx, struct sk_buff *skb) { int bytes_required = 0; if (!tx->raw_addressing) bytes_required = gve_skb_fifo_bytes_required(tx, skb); if (likely(gve_can_tx(tx, bytes_required))) return 0; /* No space, so stop the queue */ tx->stop_queue++; netif_tx_stop_queue(tx->netdev_txq); smp_mb(); /* sync with restarting queue in gve_clean_tx_done() */ /* Now check for resources again, in case gve_clean_tx_done() freed * resources after we checked and we stopped the queue after * gve_clean_tx_done() checked. * * gve_maybe_stop_tx() gve_clean_tx_done() * nsegs/can_alloc test failed * gve_tx_free_fifo() * if (tx queue stopped) * netif_tx_queue_wake() * netif_tx_stop_queue() * Need to check again for space here! */ if (likely(!gve_can_tx(tx, bytes_required))) return -EBUSY; netif_tx_start_queue(tx->netdev_txq); tx->wake_queue++; return 0; } static void gve_tx_fill_pkt_desc(union gve_tx_desc *pkt_desc, struct sk_buff *skb, bool is_gso, int l4_hdr_offset, u32 desc_cnt, u16 hlen, u64 addr) { /* l4_hdr_offset and csum_offset are in units of 16-bit words */ if (is_gso) { pkt_desc->pkt.type_flags = GVE_TXD_TSO | GVE_TXF_L4CSUM; pkt_desc->pkt.l4_csum_offset = skb->csum_offset >> 1; pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1; } else if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) { pkt_desc->pkt.type_flags = GVE_TXD_STD | GVE_TXF_L4CSUM; pkt_desc->pkt.l4_csum_offset = skb->csum_offset >> 1; pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1; } else { pkt_desc->pkt.type_flags = GVE_TXD_STD; pkt_desc->pkt.l4_csum_offset = 0; pkt_desc->pkt.l4_hdr_offset = 0; } pkt_desc->pkt.desc_cnt = desc_cnt; pkt_desc->pkt.len = cpu_to_be16(skb->len); pkt_desc->pkt.seg_len = cpu_to_be16(hlen); pkt_desc->pkt.seg_addr = cpu_to_be64(addr); } static void gve_tx_fill_seg_desc(union gve_tx_desc *seg_desc, struct sk_buff *skb, bool is_gso, u16 len, u64 addr) { seg_desc->seg.type_flags = GVE_TXD_SEG; if (is_gso) { if (skb_is_gso_v6(skb)) seg_desc->seg.type_flags |= GVE_TXSF_IPV6; seg_desc->seg.l3_offset = skb_network_offset(skb) >> 1; seg_desc->seg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size); } seg_desc->seg.seg_len = cpu_to_be16(len); seg_desc->seg.seg_addr = cpu_to_be64(addr); } static void gve_dma_sync_for_device(struct device *dev, dma_addr_t *page_buses, u64 iov_offset, u64 iov_len) { u64 last_page = (iov_offset + iov_len - 1) / PAGE_SIZE; u64 first_page = iov_offset / PAGE_SIZE; u64 page; for (page = first_page; page <= last_page; page++) dma_sync_single_for_device(dev, page_buses[page], PAGE_SIZE, DMA_TO_DEVICE); } static int gve_tx_add_skb_copy(struct gve_priv *priv, struct gve_tx_ring *tx, struct sk_buff *skb) { int pad_bytes, hlen, hdr_nfrags, payload_nfrags, l4_hdr_offset; union gve_tx_desc *pkt_desc, *seg_desc; struct gve_tx_buffer_state *info; bool is_gso = skb_is_gso(skb); u32 idx = tx->req & tx->mask; int payload_iov = 2; int copy_offset; u32 next_idx; int i; info = &tx->info[idx]; pkt_desc = &tx->desc[idx]; l4_hdr_offset = skb_checksum_start_offset(skb); /* If the skb is gso, then we want the tcp header in the first segment * otherwise we want the linear portion of the skb (which will contain * the checksum because skb->csum_start and skb->csum_offset are given * relative to skb->head) in the first segment. */ hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) : skb_headlen(skb); info->skb = skb; /* We don't want to split the header, so if necessary, pad to the end * of the fifo and then put the header at the beginning of the fifo. */ pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, hlen); hdr_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, hlen + pad_bytes, &info->iov[0]); WARN(!hdr_nfrags, "hdr_nfrags should never be 0!"); payload_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, skb->len - hlen, &info->iov[payload_iov]); gve_tx_fill_pkt_desc(pkt_desc, skb, is_gso, l4_hdr_offset, 1 + payload_nfrags, hlen, info->iov[hdr_nfrags - 1].iov_offset); skb_copy_bits(skb, 0, tx->tx_fifo.base + info->iov[hdr_nfrags - 1].iov_offset, hlen); gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses, info->iov[hdr_nfrags - 1].iov_offset, info->iov[hdr_nfrags - 1].iov_len); copy_offset = hlen; for (i = payload_iov; i < payload_nfrags + payload_iov; i++) { next_idx = (tx->req + 1 + i - payload_iov) & tx->mask; seg_desc = &tx->desc[next_idx]; gve_tx_fill_seg_desc(seg_desc, skb, is_gso, info->iov[i].iov_len, info->iov[i].iov_offset); skb_copy_bits(skb, copy_offset, tx->tx_fifo.base + info->iov[i].iov_offset, info->iov[i].iov_len); gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses, info->iov[i].iov_offset, info->iov[i].iov_len); copy_offset += info->iov[i].iov_len; } return 1 + payload_nfrags; } static int gve_tx_add_skb_no_copy(struct gve_priv *priv, struct gve_tx_ring *tx, struct sk_buff *skb) { const struct skb_shared_info *shinfo = skb_shinfo(skb); int hlen, payload_nfrags, l4_hdr_offset; union gve_tx_desc *pkt_desc, *seg_desc; struct gve_tx_buffer_state *info; bool is_gso = skb_is_gso(skb); u32 idx = tx->req & tx->mask; struct gve_tx_dma_buf *buf; u64 addr; u32 len; int i; info = &tx->info[idx]; pkt_desc = &tx->desc[idx]; l4_hdr_offset = skb_checksum_start_offset(skb); /* If the skb is gso, then we want only up to the tcp header in the first segment * to efficiently replicate on each segment otherwise we want the linear portion * of the skb (which will contain the checksum because skb->csum_start and * skb->csum_offset are given relative to skb->head) in the first segment. */ hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) : skb_headlen(skb); len = skb_headlen(skb); info->skb = skb; addr = dma_map_single(tx->dev, skb->data, len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(tx->dev, addr))) { tx->dma_mapping_error++; goto drop; } buf = &info->buf; dma_unmap_len_set(buf, len, len); dma_unmap_addr_set(buf, dma, addr); payload_nfrags = shinfo->nr_frags; if (hlen < len) { /* For gso the rest of the linear portion of the skb needs to * be in its own descriptor. */ payload_nfrags++; gve_tx_fill_pkt_desc(pkt_desc, skb, is_gso, l4_hdr_offset, 1 + payload_nfrags, hlen, addr); len -= hlen; addr += hlen; idx = (tx->req + 1) & tx->mask; seg_desc = &tx->desc[idx]; gve_tx_fill_seg_desc(seg_desc, skb, is_gso, len, addr); } else { gve_tx_fill_pkt_desc(pkt_desc, skb, is_gso, l4_hdr_offset, 1 + payload_nfrags, hlen, addr); } for (i = 0; i < shinfo->nr_frags; i++) { const skb_frag_t *frag = &shinfo->frags[i]; idx = (idx + 1) & tx->mask; seg_desc = &tx->desc[idx]; len = skb_frag_size(frag); addr = skb_frag_dma_map(tx->dev, frag, 0, len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(tx->dev, addr))) { tx->dma_mapping_error++; goto unmap_drop; } buf = &tx->info[idx].buf; tx->info[idx].skb = NULL; dma_unmap_len_set(buf, len, len); dma_unmap_addr_set(buf, dma, addr); gve_tx_fill_seg_desc(seg_desc, skb, is_gso, len, addr); } return 1 + payload_nfrags; unmap_drop: i += (payload_nfrags == shinfo->nr_frags ? 