// SPDX-License-Identifier: GPL-2.0 /* Copyright (C) 2021 Gerhard Engleder */ /* TSN endpoint Ethernet MAC driver * * The TSN endpoint Ethernet MAC is a FPGA based network device for real-time * communication. It is designed for endpoints within TSN (Time Sensitive * Networking) networks; e.g., for PLCs in the industrial automation case. * * It supports multiple TX/RX queue pairs. The first TX/RX queue pair is used * by the driver. * * More information can be found here: * - www.embedded-experts.at/tsn * - www.engleder-embedded.com */ #include "tsnep.h" #include "tsnep_hw.h" #include #include #include #include #include #include #include #include #include #include #include #include #define TSNEP_RX_OFFSET (max(NET_SKB_PAD, XDP_PACKET_HEADROOM) + NET_IP_ALIGN) #define TSNEP_HEADROOM ALIGN(TSNEP_RX_OFFSET, 4) #define TSNEP_MAX_RX_BUF_SIZE (PAGE_SIZE - TSNEP_HEADROOM - \ SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) /* XSK buffer shall store at least Q-in-Q frame */ #define TSNEP_XSK_RX_BUF_SIZE (ALIGN(TSNEP_RX_INLINE_METADATA_SIZE + \ ETH_FRAME_LEN + ETH_FCS_LEN + \ VLAN_HLEN * 2, 4)) #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT #define DMA_ADDR_HIGH(dma_addr) ((u32)(((dma_addr) >> 32) & 0xFFFFFFFF)) #else #define DMA_ADDR_HIGH(dma_addr) ((u32)(0)) #endif #define DMA_ADDR_LOW(dma_addr) ((u32)((dma_addr) & 0xFFFFFFFF)) #define TSNEP_COALESCE_USECS_DEFAULT 64 #define TSNEP_COALESCE_USECS_MAX ((ECM_INT_DELAY_MASK >> ECM_INT_DELAY_SHIFT) * \ ECM_INT_DELAY_BASE_US + ECM_INT_DELAY_BASE_US - 1) #define TSNEP_TX_TYPE_SKB BIT(0) #define TSNEP_TX_TYPE_SKB_FRAG BIT(1) #define TSNEP_TX_TYPE_XDP_TX BIT(2) #define TSNEP_TX_TYPE_XDP_NDO BIT(3) #define TSNEP_TX_TYPE_XDP (TSNEP_TX_TYPE_XDP_TX | TSNEP_TX_TYPE_XDP_NDO) #define TSNEP_TX_TYPE_XSK BIT(4) #define TSNEP_XDP_TX BIT(0) #define TSNEP_XDP_REDIRECT BIT(1) static void tsnep_enable_irq(struct tsnep_adapter *adapter, u32 mask) { iowrite32(mask, adapter->addr + ECM_INT_ENABLE); } static void tsnep_disable_irq(struct tsnep_adapter *adapter, u32 mask) { mask |= ECM_INT_DISABLE; iowrite32(mask, adapter->addr + ECM_INT_ENABLE); } static irqreturn_t tsnep_irq(int irq, void *arg) { struct tsnep_adapter *adapter = arg; u32 active = ioread32(adapter->addr + ECM_INT_ACTIVE); /* acknowledge interrupt */ if (active != 0) iowrite32(active, adapter->addr + ECM_INT_ACKNOWLEDGE); /* handle link interrupt */ if ((active & ECM_INT_LINK) != 0) phy_mac_interrupt(adapter->netdev->phydev); /* handle TX/RX queue 0 interrupt */ if ((active & adapter->queue[0].irq_mask) != 0) { if (napi_schedule_prep(&adapter->queue[0].napi)) { tsnep_disable_irq(adapter, adapter->queue[0].irq_mask); /* schedule after masking to avoid races */ __napi_schedule(&adapter->queue[0].napi); } } return IRQ_HANDLED; } static irqreturn_t tsnep_irq_txrx(int irq, void *arg) { struct tsnep_queue *queue = arg; /* handle TX/RX queue interrupt */ if (napi_schedule_prep(&queue->napi)) { tsnep_disable_irq(queue->adapter, queue->irq_mask); /* schedule after masking to avoid races */ __napi_schedule(&queue->napi); } return IRQ_HANDLED; } int tsnep_set_irq_coalesce(struct tsnep_queue *queue, u32 usecs) { if (usecs > TSNEP_COALESCE_USECS_MAX) return -ERANGE; usecs /= ECM_INT_DELAY_BASE_US; usecs <<= ECM_INT_DELAY_SHIFT; usecs &= ECM_INT_DELAY_MASK; queue->irq_delay &= ~ECM_INT_DELAY_MASK; queue->irq_delay |= usecs; iowrite8(queue->irq_delay, queue->irq_delay_addr); return 0; } u32 tsnep_get_irq_coalesce(struct tsnep_queue *queue) { u32 usecs; usecs = (queue->irq_delay & ECM_INT_DELAY_MASK); usecs >>= ECM_INT_DELAY_SHIFT; usecs *= ECM_INT_DELAY_BASE_US; return usecs; } static int tsnep_mdiobus_read(struct mii_bus *bus, int addr, int regnum) { struct tsnep_adapter *adapter = bus->priv; u32 md; int retval; md = ECM_MD_READ; if (!adapter->suppress_preamble) md |= ECM_MD_PREAMBLE; md |= (regnum << ECM_MD_ADDR_SHIFT) & ECM_MD_ADDR_MASK; md |= (addr << ECM_MD_PHY_ADDR_SHIFT) & ECM_MD_PHY_ADDR_MASK; iowrite32(md, adapter->addr + ECM_MD_CONTROL); retval = readl_poll_timeout_atomic(adapter->addr + ECM_MD_STATUS, md, !(md & ECM_MD_BUSY), 16, 1000); if (retval != 0) return retval; return (md & ECM_MD_DATA_MASK) >> ECM_MD_DATA_SHIFT; } static int tsnep_mdiobus_write(struct mii_bus *bus, int addr, int regnum, u16 val) { struct tsnep_adapter *adapter = bus->priv; u32 md; int retval; md = ECM_MD_WRITE; if (!adapter->suppress_preamble) md |= ECM_MD_PREAMBLE; md |= (regnum << ECM_MD_ADDR_SHIFT) & ECM_MD_ADDR_MASK; md |= (addr << ECM_MD_PHY_ADDR_SHIFT) & ECM_MD_PHY_ADDR_MASK; md |= ((u32)val << ECM_MD_DATA_SHIFT) & ECM_MD_DATA_MASK; iowrite32(md, adapter->addr + ECM_MD_CONTROL); retval = readl_poll_timeout_atomic(adapter->addr + ECM_MD_STATUS, md, !(md & ECM_MD_BUSY), 16, 1000); if (retval != 0) return retval; return 0; } static void tsnep_set_link_mode(struct tsnep_adapter *adapter) { u32 mode; switch (adapter->phydev->speed) { case SPEED_100: mode = ECM_LINK_MODE_100; break; case SPEED_1000: mode = ECM_LINK_MODE_1000; break; default: mode = ECM_LINK_MODE_OFF; break; } iowrite32(mode, adapter->addr + ECM_STATUS); } static void tsnep_phy_link_status_change(struct net_device *netdev) { struct tsnep_adapter *adapter = netdev_priv(netdev); struct phy_device *phydev = netdev->phydev; if (phydev->link) tsnep_set_link_mode(adapter); phy_print_status(netdev->phydev); } static int tsnep_phy_loopback(struct tsnep_adapter *adapter, bool enable) { int retval; retval = phy_loopback(adapter->phydev, enable); /* PHY link state change is not signaled if loopback is enabled, it * would delay a working loopback anyway, let's ensure that loopback * is working immediately by setting link mode directly */ if (!retval && enable) tsnep_set_link_mode(adapter); return retval; } static int tsnep_phy_open(struct tsnep_adapter *adapter) { struct phy_device *phydev; struct ethtool_eee ethtool_eee; int retval; retval = phy_connect_direct(adapter->netdev, adapter->phydev, tsnep_phy_link_status_change, adapter->phy_mode); if (retval) return retval; phydev = adapter->netdev->phydev; /* MAC supports only 100Mbps|1000Mbps full duplex * SPE (Single Pair Ethernet) is also an option but not implemented yet */ phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT); phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT); phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT); phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT); /* disable EEE autoneg, EEE not supported by TSNEP */ memset(ðtool_eee, 0, sizeof(ethtool_eee)); phy_ethtool_set_eee(adapter->phydev, ðtool_eee); adapter->phydev->irq = PHY_MAC_INTERRUPT; phy_start(adapter->phydev); return 0; } static void tsnep_phy_close(struct tsnep_adapter *adapter) { phy_stop(adapter->netdev->phydev); phy_disconnect(adapter->netdev->phydev); } static void tsnep_tx_ring_cleanup(struct tsnep_tx *tx) { struct device *dmadev = tx->adapter->dmadev; int i; memset(tx->entry, 0, sizeof(tx->entry)); for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) { if (tx->page[i]) { dma_free_coherent(dmadev, PAGE_SIZE, tx->page[i], tx->page_dma[i]); tx->page[i] = NULL; tx->page_dma[i] = 0; } } } static int tsnep_tx_ring_create(struct tsnep_tx *tx) { struct device *dmadev = tx->adapter->dmadev; struct tsnep_tx_entry *entry; struct tsnep_tx_entry *next_entry; int i, j; int retval; for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) { tx->page[i] = dma_alloc_coherent(dmadev, PAGE_SIZE, &tx->page_dma[i], GFP_KERNEL); if (!tx->page[i]) { retval = -ENOMEM; goto alloc_failed; } for (j = 0; j < TSNEP_RING_ENTRIES_PER_PAGE; j++) { entry = &tx->entry[TSNEP_RING_ENTRIES_PER_PAGE * i + j]; entry->desc_wb = (struct tsnep_tx_desc_wb *) (((u8 *)tx->page[i]) + TSNEP_DESC_SIZE * j); entry->desc = (struct tsnep_tx_desc *) (((u8 *)entry->desc_wb) + TSNEP_DESC_OFFSET); entry->desc_dma = tx->page_dma[i] + TSNEP_DESC_SIZE * j; entry->owner_user_flag = false; } } for (i = 0; i < TSNEP_RING_SIZE; i++) { entry = &tx->entry[i]; next_entry = &tx->entry[(i + 1) & TSNEP_RING_MASK]; entry->desc->next = __cpu_to_le64(next_entry->desc_dma); } return 0; alloc_failed: tsnep_tx_ring_cleanup(tx); return retval; } static void tsnep_tx_init(struct tsnep_tx *tx) { dma_addr_t dma; dma = tx->entry[0].desc_dma | TSNEP_RESET_OWNER_COUNTER; iowrite32(DMA_ADDR_LOW(dma), tx->addr + TSNEP_TX_DESC_ADDR_LOW); iowrite32(DMA_ADDR_HIGH(dma), tx->addr + TSNEP_TX_DESC_ADDR_HIGH); tx->write = 0; tx->read = 0; tx->owner_counter = 1; tx->increment_owner_counter = TSNEP_RING_SIZE - 1; } static void tsnep_tx_enable(struct tsnep_tx *tx) { struct netdev_queue *nq; nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index); __netif_tx_lock_bh(nq); netif_tx_wake_queue(nq); __netif_tx_unlock_bh(nq); } static void tsnep_tx_disable(struct tsnep_tx *tx, struct napi_struct *napi) { struct netdev_queue *nq; u32 val; nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index); __netif_tx_lock_bh(nq); netif_tx_stop_queue(nq); __netif_tx_unlock_bh(nq); /* wait until TX is done in hardware */ readx_poll_timeout(ioread32, tx->addr + TSNEP_CONTROL, val, ((val & TSNEP_CONTROL_TX_ENABLE) == 0), 10000, 1000000); /* wait until TX is also done in software */ while (READ_ONCE(tx->read) != tx->write) { napi_schedule(napi); napi_synchronize(napi); } } static void tsnep_tx_activate(struct tsnep_tx *tx, int index, int length, bool last) { struct tsnep_tx_entry *entry = &tx->entry[index]; entry->properties = 0; /* xdpf and zc are union with skb */ if (entry->skb) { entry->properties = length & TSNEP_DESC_LENGTH_MASK; entry->properties |= TSNEP_DESC_INTERRUPT_FLAG; if ((entry->type & TSNEP_TX_TYPE_SKB) && (skb_shinfo(entry->skb)->tx_flags & SKBTX_IN_PROGRESS)) entry->properties |= TSNEP_DESC_EXTENDED_WRITEBACK_FLAG; /* toggle user flag to prevent false acknowledge * * Only the first fragment is acknowledged. For all other * fragments no acknowledge is done and the last written owner * counter stays in the writeback descriptor. Therefore, it is * possible that the last written owner counter is identical to * the new incremented owner counter and a false acknowledge is * detected before the real acknowledge has been done by * hardware. * * The user flag is used to prevent this situation. The user * flag is copied to the writeback descriptor by the hardware * and is used as additional acknowledge data. By toggeling the * user flag only for the first fragment (which is * acknowledged), it is guaranteed that the last acknowledge * done for this descriptor has used a different user flag and * cannot be detected as false acknowledge. */ entry->owner_user_flag = !entry->owner_user_flag; } if (last) entry->properties |= TSNEP_TX_DESC_LAST_FRAGMENT_FLAG; if (index == tx->increment_owner_counter) { tx->owner_counter++; if (tx->owner_counter == 4) tx->owner_counter = 1; tx->increment_owner_counter--; if (tx->increment_owner_counter < 0) tx->increment_owner_counter = TSNEP_RING_SIZE - 1; } entry->properties |= (tx->owner_counter << TSNEP_DESC_OWNER_COUNTER_SHIFT) & TSNEP_DESC_OWNER_COUNTER_MASK; if (entry->owner_user_flag) entry->properties |= TSNEP_TX_DESC_OWNER_USER_FLAG; entry->desc->more_properties = __cpu_to_le32(entry->len & TSNEP_DESC_LENGTH_MASK); /* descriptor properties shall be written last, because valid data is * signaled there */ dma_wmb(); entry->desc->properties = __cpu_to_le32(entry->properties); } static int tsnep_tx_desc_available(struct tsnep_tx *tx) { if (tx->read <= tx->write) return TSNEP_RING_SIZE - tx->write + tx->read - 1; else return tx->read - tx->write - 1; } static int tsnep_tx_map(struct sk_buff *skb, struct tsnep_tx *tx, int count) { struct device *dmadev = tx->adapter->dmadev; struct tsnep_tx_entry *entry; unsigned int len; dma_addr_t dma; int map_len = 0; int i; for (i = 0; i < count; i++) { entry = &tx->entry[(tx->write + i) & TSNEP_RING_MASK]; if (!i) { len = skb_headlen(skb); dma = dma_map_single(dmadev, skb->data, len, DMA_TO_DEVICE); entry->type = TSNEP_TX_TYPE_SKB; } else { len = skb_frag_size(&skb_shinfo(skb)->frags[i - 1]); dma = skb_frag_dma_map(dmadev, &skb_shinfo(skb)->frags[i - 1], 0, len, DMA_TO_DEVICE); entry->type = TSNEP_TX_TYPE_SKB_FRAG; } if (dma_mapping_error(dmadev, dma)) return -ENOMEM; entry->len = len; dma_unmap_addr_set(entry, dma, dma); entry->desc->tx = __cpu_to_le64(dma); map_len += len; } return map_len; } static int tsnep_tx_unmap(struct tsnep_tx *tx, int index, int count) { struct device *dmadev = tx->adapter->dmadev; struct tsnep_tx_entry *entry; int map_len = 0; int i; for (i = 0; i < count; i++) { entry = &tx->entry[(index + i) & TSNEP_RING_MASK]; if (entry->len) { if (entry->type & TSNEP_TX_TYPE_SKB) dma_unmap_single(dmadev, dma_unmap_addr(entry, dma), dma_unmap_len(entry, len), DMA_TO_DEVICE); else if (entry->type & (TSNEP_TX_TYPE_SKB_FRAG | TSNEP_TX_TYPE_XDP_NDO)) dma_unmap_page(dmadev, dma_unmap_addr(entry, dma), dma_unmap_len(entry, len), DMA_TO_DEVICE); map_len += entry->len; entry->len = 0; } } return map_len; } static netdev_tx_t tsnep_xmit_frame_ring(struct sk_buff *skb, struct tsnep_tx *tx) { int count = 1; struct tsnep_tx_entry *entry; int length; int i; int retval; if (skb_shinfo(skb)->nr_frags > 0) count += skb_shinfo(skb)->nr_frags; if (tsnep_tx_desc_available(tx) < count) { /* ring full, shall not happen because queue is stopped if full * below */ netif_stop_subqueue(tx->adapter->netdev, tx->queue_index); return NETDEV_TX_BUSY; } entry = &tx->entry[tx->write]; entry->skb = skb; retval = tsnep_tx_map(skb, tx, count); if (retval < 0) { tsnep_tx_unmap(tx, tx->write, count); dev_kfree_skb_any(entry->skb); entry->skb = NULL; tx->dropped++; return NETDEV_TX_OK; } length = retval; if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; for (i = 0; i < count; i++) tsnep_tx_activate(tx, (tx->write + i) & TSNEP_RING_MASK, length, i == count - 1); tx->write = (tx->write + count) & TSNEP_RING_MASK; skb_tx_timestamp(skb); /* descriptor properties shall be valid before hardware is notified */ dma_wmb(); iowrite32(TSNEP_CONTROL_TX_ENABLE, tx->addr + TSNEP_CONTROL); if (tsnep_tx_desc_available(tx) < (MAX_SKB_FRAGS + 1)) { /* ring can get full with next frame */ netif_stop_subqueue(tx->adapter->netdev, tx->queue_index); } return NETDEV_TX_OK; } static int tsnep_xdp_tx_map(struct xdp_frame *xdpf, struct tsnep_tx *tx, struct skb_shared_info *shinfo, int count, u32 type) { struct device *dmadev = tx->adapter->dmadev; struct tsnep_tx_entry *entry; struct page *page; skb_frag_t *frag; unsigned int len; int map_len = 0; dma_addr_t dma; void *data; int i; frag = NULL; len = xdpf->len; for (i = 0; i < count; i++) { entry = &tx->entry[(tx->write + i) & TSNEP_RING_MASK]; if (type & TSNEP_TX_TYPE_XDP_NDO) { data = unlikely(frag) ? skb_frag_address(frag) : xdpf->data; dma = dma_map_single(dmadev, data, len, DMA_TO_DEVICE); if (dma_mapping_error(dmadev, dma)) return -ENOMEM; entry->type = TSNEP_TX_TYPE_XDP_NDO; } else { page = unlikely(frag) ? skb_frag_page(frag) : virt_to_page(xdpf->data); dma = page_pool_get_dma_addr(page); if (unlikely(frag)) dma += skb_frag_off(frag); else dma += sizeof(*xdpf) + xdpf->headroom; dma_sync_single_for_device(dmadev, dma, len, DMA_BIDIRECTIONAL); entry->type = TSNEP_TX_TYPE_XDP_TX; } entry->len = len; dma_unmap_addr_set(entry, dma, dma); entry->desc->tx = __cpu_to_le64(dma); map_len += len; if (i + 1 < count) { frag = &shinfo->frags[i]; len = skb_frag_size(frag); } } return map_len; } /* This function requires __netif_tx_lock is held by the caller. */ static bool tsnep_xdp_xmit_frame_ring(struct xdp_frame *xdpf, struct tsnep_tx *tx, u32 type) { struct skb_shared_info *shinfo = xdp_get_shared_info_from_frame(xdpf); struct tsnep_tx_entry *entry; int count, length, retval, i; count = 1; if (unlikely(xdp_frame_has_frags(xdpf))) count += shinfo->nr_frags; /* ensure that TX ring is not filled up by XDP, always MAX_SKB_FRAGS * will be available for normal TX path and queue is stopped there if * necessary */ if (tsnep_tx_desc_available(tx) < (MAX_SKB_FRAGS + 1 + count)) return false; entry = &tx->entry[tx->write]; entry->xdpf = xdpf; retval = tsnep_xdp_tx_map(xdpf, tx, shinfo, count, type); if (retval < 0) { tsnep_tx_unmap(tx, tx->write, count); entry->xdpf = NULL; tx->dropped++; return false; } length = retval; for (i = 0; i < count; i++) tsnep_tx_activate(tx, (tx->write + i) & TSNEP_RING_MASK, length, i == count - 1); tx->write = (tx->write + count) & TSNEP_RING_MASK; /* descriptor properties shall be valid before hardware is notified */ dma_wmb(); return true; } static void tsnep_xdp_xmit_flush(struct tsnep_tx *tx) { iowrite32(TSNEP_CONTROL_TX_ENABLE, tx->addr + TSNEP_CONTROL); } static bool tsnep_xdp_xmit_back(struct tsnep_adapter *adapter, struct xdp_buff *xdp, struct netdev_queue *tx_nq, struct tsnep_tx *tx) { struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); bool xmit; if (unlikely(!xdpf)) return false; __netif_tx_lock(tx_nq, smp_processor_id()); xmit = tsnep_xdp_xmit_frame_ring(xdpf, tx, TSNEP_TX_TYPE_XDP_TX); /* Avoid transmit queue timeout since we share it with the slow path */ if (xmit) txq_trans_cond_update(tx_nq); __netif_tx_unlock(tx_nq); return xmit; } static int tsnep_xdp_tx_map_zc(struct xdp_desc *xdpd, struct tsnep_tx *tx) { struct tsnep_tx_entry *entry; dma_addr_t dma; entry = &tx->entry[tx->write]; entry->zc = true; dma = xsk_buff_raw_get_dma(tx->xsk_pool, xdpd->addr); xsk_buff_raw_dma_sync_for_device(tx->xsk_pool, dma, xdpd->len); entry->type = TSNEP_TX_TYPE_XSK; entry->len = xdpd->len; entry->desc->tx = __cpu_to_le64(dma); return xdpd->len; } static void tsnep_xdp_xmit_frame_ring_zc(struct xdp_desc *xdpd, struct tsnep_tx *tx) { int length; length = tsnep_xdp_tx_map_zc(xdpd, tx); tsnep_tx_activate(tx, tx->write, length, true); tx->write = (tx->write + 1) & TSNEP_RING_MASK; } static void tsnep_xdp_xmit_zc(struct tsnep_tx *tx) { int desc_available = tsnep_tx_desc_available(tx); struct xdp_desc *descs = tx->xsk_pool->tx_descs; int batch, i; /* ensure that TX ring is not filled up by XDP, always MAX_SKB_FRAGS * will be available for normal TX path and queue is stopped there if * necessary */ if (desc_available <= (MAX_SKB_FRAGS + 1)) return; desc_available -= MAX_SKB_FRAGS + 1; batch = xsk_tx_peek_release_desc_batch(tx->xsk_pool, desc_available); for (i = 0; i < batch; i++) tsnep_xdp_xmit_frame_ring_zc(&descs[i], tx); if (batch) { /* descriptor properties shall be valid before hardware is * notified */ dma_wmb(); tsnep_xdp_xmit_flush(tx); } } static bool tsnep_tx_poll(struct tsnep_tx *tx, int napi_budget) { struct tsnep_tx_entry *entry; struct netdev_queue *nq; int xsk_frames = 0; int budget = 128; int length; int count; nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index); __netif_tx_lock(nq, smp_processor_id()); do { if (tx->read == tx->write) break; entry = &tx->entry[tx->read]; if ((__le32_to_cpu(entry->desc_wb->properties) & TSNEP_TX_DESC_OWNER_MASK) != (entry->properties & TSNEP_TX_DESC_OWNER_MASK)) break; /* descriptor properties shall be read first, because valid data * is signaled there */ dma_rmb(); count = 1; if ((entry->type & TSNEP_TX_TYPE_SKB) && skb_shinfo(entry->skb)->nr_frags > 0) count += skb_shinfo(entry->skb)->nr_frags; else if ((entry->type & TSNEP_TX_TYPE_XDP) && xdp_frame_has_frags(entry->xdpf)) count += xdp_get_shared_info_from_frame(entry->xdpf)->nr_frags; length = tsnep_tx_unmap(tx, tx->read, count); if ((entry->type & TSNEP_TX_TYPE_SKB) && (skb_shinfo(entry->skb)->tx_flags & SKBTX_IN_PROGRESS) && (__le32_to_cpu(entry->desc_wb->properties) & TSNEP_DESC_EXTENDED_WRITEBACK_FLAG)) { struct skb_shared_hwtstamps hwtstamps; u64 timestamp; if (skb_shinfo(entry->skb)->tx_flags & SKBTX_HW_TSTAMP_USE_CYCLES) timestamp = __le64_to_cpu(entry->desc_wb->counter); else timestamp = __le64_to_cpu(entry->desc_wb->timestamp); memset(&hwtstamps, 0, sizeof(hwtstamps)); hwtstamps.hwtstamp = ns_to_ktime(timestamp); skb_tstamp_tx(entry->skb, &hwtstamps); } if (entry->type & TSNEP_TX_TYPE_SKB) napi_consume_skb(entry->skb, napi_budget); else if (entry->type & TSNEP_TX_TYPE_XDP) xdp_return_frame_rx_napi(entry->xdpf); else xsk_frames++; /* xdpf and zc are union with skb */ entry->skb = NULL; tx->read = (tx->read + count) & TSNEP_RING_MASK; tx->packets++; tx->bytes += length + ETH_FCS_LEN; budget--; } while (likely(budget)); if (tx->xsk_pool) { if (xsk_frames) xsk_tx_completed(tx->xsk_pool, xsk_frames); if (xsk_uses_need_wakeup(tx->xsk_pool)) xsk_set_tx_need_wakeup(tx->xsk_pool); tsnep_xdp_xmit_zc(tx); } if ((tsnep_tx_desc_available(tx) >= ((MAX_SKB_FRAGS + 1) * 2)) && netif_tx_queue_stopped(nq)) { netif_tx_wake_queue(nq); } __netif_tx_unlock(nq); return budget != 0; } static bool tsnep_tx_pending(struct tsnep_tx *tx) { struct tsnep_tx_entry *entry; struct netdev_queue *nq; bool pending = false; nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index); __netif_tx_lock(nq, smp_processor_id()); if (tx->read != tx->write) { entry = &tx->entry[tx->read]; if ((__le32_to_cpu(entry->desc_wb->properties) & TSNEP_TX_DESC_OWNER_MASK) == (entry->properties & TSNEP_TX_DESC_OWNER_MASK)) pending = true; } __netif_tx_unlock(nq); return pending; } static int tsnep_tx_open(struct tsnep_tx *tx) { int retval; retval = tsnep_tx_ring_create(tx); if (retval) return retval; tsnep_tx_init(tx); return 0; } static void tsnep_tx_close(struct tsnep_tx *tx) { tsnep_tx_ring_cleanup(tx); } static void tsnep_rx_ring_cleanup(struct tsnep_rx *rx) { struct device *dmadev = rx->adapter->dmadev; struct tsnep_rx_entry *entry; int i; for (i = 0; i < TSNEP_RING_SIZE; i++) { entry = &rx->entry[i]; if (!rx->xsk_pool && entry->page) page_pool_put_full_page(rx->page_pool, entry->page, false); if (rx->xsk_pool && entry->xdp) xsk_buff_free(entry->xdp); /* xdp is union with page */ entry->page = NULL; } if (rx->page_pool) page_pool_destroy(rx->page_pool); memset(rx->entry, 0, sizeof(rx->entry)); for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) { if (rx->page[i]) { dma_free_coherent(dmadev, PAGE_SIZE, rx->page[i], rx->page_dma[i]); rx->page[i] = NULL; rx->page_dma[i] = 0; } } } static int tsnep_rx_ring_create(struct tsnep_rx *rx) { struct device *dmadev = rx->adapter->dmadev; struct tsnep_rx_entry *entry; struct page_pool_params pp_params = { 0 }; struct tsnep_rx_entry *next_entry; int i, j; int retval; for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) { rx->page[i] = dma_alloc_coherent(dmadev, PAGE_SIZE, &rx->page_dma[i], GFP_KERNEL); if (!rx->page[i]) { retval = -ENOMEM; goto failed; } for (j = 0; j < TSNEP_RING_ENTRIES_PER_PAGE; j++) { entry = &rx->entry[TSNEP_RING_ENTRIES_PER_PAGE * i + j]; entry->desc_wb = (struct tsnep_rx_desc_wb *) (((u8 *)rx->page[i]) + TSNEP_DESC_SIZE * j); entry->desc = (struct tsnep_rx_desc *) (((u8 *)entry->desc_wb) + TSNEP_DESC_OFFSET); entry->desc_dma = rx->page_dma[i] + TSNEP_DESC_SIZE * j; } } pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; pp_params.order = 0; pp_params.pool_size = TSNEP_RING_SIZE; pp_params.nid = dev_to_node(dmadev); pp_params.dev = dmadev; pp_params.dma_dir = DMA_BIDIRECTIONAL; pp_params.max_len = TSNEP_MAX_RX_BUF_SIZE; pp_params.offset = TSNEP_RX_OFFSET; rx->page_pool = page_pool_create(&pp_params); if (IS_ERR(rx->page_pool)) { retval = PTR_ERR(rx->page_pool); rx->page_pool = NULL; goto failed; } for (i = 0; i < TSNEP_RING_SIZE; i++) { entry = &rx->entry[i]; next_entry = &rx->entry[(i + 1) & TSNEP_RING_MASK]; entry->desc->next = __cpu_to_le64(next_entry->desc_dma); } return 0; failed: tsnep_rx_ring_cleanup(rx); return retval; } static void tsnep_rx_init(struct tsnep_rx *rx) { dma_addr_t dma; dma = rx->entry[0].desc_dma | TSNEP_RESET_OWNER_COUNTER; iowrite32(DMA_ADDR_LOW(dma), rx->addr + TSNEP_RX_DESC_ADDR_LOW); iowrite32(DMA_ADDR_HIGH(dma), rx->addr + TSNEP_RX_DESC_ADDR_HIGH); rx->write = 0; rx->read = 0; rx->owner_counter = 1; rx->increment_owner_counter = TSNEP_RING_SIZE - 1; } static void tsnep_rx_enable(struct tsnep_rx *rx) { /* descriptor properties shall be valid before hardware is notified */ dma_wmb(); iowrite32(TSNEP_CONTROL_RX_ENABLE, rx->addr + TSNEP_CONTROL); } static void tsnep_rx_disable(struct tsnep_rx *rx) { u32 val; iowrite32(TSNEP_CONTROL_RX_DISABLE, rx->addr + TSNEP_CONTROL); readx_poll_timeout(ioread32, rx->addr + TSNEP_CONTROL, val, ((val & TSNEP_CONTROL_RX_ENABLE) == 0), 10000, 1000000); } static int tsnep_rx_desc_available(struct tsnep_rx *rx) { if (rx->read <= rx->write) return TSNEP_RING_SIZE - rx->write + rx->read - 1; else return rx->read - rx->write - 1; } static void tsnep_rx_free_page_buffer(struct tsnep_rx *rx) { struct page **page; /* last entry of page_buffer is always zero, because ring cannot be * filled completely */ page = rx->page_buffer; while (*page) { page_pool_put_full_page(rx->page_pool, *page, false); *page = NULL; page++; } } static int tsnep_rx_alloc_page_buffer(struct tsnep_rx *rx) { int i; /* alloc for all ring entries except the last one, because ring cannot * be filled completely */ for (i = 0; i < TSNEP_RING_SIZE - 1; i++) { rx->page_buffer[i] = page_pool_dev_alloc_pages(rx->page_pool); if (!rx->page_buffer[i]) { tsnep_rx_free_page_buffer(rx); return -ENOMEM; } } return 0; } static void tsnep_rx_set_page(struct tsnep_rx *rx, struct tsnep_rx_entry *entry, struct page *page) { entry->page = page; entry->len = TSNEP_MAX_RX_BUF_SIZE; entry->dma = page_pool_get_dma_addr(entry->page); entry->desc->rx = __cpu_to_le64(entry->dma + TSNEP_RX_OFFSET); } static int tsnep_rx_alloc_buffer(struct tsnep_rx *rx, int index) { struct tsnep_rx_entry *entry = &rx->entry[index]; struct page *page; page = page_pool_dev_alloc_pages(rx->page_pool); if (unlikely(!page)) return -ENOMEM; tsnep_rx_set_page(rx, entry, page); return 0; } static void tsnep_rx_reuse_buffer(struct tsnep_rx *rx, int index) { struct tsnep_rx_entry *entry = &rx->entry[index]; struct tsnep_rx_entry *read = &rx->entry[rx->read]; tsnep_rx_set_page(rx, entry, read->page); read->page = NULL; } static void tsnep_rx_activate(struct tsnep_rx *rx, int index) { struct tsnep_rx_entry *entry = &rx->entry[index]; /* TSNEP_MAX_RX_BUF_SIZE and TSNEP_XSK_RX_BUF_SIZE are multiple of 4 */ entry->properties = entry->len & TSNEP_DESC_LENGTH_MASK; entry->properties |= TSNEP_DESC_INTERRUPT_FLAG; if (index == rx->increment_owner_counter) { rx->owner_counter++; if (rx->owner_counter == 4) rx->owner_counter = 1; rx->increment_owner_counter--; if (rx->increment_owner_counter < 0) rx->increment_owner_counter = TSNEP_RING_SIZE - 1; } entry->properties |= (rx->owner_counter << TSNEP_DESC_OWNER_COUNTER_SHIFT) & TSNEP_DESC_OWNER_COUNTER_MASK; /* descriptor properties shall be written last, because valid data is * signaled there */ dma_wmb(); entry->desc->properties = __cpu_to_le32(entry->properties); } static int tsnep_rx_alloc(struct tsnep_rx *rx, int count, bool reuse) { bool alloc_failed = false; int i, index; for (i = 0; i < count && !alloc_failed; i++) { index = (rx->write + i) & TSNEP_RING_MASK; if (unlikely(tsnep_rx_alloc_buffer(rx, index))) { rx->alloc_failed++; alloc_failed = true; /* reuse only if no other allocation was successful */ if (i == 0 && reuse) tsnep_rx_reuse_buffer(rx, index); else break; } tsnep_rx_activate(rx, index); } if (i) rx->write = (rx->write + i) & TSNEP_RING_MASK; return i; } static int tsnep_rx_refill(struct tsnep_rx *rx, int count, bool reuse) { int desc_refilled; desc_refilled = tsnep_rx_alloc(rx, count, reuse); if (desc_refilled) tsnep_rx_enable(rx); return desc_refilled; } static void tsnep_rx_set_xdp(struct tsnep_rx *rx, struct tsnep_rx_entry *entry, struct xdp_buff *xdp) { entry->xdp = xdp; entry->len = TSNEP_XSK_RX_BUF_SIZE; entry->dma = xsk_buff_xdp_get_dma(entry->xdp); entry->desc->rx = __cpu_to_le64(entry->dma); } static void tsnep_rx_reuse_buffer_zc(struct tsnep_rx *rx, int index) { struct tsnep_rx_entry *entry = &rx->entry[index]; struct tsnep_rx_entry *read = &rx->entry[rx->read]; tsnep_rx_set_xdp(rx, entry, read->xdp); read->xdp = NULL; } static int tsnep_rx_alloc_zc(struct tsnep_rx *rx, int count, bool reuse) { u32 allocated; int i; allocated = xsk_buff_alloc_batch(rx->xsk_pool, rx->xdp_batch, count); for (i = 0; i < allocated; i++) { int index = (rx->write + i) & TSNEP_RING_MASK; struct tsnep_rx_entry *entry = &rx->entry[index]; tsnep_rx_set_xdp(rx, entry, rx->xdp_batch[i]); tsnep_rx_activate(rx, index); } if (i == 0) { rx->alloc_failed++; if (reuse) { tsnep_rx_reuse_buffer_zc(rx, rx->write); tsnep_rx_activate(rx, rx->write); } } if (i) rx->write = (rx->write + i) & TSNEP_RING_MASK; return i; } static void tsnep_rx_free_zc(struct tsnep_rx *rx) { int i; for (i = 0; i < TSNEP_RING_SIZE; i++) { struct tsnep_rx_entry *entry = &rx->entry[i]; if (entry->xdp) xsk_buff_free(entry->xdp); entry->xdp = NULL; } } static int tsnep_rx_refill_zc(struct tsnep_rx *rx, int count, bool reuse) { int desc_refilled; desc_refilled = tsnep_rx_alloc_zc(rx, count, reuse); if (desc_refilled) tsnep_rx_enable(rx); return desc_refilled; } static bool tsnep_xdp_run_prog(struct tsnep_rx *rx, struct bpf_prog *prog, struct xdp_buff *xdp, int *status, struct netdev_queue *tx_nq, struct tsnep_tx *tx) { unsigned int length; unsigned int sync; u32 act; length = xdp->data_end - xdp->data_hard_start - XDP_PACKET_HEADROOM; act = bpf_prog_run_xdp(prog, xdp); switch (act) { case XDP_PASS: return false; case XDP_TX: if (!tsnep_xdp_xmit_back(rx->adapter, xdp, tx_nq, tx)) goto out_failure; *status |= TSNEP_XDP_TX; return true; case XDP_REDIRECT: if (xdp_do_redirect(rx->adapter->netdev, xdp, prog) < 0) goto out_failure; *status |= TSNEP_XDP_REDIRECT; return true; default: bpf_warn_invalid_xdp_action(rx->adapter->netdev, prog, act); fallthrough; case XDP_ABORTED: out_failure: trace_xdp_exception(rx->adapter->netdev, prog, act); fallthrough; case XDP_DROP: /* Due xdp_adjust_tail: DMA sync for_device cover max len CPU * touch */ sync = xdp->data_end - xdp->data_hard_start - XDP_PACKET_HEADROOM; sync = max(sync, length); page_pool_put_page(rx->page_pool, virt_to_head_page(xdp->data), sync, true); return true; } } static bool tsnep_xdp_run_prog_zc(struct tsnep_rx *rx, struct bpf_prog *prog, struct xdp_buff *xdp, int *status, struct netdev_queue *tx_nq, struct tsnep_tx *tx) { u32 act; act = bpf_prog_run_xdp(prog, xdp); /* XDP_REDIRECT is the main action for zero-copy */ if (likely(act == XDP_REDIRECT)) { if (xdp_do_redirect(rx->adapter->netdev, xdp, prog) < 0) goto out_failure; *status |= TSNEP_XDP_REDIRECT; return true; } switch (act) { case XDP_PASS: return false; case XDP_TX: if (!tsnep_xdp_xmit_back(rx->adapter, xdp, tx_nq, tx)) goto out_failure; *status |= TSNEP_XDP_TX; return true; default: bpf_warn_invalid_xdp_action(rx->adapter->netdev, prog, act); fallthrough; case XDP_ABORTED: out_failure: trace_xdp_exception(rx->adapter->netdev, prog, act); fallthrough; case XDP_DROP: xsk_buff_free(xdp); return true; } } static void tsnep_finalize_xdp(struct tsnep_adapter *adapter, int status, struct netdev_queue *tx_nq, struct tsnep_tx *tx) { if (status & TSNEP_XDP_TX) { __netif_tx_lock(tx_nq, smp_processor_id()); tsnep_xdp_xmit_flush(tx); __netif_tx_unlock(tx_nq); } if (status & TSNEP_XDP_REDIRECT) xdp_do_flush(); } static struct sk_buff *tsnep_build_skb(struct tsnep_rx *rx, struct page *page, int length) { struct sk_buff *skb; skb = napi_build_skb(page_address(page), PAGE_SIZE); if (unlikely(!skb)) return