1 : 2); while (i--) { idx--; gve_tx_unmap_buf(tx->dev, &tx->info[idx & tx->mask]); } drop: tx->dropped_pkt++; return 0; } netdev_tx_t gve_tx(struct sk_buff *skb, struct net_device *dev) { struct gve_priv *priv = netdev_priv(dev); struct gve_tx_ring *tx; int nsegs; WARN(skb_get_queue_mapping(skb) >= priv->tx_cfg.num_queues, "skb queue index out of range"); tx = &priv->tx[skb_get_queue_mapping(skb)]; if (unlikely(gve_maybe_stop_tx(tx, skb))) { /* We need to ring the txq doorbell -- we have stopped the Tx * queue for want of resources, but prior calls to gve_tx() * may have added descriptors without ringing the doorbell. */ gve_tx_put_doorbell(priv, tx->q_resources, tx->req); return NETDEV_TX_BUSY; } if (tx->raw_addressing) nsegs = gve_tx_add_skb_no_copy(priv, tx, skb); else nsegs = gve_tx_add_skb_copy(priv, tx, skb); /* If the packet is getting sent, we need to update the skb */ if (nsegs) { netdev_tx_sent_queue(tx->netdev_txq, skb->len); skb_tx_timestamp(skb); tx->req += nsegs; } else { dev_kfree_skb_any(skb); } if (!netif_xmit_stopped(tx->netdev_txq) && netdev_xmit_more()) return NETDEV_TX_OK; /* Give packets to NIC. Even if this packet failed to send the doorbell * might need to be rung because of xmit_more. */ gve_tx_put_doorbell(priv, tx->q_resources, tx->req); return NETDEV_TX_OK; } #define GVE_TX_START_THRESH PAGE_SIZE static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx, u32 to_do, bool try_to_wake) { struct gve_tx_buffer_state *info; u64 pkts = 0, bytes = 0; size_t space_freed = 0; struct sk_buff *skb; int i, j; u32 idx; for (j = 0; j < to_do; j++) { idx = tx->done & tx->mask; netif_info(priv, tx_done, priv->dev, "[%d] %s: idx=%d (req=%u done=%u)\n", tx->q_num, __func__, idx, tx->req, tx->done); info = &tx->info[idx]; skb = info->skb; /* Unmap the buffer */ if (tx->raw_addressing) gve_tx_unmap_buf(tx->dev, info); tx->done++; /* Mark as free */ if (skb) { info->skb = NULL; bytes += skb->len; pkts++; dev_consume_skb_any(skb); if (tx->raw_addressing) continue; /* FIFO free */ for (i = 0; i < ARRAY_SIZE(info->iov); i++) { space_freed += info->iov[i].iov_len + info->iov[i].iov_padding; info->iov[i].iov_len = 0; info->iov[i].iov_padding = 0; } } } if (!tx->raw_addressing) gve_tx_free_fifo(&tx->tx_fifo, space_freed); u64_stats_update_begin(&tx->statss); tx->bytes_done += bytes; tx->pkt_done += pkts; u64_stats_update_end(&tx->statss); netdev_tx_completed_queue(tx->netdev_txq, pkts, bytes); /* start the queue if we've stopped it */ #ifndef CONFIG_BQL /* Make sure that the doorbells are synced */ smp_mb(); #endif if (try_to_wake && netif_tx_queue_stopped(tx->netdev_txq) && likely(gve_can_tx(tx, GVE_TX_START_THRESH))) { tx->wake_queue++; netif_tx_wake_queue(tx->netdev_txq); } return pkts; } __be32 gve_tx_load_event_counter(struct gve_priv *priv, struct gve_tx_ring *tx) { u32 counter_index = be32_to_cpu((tx->q_resources->counter_index)); return READ_ONCE(priv->counter_array[counter_index]); } bool gve_tx_poll(struct gve_notify_block *block, int budget) { struct gve_priv *priv = block->priv; struct gve_tx_ring *tx = block->tx; bool repoll = false; u32 nic_done; u32 to_do; /* If budget is 0, do all the work */ if (budget == 0) budget = INT_MAX; /* Find out how much work there is to be done */ tx->last_nic_done = gve_tx_load_event_counter(priv, tx); nic_done = be32_to_cpu(tx->last_nic_done); if (budget > 0) { /* Do as much work as we have that the budget will * allow */ to_do = min_t(u32, (nic_done - tx->done), budget); gve_clean_tx_done(priv, tx, to_do, true); } /* If we still have work we want to repoll */ repoll |= (nic_done != tx->done); return repoll; }