NULL; /* update pointers within the skb to store the data */ skb_reserve(skb, TSNEP_RX_OFFSET + TSNEP_RX_INLINE_METADATA_SIZE); __skb_put(skb, length - ETH_FCS_LEN); if (rx->adapter->hwtstamp_config.rx_filter == HWTSTAMP_FILTER_ALL) { struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); struct tsnep_rx_inline *rx_inline = (struct tsnep_rx_inline *)(page_address(page) + TSNEP_RX_OFFSET); skb_shinfo(skb)->tx_flags |= SKBTX_HW_TSTAMP_NETDEV; memset(hwtstamps, 0, sizeof(*hwtstamps)); hwtstamps->netdev_data = rx_inline; } skb_record_rx_queue(skb, rx->queue_index); skb->protocol = eth_type_trans(skb, rx->adapter->netdev); return skb; } static void tsnep_rx_page(struct tsnep_rx *rx, struct napi_struct *napi, struct page *page, int length) { struct sk_buff *skb; skb = tsnep_build_skb(rx, page, length); if (skb) { skb_mark_for_recycle(skb); rx->packets++; rx->bytes += length; if (skb->pkt_type == PACKET_MULTICAST) rx->multicast++; napi_gro_receive(napi, skb); } else { page_pool_recycle_direct(rx->page_pool, page); rx->dropped++; } } static int tsnep_rx_poll(struct tsnep_rx *rx, struct napi_struct *napi, int budget) { struct device *dmadev = rx->adapter->dmadev; enum dma_data_direction dma_dir; struct tsnep_rx_entry *entry; struct netdev_queue *tx_nq; struct bpf_prog *prog; struct xdp_buff xdp; struct tsnep_tx *tx; int desc_available; int xdp_status = 0; int done = 0; int length; desc_available = tsnep_rx_desc_available(rx); dma_dir = page_pool_get_dma_dir(rx->page_pool); prog = READ_ONCE(rx->adapter->xdp_prog); if (prog) { tx_nq = netdev_get_tx_queue(rx->adapter->netdev, rx->tx_queue_index); tx = &rx->adapter->tx[rx->tx_queue_index]; xdp_init_buff(&xdp, PAGE_SIZE, &rx->xdp_rxq); } while (likely(done < budget) && (rx->read != rx->write)) { entry = &rx->entry[rx->read]; if ((__le32_to_cpu(entry->desc_wb->properties) & TSNEP_DESC_OWNER_COUNTER_MASK) != (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK)) break; done++; if (desc_available >= TSNEP_RING_RX_REFILL) { bool reuse = desc_available >= TSNEP_RING_RX_REUSE; desc_available -= tsnep_rx_refill(rx, desc_available, reuse); if (!entry->page) { /* buffer has been reused for refill to prevent * empty RX ring, thus buffer cannot be used for * RX processing */ rx->read = (rx->read + 1) & TSNEP_RING_MASK; desc_available++; rx->dropped++; continue; } } /* descriptor properties shall be read first, because valid data * is signaled there */ dma_rmb(); prefetch(page_address(entry->page) + TSNEP_RX_OFFSET); length = __le32_to_cpu(entry->desc_wb->properties) & TSNEP_DESC_LENGTH_MASK; dma_sync_single_range_for_cpu(dmadev, entry->dma, TSNEP_RX_OFFSET, length, dma_dir); /* RX metadata with timestamps is in front of actual data, * subtract metadata size to get length of actual data and * consider metadata size as offset of actual data during RX * processing */ length -= TSNEP_RX_INLINE_METADATA_SIZE; rx->read = (rx->read + 1) & TSNEP_RING_MASK; desc_available++; if (prog) { bool consume; xdp_prepare_buff(&xdp, page_address(entry->page), XDP_PACKET_HEADROOM + TSNEP_RX_INLINE_METADATA_SIZE, length - ETH_FCS_LEN, false); consume = tsnep_xdp_run_prog(rx, prog, &xdp, &xdp_status, tx_nq, tx); if (consume) { rx->packets++; rx->bytes += length; entry->page = NULL; continue; } } tsnep_rx_page(rx, napi, entry->page, length); entry->page = NULL; } if (xdp_status) tsnep_finalize_xdp(rx->adapter, xdp_status, tx_nq, tx); if (desc_available) tsnep_rx_refill(rx, desc_available, false); return done; } static int tsnep_rx_poll_zc(struct tsnep_rx *rx, struct napi_struct *napi, int budget) { struct tsnep_rx_entry *entry; struct netdev_queue *tx_nq; struct bpf_prog *prog; struct tsnep_tx *tx; int desc_available; int xdp_status = 0; struct page *page; int done = 0; int length; desc_available = tsnep_rx_desc_available(rx); prog = READ_ONCE(rx->adapter->xdp_prog); if (prog) { tx_nq = netdev_get_tx_queue(rx->adapter->netdev, rx->tx_queue_index); tx = &rx->adapter->tx[rx->tx_queue_index]; } while (likely(done < budget) && (rx->read != rx->write)) { entry = &rx->entry[rx->read]; if ((__le32_to_cpu(entry->desc_wb->properties) & TSNEP_DESC_OWNER_COUNTER_MASK) != (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK)) break; done++; if (desc_available >= TSNEP_RING_RX_REFILL) { bool reuse = desc_available >= TSNEP_RING_RX_REUSE; desc_available -= tsnep_rx_refill_zc(rx, desc_available, reuse); if (!entry->xdp) { /* buffer has been reused for refill to prevent * empty RX ring, thus buffer cannot be used for * RX processing */ rx->read = (rx->read + 1) & TSNEP_RING_MASK; desc_available++; rx->dropped++; continue; } } /* descriptor properties shall be read first, because valid data * is signaled there */ dma_rmb(); prefetch(entry->xdp->data); length = __le32_to_cpu(entry->desc_wb->properties) & TSNEP_DESC_LENGTH_MASK; xsk_buff_set_size(entry->xdp, length - ETH_FCS_LEN); xsk_buff_dma_sync_for_cpu(entry->xdp, rx->xsk_pool); /* RX metadata with timestamps is in front of actual data, * subtract metadata size to get length of actual data and * consider metadata size as offset of actual data during RX * processing */ length -= TSNEP_RX_INLINE_METADATA_SIZE; rx->read = (rx->read + 1) & TSNEP_RING_MASK; desc_available++; if (prog) { bool consume; entry->xdp->data += TSNEP_RX_INLINE_METADATA_SIZE; entry->xdp->data_meta += TSNEP_RX_INLINE_METADATA_SIZE; consume = tsnep_xdp_run_prog_zc(rx, prog, entry->xdp, &xdp_status, tx_nq, tx); if (consume) { rx->packets++; rx->bytes += length; entry->xdp = NULL; continue; } } page = page_pool_dev_alloc_pages(rx->page_pool); if (page) { memcpy(page_address(page) + TSNEP_RX_OFFSET, entry->xdp->data - TSNEP_RX_INLINE_METADATA_SIZE, length + TSNEP_RX_INLINE_METADATA_SIZE); tsnep_rx_page(rx, napi, page, length); } else { rx->dropped++; } xsk_buff_free(entry->xdp); entry->xdp = NULL; } if (xdp_status) tsnep_finalize_xdp(rx->adapter, xdp_status, tx_nq, tx); if (desc_available) desc_available -= tsnep_rx_refill_zc(rx, desc_available, false); if (xsk_uses_need_wakeup(rx->xsk_pool)) { if (desc_available) xsk_set_rx_need_wakeup(rx->xsk_pool); else xsk_clear_rx_need_wakeup(rx->xsk_pool); return done; } return desc_available ? budget : done; } static bool tsnep_rx_pending(struct tsnep_rx *rx) { struct tsnep_rx_entry *entry; if (rx->read != rx->write) { entry = &rx->entry[rx->read]; if ((__le32_to_cpu(entry->desc_wb->properties) & TSNEP_DESC_OWNER_COUNTER_MASK) == (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK)) return true; } return false; } static int tsnep_rx_open(struct tsnep_rx *rx) { int desc_available; int retval; retval = tsnep_rx_ring_create(rx); if (retval) return retval; tsnep_rx_init(rx); desc_available = tsnep_rx_desc_available(rx); if (rx->xsk_pool) retval = tsnep_rx_alloc_zc(rx, desc_available, false); else retval = tsnep_rx_alloc(rx, desc_available, false); if (retval != desc_available) { retval = -ENOMEM; goto alloc_failed; } /* prealloc pages to prevent allocation failures when XSK pool is * disabled at runtime */ if (rx->xsk_pool) { retval = tsnep_rx_alloc_page_buffer(rx); if (retval) goto alloc_failed; } return 0; alloc_failed: tsnep_rx_ring_cleanup(rx); return retval; } static void tsnep_rx_close(struct tsnep_rx *rx) { if (rx->xsk_pool) tsnep_rx_free_page_buffer(rx); tsnep_rx_ring_cleanup(rx); } static void tsnep_rx_reopen(struct tsnep_rx *rx) { struct page **page = rx->page_buffer; int i; tsnep_rx_init(rx); for (i = 0; i < TSNEP_RING_SIZE; i++) { struct tsnep_rx_entry *entry = &rx->entry[i]; /* defined initial values for properties are required for * correct owner counter checking */ entry->desc->properties = 0; entry->desc_wb->properties = 0; /* prevent allocation failures by reusing kept pages */ if (*page) { tsnep_rx_set_page(rx, entry, *page); tsnep_rx_activate(rx, rx->write); rx->write++; *page = NULL; page++; } } } static void tsnep_rx_reopen_xsk(struct tsnep_rx *rx) { struct page **page = rx->page_buffer; u32 allocated; int i; tsnep_rx_init(rx); /* alloc all ring entries except the last one, because ring cannot be * filled completely, as many buffers as possible is enough as wakeup is * done if new buffers are available */ allocated = xsk_buff_alloc_batch(rx->xsk_pool, rx->xdp_batch, TSNEP_RING_SIZE - 1); for (i = 0; i < TSNEP_RING_SIZE; i++) { struct tsnep_rx_entry *entry = &rx->entry[i]; /* keep pages to prevent allocation failures when xsk is * disabled */ if (entry->page) { *page = entry->page; entry->page = NULL; page++; } /* defined initial values for properties are required for * correct owner counter checking */ entry->desc->properties = 0; entry->desc_wb->properties = 0; if (allocated) { tsnep_rx_set_xdp(rx, entry, rx->xdp_batch[allocated - 1]); tsnep_rx_activate(rx, rx->write); rx->write++; allocated--; } } /* set need wakeup flag immediately if ring is not filled completely, * first polling would be too late as need wakeup signalisation would * be delayed for an indefinite time */ if (xsk_uses_need_wakeup(rx->xsk_pool)) { int desc_available = tsnep_rx_desc_available(rx); if (desc_available) xsk_set_rx_need_wakeup(rx->xsk_pool); else xsk_clear_rx_need_wakeup(rx->xsk_pool); } } static bool tsnep_pending(struct tsnep_queue *queue) { if (queue->tx && tsnep_tx_pending(queue->tx)) return true; if (queue->rx && tsnep_rx_pending(queue->rx)) return true; return false; } static int tsnep_poll(struct napi_struct *napi, int budget) { struct tsnep_queue *queue = container_of(napi, struct tsnep_queue, napi); bool complete = true; int done = 0; if (queue->tx) complete = tsnep_tx_poll(queue->tx, budget); /* handle case where we are called by netpoll with a budget of 0 */ if (unlikely(budget <= 0)) return budget; if (queue->rx) { done = queue->rx->xsk_pool ? tsnep_rx_poll_zc(queue->rx, napi, budget) : tsnep_rx_poll(queue->rx, napi, budget); if (done >= budget) complete = false; } /* if all work not completed, return budget and keep polling */ if (!complete) return budget; if (likely(napi_complete_done(napi, done))) { tsnep_enable_irq(queue->adapter, queue->irq_mask); /* reschedule if work is already pending, prevent rotten packets * which are transmitted or received after polling but before * interrupt enable */ if (tsnep_pending(queue)) { tsnep_disable_irq(queue->adapter, queue->irq_mask); napi_schedule(napi); } } return min(done, budget - 1); } static int tsnep_request_irq(struct tsnep_queue *queue, bool first) { const char *name = netdev_name(queue->adapter->netdev); irq_handler_t handler; void *dev; int retval; if (first) { sprintf(queue->name, "%s-mac", name); handler = tsnep_irq; dev = queue->adapter; } else { if (queue->tx && queue->rx) snprintf(queue->name, sizeof(queue->name), "%s-txrx-%d", name, queue->rx->queue_index); else if (queue->tx) snprintf(queue->name, sizeof(queue->name), "%s-tx-%d", name, queue->tx->queue_index); else snprintf(queue->name, sizeof(queue->name), "%s-rx-%d", name, queue->rx->queue_index); handler = tsnep_irq_txrx; dev = queue; } retval = request_irq(queue->irq, handler, 0, queue->name, dev); if (retval) { /* if name is empty, then interrupt won't be freed */ memset(queue->name, 0, sizeof(queue->name)); } return retval; } static void tsnep_free_irq(struct tsnep_queue *queue, bool first) { void *dev; if (!strlen(queue->name)) return; if (first) dev = queue->adapter; else dev = queue; free_irq(queue->irq, dev); memset(queue->name, 0, sizeof(queue->name)); } static void tsnep_queue_close(struct tsnep_queue *queue, bool first) { struct tsnep_rx *rx = queue->rx; tsnep_free_irq(queue, first); if (rx) { if (xdp_rxq_info_is_reg(&rx->xdp_rxq)) xdp_rxq_info_unreg(&rx->xdp_rxq); if (xdp_rxq_info_is_reg(&rx->xdp_rxq_zc)) xdp_rxq_info_unreg(&rx->xdp_rxq_zc); } netif_napi_del(&queue->napi); } static int tsnep_queue_open(struct tsnep_adapter *adapter, struct tsnep_queue *queue, bool first) { struct tsnep_rx *rx = queue->rx; struct tsnep_tx *tx = queue->tx; int retval; netif_napi_add(adapter->netdev, &queue->napi, tsnep_poll); if (rx) { /* choose TX queue for XDP_TX */ if (tx) rx->tx_queue_index = tx->queue_index; else if (rx->queue_index < adapter->num_tx_queues) rx->tx_queue_index = rx->queue_index; else rx->tx_queue_index = 0; /* prepare both memory models to eliminate possible registration * errors when memory model is switched between page pool and * XSK pool during runtime */ retval = xdp_rxq_info_reg(&rx->xdp_rxq, adapter->netdev, rx->queue_index, queue->napi.napi_id); if (retval) goto failed; retval = xdp_rxq_info_reg_mem_model(&rx->xdp_rxq, MEM_TYPE_PAGE_POOL, rx->page_pool); if (retval) goto failed; retval = xdp_rxq_info_reg(&rx->xdp_rxq_zc, adapter->netdev, rx->queue_index, queue->napi.napi_id); if (retval) goto failed; retval = xdp_rxq_info_reg_mem_model(&rx->xdp_rxq_zc, MEM_TYPE_XSK_BUFF_POOL, NULL); if (retval) goto failed; if (rx->xsk_pool) xsk_pool_set_rxq_info(rx->xsk_pool, &rx->xdp_rxq_zc); } retval = tsnep_request_irq(queue, first); if (retval) { netif_err(adapter, drv, adapter->netdev, "can't get assigned irq %d.\n", queue->irq); goto failed; } return 0; failed: tsnep_queue_close(queue, first); return retval; } static void tsnep_queue_enable(struct tsnep_queue *queue) { napi_enable(&queue->napi); tsnep_enable_irq(queue->adapter, queue->irq_mask); if (queue->tx) tsnep_tx_enable(queue->tx); if (queue->rx) tsnep_rx_enable(queue->rx); } static void tsnep_queue_disable(struct tsnep_queue *queue) { if (queue->tx) tsnep_tx_disable(queue->tx, &queue->napi); napi_disable(&queue->napi); tsnep_disable_irq(queue->adapter, queue->irq_mask); /* disable RX after NAPI polling has been disabled, because RX can be * enabled during NAPI polling */ if (queue->rx) tsnep_rx_disable(queue->rx); } static int tsnep_netdev_open(struct net_device *netdev) { struct tsnep_adapter *adapter = netdev_priv(netdev); int i, retval; for (i = 0; i < adapter->num_queues; i++) { if (adapter->queue[i].tx) { retval = tsnep_tx_open(adapter->queue[i].tx); if (retval) goto failed; } if (adapter->queue[i].rx) { retval = tsnep_rx_open(adapter->queue[i].rx); if (retval) goto failed; } retval = tsnep_queue_open(adapter, &adapter->queue[i], i == 0); if (retval) goto failed; } retval = netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues); if (retval) goto failed; retval = netif_set_real_num_rx_queues(adapter->netdev, adapter->num_rx_queues); if (retval) goto failed; tsnep_enable_irq(adapter, ECM_INT_LINK); retval = tsnep_phy_open(adapter); if (retval) goto phy_failed; for (i = 0; i < adapter->num_queues; i++) tsnep_queue_enable(&adapter->queue[i]); return 0; phy_failed: tsnep_disable_irq(adapter, ECM_INT_LINK); failed: for (i = 0; i < adapter->num_queues; i++) { tsnep_queue_close(&adapter->queue[i], i == 0); if (adapter->queue[i].rx) tsnep_rx_close(adapter->queue[i].rx); if (adapter->queue[i].tx) tsnep_tx_close(adapter->queue[i].tx); } return retval; } static int tsnep_netdev_close(struct net_device *netdev) { struct tsnep_adapter *adapter = netdev_priv(netdev); int i; tsnep_disable_irq(adapter, ECM_INT_LINK); tsnep_phy_close(adapter); for (i = 0; i < adapter->num_queues; i++) { tsnep_queue_disable(&adapter->queue[i]); tsnep_queue_close(&adapter->queue[i], i == 0); if (adapter->queue[i].rx) tsnep_rx_close(adapter->queue[i].rx); if (adapter->queue[i].tx) tsnep_tx_close(adapter->queue[i].tx); } return 0; } int tsnep_enable_xsk(struct tsnep_queue *queue, struct xsk_buff_pool *pool) { bool running = netif_running(queue->adapter->netdev); u32 frame_size; frame_size = xsk_pool_get_rx_frame_size(pool); if (frame_size < TSNEP_XSK_RX_BUF_SIZE) return -EOPNOTSUPP; queue->rx->page_buffer = kcalloc(TSNEP_RING_SIZE, sizeof(*queue->rx->page_buffer), GFP_KERNEL); if (!queue->rx->page_buffer) return -ENOMEM; queue->rx->xdp_batch = kcalloc(TSNEP_RING_SIZE, sizeof(*queue->rx->xdp_batch), GFP_KERNEL); if (!queue->rx->xdp_batch) { kfree(queue->rx->page_buffer); queue->rx->page_buffer = NULL; return -ENOMEM; } xsk_pool_set_rxq_info(pool, &queue->rx->xdp_rxq_zc); if (running) tsnep_queue_disable(queue); queue->tx->xsk_pool = pool; queue->rx->xsk_pool = pool; if (running) { tsnep_rx_reopen_xsk(queue->rx); tsnep_queue_enable(queue); } return 0; } void tsnep_disable_xsk(struct tsnep_queue *queue) { bool running = netif_running(queue->adapter->netdev); if (running) tsnep_queue_disable(queue); tsnep_rx_free_zc(queue->rx); queue->rx->xsk_pool = NULL; queue->tx->xsk_pool = NULL; if (running) { tsnep_rx_reopen(queue->rx); tsnep_queue_enable(queue); } kfree(queue->rx->xdp_batch); queue->rx->xdp_batch = NULL; kfree(queue->rx->page_buffer); queue->rx->page_buffer = NULL; } static netdev_tx_t tsnep_netdev_xmit_frame(struct sk_buff *skb, struct net_device *netdev) { struct tsnep_adapter *adapter = netdev_priv(netdev); u16 queue_mapping = skb_get_queue_mapping(skb); if (queue_mapping >= adapter->num_tx_queues) queue_mapping = 0; return tsnep_xmit_frame_ring(skb, &adapter->tx[queue_mapping]); } static int tsnep_netdev_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { if (!netif_running(netdev)) return -EINVAL; if (cmd == SIOCSHWTSTAMP || cmd == SIOCGHWTSTAMP) return tsnep_ptp_ioctl(netdev, ifr, cmd); return phy_mii_ioctl(netdev->phydev, ifr, cmd); } static void tsnep_netdev_set_multicast(struct net_device *netdev) { struct tsnep_adapter *adapter = netdev_priv(netdev); u16 rx_filter = 0; /* configured MAC address and broadcasts are never filtered */ if (netdev->flags & IFF_PROMISC) { rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_MULTICASTS; rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_UNICASTS; } else if (!netdev_mc_empty(netdev) || (netdev->flags & IFF_ALLMULTI)) { rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_MULTICASTS; } iowrite16(rx_filter, adapter->addr + TSNEP_RX_FILTER); } static void tsnep_netdev_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) { struct tsnep_adapter *adapter = netdev_priv(netdev); u32 reg; u32 val; int i; for (i = 0; i < adapter->num_tx_queues; i++) { stats->tx_packets += adapter->tx[i].packets; stats->tx_bytes += adapter->tx[i].bytes; stats->tx_dropped += adapter->tx[i].dropped; } for (i = 0; i < adapter->num_rx_queues; i++) { stats->rx_packets += adapter->rx[i].packets; stats->rx_bytes += adapter->rx[i].bytes; stats->rx_dropped += adapter->rx[i].dropped; stats->multicast += adapter->rx[i].multicast; reg = ioread32(adapter->addr + TSNEP_QUEUE(i) + TSNEP_RX_STATISTIC); val = (reg & TSNEP_RX_STATISTIC_NO_DESC_MASK) >> TSNEP_RX_STATISTIC_NO_DESC_SHIFT; stats->rx_dropped += val; val = (reg & TSNEP_RX_STATISTIC_BUFFER_TOO_SMALL_MASK) >> TSNEP_RX_STATISTIC_BUFFER_TOO_SMALL_SHIFT; stats->rx_dropped += val; val = (reg & TSNEP_RX_STATISTIC_FIFO_OVERFLOW_MASK) >> TSNEP_RX_STATISTIC_FIFO_OVERFLOW_SHIFT; stats->rx_errors += val; stats->rx_fifo_errors += val; val = (reg & TSNEP_RX_STATISTIC_INVALID_FRAME_MASK) >> TSNEP_RX_STATISTIC_INVALID_FRAME_SHIFT; stats->rx_errors += val; stats->rx_frame_errors += val; } reg = ioread32(adapter->addr + ECM_STAT); val = (reg & ECM_STAT_RX_ERR_MASK) >> ECM_STAT_RX_ERR_SHIFT; stats->rx_errors += val; val = (reg & ECM_STAT_INV_FRM_MASK) >> ECM_STAT_INV_FRM_SHIFT; stats->rx_errors += val; stats->rx_crc_errors += val; val = (reg & ECM_STAT_FWD_RX_ERR_MASK) >> ECM_STAT_FWD_RX_ERR_SHIFT; stats->rx_errors += val; } static void tsnep_mac_set_address(struct tsnep_adapter *adapter, u8 *addr) { iowrite32(*(u32 *)addr, adapter->addr + TSNEP_MAC_ADDRESS_LOW); iowrite16(*(u16 *)(addr + sizeof(u32)), adapter->addr + TSNEP_MAC_ADDRESS_HIGH); ether_addr_copy(adapter->mac_address, addr); netif_info(adapter, drv, adapter->netdev, "MAC address set to %pM\n", addr); } static int tsnep_netdev_set_mac_address(struct net_device *netdev, void *addr) { struct tsnep_adapter *adapter = netdev_priv(netdev); struct sockaddr *sock_addr = addr; int retval; retval = eth_prepare_mac_addr_change(netdev, sock_addr); if (retval) return retval; eth_hw_addr_set(netdev, sock_addr->sa_data); tsnep_mac_set_address(adapter, sock_addr->sa_data); return 0; } static int tsnep_netdev_set_features(struct net_device *netdev, netdev_features_t features) { struct tsnep_adapter *adapter = netdev_priv(netdev); netdev_features_t changed = netdev->features ^ features; bool enable; int retval = 0; if (changed & NETIF_F_LOOPBACK) { enable = !!(features & NETIF_F_LOOPBACK); retval = tsnep_phy_loopback(adapter, enable); } return retval; } static ktime_t tsnep_netdev_get_tstamp(struct net_device *netdev, const struct skb_shared_hwtstamps *hwtstamps, bool cycles) { struct tsnep_rx_inline *rx_inline = hwtstamps->netdev_data; u64 timestamp; if (cycles) timestamp = __le64_to_cpu(rx_inline->counter); else timestamp = __le64_to_cpu(rx_inline->timestamp); return ns_to_ktime(timestamp); } static int tsnep_netdev_bpf(struct net_device *dev, struct netdev_bpf *bpf) { struct tsnep_adapter *adapter = netdev_priv(dev); switch (bpf->command) { case XDP_SETUP_PROG: return tsnep_xdp_setup_prog(adapter, bpf->prog, bpf->extack); case XDP_SETUP_XSK_POOL: return tsnep_xdp_setup_pool(adapter, bpf->xsk.pool, bpf->xsk.queue_id); default: return -EOPNOTSUPP; } } static struct tsnep_tx *tsnep_xdp_get_tx(struct tsnep_adapter *adapter, u32 cpu) { if (cpu >= TSNEP_MAX_QUEUES) cpu &= TSNEP_MAX_QUEUES - 1; while (cpu >= adapter->num_tx_queues) cpu -= adapter->num_tx_queues; return &adapter->tx[cpu]; } static int tsnep_netdev_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdp, u32 flags) { struct tsnep_adapter *adapter = netdev_priv(dev); u32 cpu = smp_processor_id(); struct netdev_queue *nq; struct tsnep_tx *tx; int nxmit; bool xmit; if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) return -EINVAL; tx = tsnep_xdp_get_tx(adapter, cpu); nq = netdev_get_tx_queue(adapter->netdev, tx->queue_index); __netif_tx_lock(nq, cpu); for (nxmit = 0; nxmit < n; nxmit++) { xmit = tsnep_xdp_xmit_frame_ring(xdp[nxmit], tx, TSNEP_TX_TYPE_XDP_NDO); if (!xmit) break; /* avoid transmit queue timeout since we share it with the slow * path */ txq_trans_cond_update(nq); } if (flags & XDP_XMIT_FLUSH) tsnep_xdp_xmit_flush(tx); __netif_tx_unlock(nq); return nxmit; } static int tsnep_netdev_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags) { struct tsnep_adapter *adapter = netdev_priv(dev); struct tsnep_queue *queue; if (queue_id >= adapter->num_rx_queues || queue_id >= adapter->num_tx_queues) return -EINVAL; queue = &adapter->queue[queue_id]; if (!napi_if_scheduled_mark_missed(&queue->napi)) napi_schedule(&queue->napi); return 0; } static const struct net_device_ops tsnep_netdev_ops = { .ndo_open = tsnep_netdev_open, .ndo_stop = tsnep_netdev_close, .ndo_start_xmit = tsnep_netdev_xmit_frame, .ndo_eth_ioctl = tsnep_netdev_ioctl, .ndo_set_rx_mode = tsnep_netdev_set_multicast, .ndo_get_stats64 = tsnep_netdev_get_stats64, .ndo_set_mac_address = tsnep_netdev_set_mac_address, .ndo_set_features = tsnep_netdev_set_features, .ndo_get_tstamp = tsnep_netdev_get_tstamp, .ndo_setup_tc = tsnep_tc_setup, .ndo_bpf = tsnep_netdev_bpf, .ndo_xdp_xmit = tsnep_netdev_xdp_xmit, .ndo_xsk_wakeup = tsnep_netdev_xsk_wakeup, }; static int tsnep_mac_init(struct tsnep_adapter *adapter) { int retval; /* initialize RX filtering, at least configured MAC address and * broadcast are not filtered */ iowrite16(0, adapter->addr + TSNEP_RX_FILTER); /* try to get MAC address in the following order: * - device tree * - valid MAC address already set * - MAC address register if valid * - random MAC address */ retval = of_get_mac_address(adapter->pdev->dev.of_node, adapter->mac_address); if (retval == -EPROBE_DEFER) return retval; if (retval && !is_valid_ether_addr(adapter->mac_address)) { *(u32 *)adapter->mac_address = ioread32(adapter->addr + TSNEP_MAC_ADDRESS_LOW); *(u16 *)(adapter->mac_address + sizeof(u32)) = ioread16(adapter->addr + TSNEP_MAC_ADDRESS_HIGH); if (!is_valid_ether_addr(adapter->mac_address)) eth_random_addr(adapter->mac_address); } tsnep_mac_set_address(adapter, adapter->mac_address); eth_hw_addr_set(adapter->netdev, adapter->mac_address); return 0; } static int tsnep_mdio_init(struct tsnep_adapter *adapter) { struct device_node *np = adapter->pdev->dev.of_node; int retval; if (np) { np = of_get_child_by_name(np, "mdio"); if (!np) return 0; adapter->suppress_preamble = of_property_read_bool(np, "suppress-preamble"); } adapter->mdiobus = devm_mdiobus_alloc(&adapter->pdev->dev); if (!adapter->mdiobus) { retval = -ENOMEM; goto out; } adapter->mdiobus->priv = (void *)adapter; adapter->mdiobus->parent = &adapter->pdev->dev; adapter->mdiobus->read = tsnep_mdiobus_read; adapter->mdiobus->write = tsnep_mdiobus_write; adapter->mdiobus->name = TSNEP "-mdiobus"; snprintf(adapter->mdiobus->id, MII_BUS_ID_SIZE, "%s", adapter->pdev->name); /* do not scan broadcast address */ adapter->mdiobus->phy_mask = 0x0000001; retval = of_mdiobus_register(adapter->mdiobus, np); out: of_node_put(np); return retval; } static int tsnep_phy_init(struct tsnep_adapter *adapter) { struct device_node *phy_node; int retval; retval = of_get_phy_mode(adapter->pdev->dev.of_node, &adapter->phy_mode); if (retval) adapter->phy_mode = PHY_INTERFACE_MODE_GMII; phy_node = of_parse_phandle(adapter->pdev->dev.of_node, "phy-handle", 0); adapter->phydev = of_phy_find_device(phy_node); of_node_put(phy_node); if (!adapter->phydev && adapter->mdiobus) adapter->phydev = phy_find_first(adapter->mdiobus); if (!adapter->phydev) return -EIO; return 0; } static int tsnep_queue_init(struct tsnep_adapter *adapter, int queue_count) { u32 irq_mask = ECM_INT_TX_0 | ECM_INT_RX_0; char name[8]; int i; int retval; /* one TX/RX queue pair for netdev is mandatory */ if (platform_irq_count(adapter->pdev) == 1) retval = platform_get_irq(adapter->pdev, 0); else retval = platform_get_irq_byname(adapter->pdev, "mac"); if (retval < 0) return retval; adapter->num_tx_queues = 1; adapter->num_rx_queues = 1; adapter->num_queues = 1; adapter->queue[0].adapter = adapter; adapter->queue[0].irq = retval; adapter->queue[0].tx = &adapter->tx[0]; adapter->queue[0].tx->adapter = adapter; adapter->queue[0].tx->addr = adapter->addr + TSNEP_QUEUE(0); adapter->queue[0].tx->queue_index = 0; adapter->queue[0].rx = &adapter->rx[0]; adapter->queue[0].rx->adapter = adapter; adapter->queue[0].rx->addr = adapter->addr + TSNEP_QUEUE(0); adapter->queue[0].rx->queue_index = 0; adapter->queue[0].irq_mask = irq_mask; adapter->queue[0].irq_delay_addr = adapter->addr + ECM_INT_DELAY; retval = tsnep_set_irq_coalesce(&adapter->queue[0], TSNEP_COALESCE_USECS_DEFAULT); if (retval < 0) return retval; adapter->netdev->irq = adapter->queue[0].irq; /* add additional TX/RX queue pairs only if dedicated interrupt is * available */ for (i = 1; i < queue_count; i++) { sprintf(name, "txrx-%d", i); retval = platform_get_irq_byname_optional(adapter->pdev, name); if (retval < 0) break; adapter->num_tx_queues++; adapter->num_rx_queues++; adapter->num_queues++; adapter->queue[i].adapter = adapter; adapter->queue[i].irq = retval; adapter->queue[i].tx = &adapter->tx[i]; adapter->queue[i].tx->adapter = adapter; adapter->queue[i].tx->addr = adapter->addr + TSNEP_QUEUE(i); adapter->queue[i].tx->queue_index = i; adapter->queue[i].rx = &adapter->rx[i]; adapter->queue[i].rx->adapter = adapter; adapter->queue[i].rx->addr = adapter->addr + TSNEP_QUEUE(i); adapter->queue[i].rx->queue_index = i; adapter->queue[i].irq_mask = irq_mask << (ECM_INT_TXRX_SHIFT * i); adapter->queue[i].irq_delay_addr = adapter->addr + ECM_INT_DELAY + ECM_INT_DELAY_OFFSET * i; retval = tsnep_set_irq_coalesce(&adapter->queue[i], TSNEP_COALESCE_USECS_DEFAULT); if (retval < 0) return retval; } return 0; } static int tsnep_probe(struct platform_device *pdev) { struct tsnep_adapter *adapter; struct net_device *netdev; struct resource *io; u32 type; int revision; int version; int queue_count; int retval; netdev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct tsnep_adapter), TSNEP_MAX_QUEUES, TSNEP_MAX_QUEUES); if (!netdev) return -ENODEV; SET_NETDEV_DEV(netdev, &pdev->dev); adapter = netdev_priv(netdev); platform_set_drvdata(pdev, adapter); adapter->pdev = pdev; adapter->dmadev = &pdev->dev; adapter->netdev = netdev; adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN | NETIF_MSG_TX_QUEUED; netdev->min_mtu = ETH_MIN_MTU; netdev->max_mtu = TSNEP_MAX_FRAME_SIZE; mutex_init(&adapter->gate_control_lock); mutex_init(&adapter->rxnfc_lock); INIT_LIST_HEAD(&adapter->rxnfc_rules); io = platform_get_resource(pdev, IORESOURCE_MEM, 0); adapter->addr = devm_ioremap_resource(&pdev->dev, io); if (IS_ERR(adapter->addr)) return PTR_ERR(adapter->addr); netdev->mem_start = io->start; netdev->mem_end = io->end; type = ioread32(adapter->addr + ECM_TYPE); revision = (type & ECM_REVISION_MASK) >> ECM_REVISION_SHIFT; version = (type & ECM_VERSION_MASK) >> ECM_VERSION_SHIFT; queue_count = (type & ECM_QUEUE_COUNT_MASK) >> ECM_QUEUE_COUNT_SHIFT; adapter->gate_control = type & ECM_GATE_CONTROL; adapter->rxnfc_max = TSNEP_RX_ASSIGN_ETHER_TYPE_COUNT; tsnep_disable_irq(adapter, ECM_INT_ALL); retval = tsnep_queue_init(adapter, queue_count); if (retval) return retval; retval = dma_set_mask_and_coherent(&adapter->pdev->dev, DMA_BIT_MASK(64)); if (retval) { dev_err(&adapter->pdev->dev, "no usable DMA configuration.\n"); return retval; } retval = tsnep_mac_init(adapter); if (retval) return retval; retval = tsnep_mdio_init(adapter); if (retval) goto mdio_init_failed; retval = tsnep_phy_init(adapter); if (retval) goto phy_init_failed; retval = tsnep_ptp_init(adapter); if (retval) goto ptp_init_failed; retval = tsnep_tc_init(adapter); if (retval) goto tc_init_failed; retval = tsnep_rxnfc_init(adapter); if (retval) goto rxnfc_init_failed; netdev->netdev_ops = &tsnep_netdev_ops; netdev->ethtool_ops = &tsnep_ethtool_ops; netdev->features = NETIF_F_SG; netdev->hw_features = netdev->features | NETIF_F_LOOPBACK; netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | NETDEV_XDP_ACT_NDO_XMIT | NETDEV_XDP_ACT_NDO_XMIT_SG | NETDEV_XDP_ACT_XSK_ZEROCOPY; /* carrier off reporting is important to ethtool even BEFORE open */ netif_carrier_off(netdev); retval = register_netdev(netdev); if (retval) goto register_failed; dev_info(&adapter->pdev->dev, "device version %d.%02d\n", version, revision); if (adapter->gate_control) dev_info(&adapter->pdev->dev, "gate control detected\n"); return 0; register_failed: tsnep_rxnfc_cleanup(adapter); rxnfc_init_failed: tsnep_tc_cleanup(adapter); tc_init_failed: tsnep_ptp_cleanup(adapter); ptp_init_failed: phy_init_failed: if (adapter->mdiobus) mdiobus_unregister(adapter->mdiobus); mdio_init_failed: return retval; } static int tsnep_remove(struct platform_device *pdev) { struct tsnep_adapter *adapter = platform_get_drvdata(pdev); unregister_netdev(adapter->netdev); tsnep_rxnfc_cleanup(adapter); tsnep_tc_cleanup(adapter); tsnep_ptp_cleanup(adapter); if (adapter->mdiobus) mdiobus_unregister(adapter->mdiobus); tsnep_disable_irq(adapter, ECM_INT_ALL); return 0; } static const struct of_device_id tsnep_of_match[] = { { .compatible = "engleder,tsnep", }, { }, }; MODULE_DEVICE_TABLE(of, tsnep_of_match); static struct platform_driver tsnep_driver = { .driver = { .name = TSNEP, .of_match_table = tsnep_of_match, }, .probe = tsnep_probe, .remove = tsnep_remove, }; module_platform_driver(tsnep_driver); MODULE_AUTHOR("Gerhard Engleder "); MODULE_DESCRIPTION("TSN endpoint Ethernet MAC driver"); MODULE_LICENSE("GPL");