// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2020 NovaTech LLC * George McCollister */ #include #include #include #include #include #include "xrs700x.h" #include "xrs700x_reg.h" #define XRS700X_MIB_INTERVAL msecs_to_jiffies(3000) #define XRS7000X_SUPPORTED_HSR_FEATURES \ (NETIF_F_HW_HSR_TAG_INS | NETIF_F_HW_HSR_TAG_RM | \ NETIF_F_HW_HSR_FWD | NETIF_F_HW_HSR_DUP) #define XRS7003E_ID 0x100 #define XRS7003F_ID 0x101 #define XRS7004E_ID 0x200 #define XRS7004F_ID 0x201 const struct xrs700x_info xrs7003e_info = {XRS7003E_ID, "XRS7003E", 3}; EXPORT_SYMBOL(xrs7003e_info); const struct xrs700x_info xrs7003f_info = {XRS7003F_ID, "XRS7003F", 3}; EXPORT_SYMBOL(xrs7003f_info); const struct xrs700x_info xrs7004e_info = {XRS7004E_ID, "XRS7004E", 4}; EXPORT_SYMBOL(xrs7004e_info); const struct xrs700x_info xrs7004f_info = {XRS7004F_ID, "XRS7004F", 4}; EXPORT_SYMBOL(xrs7004f_info); struct xrs700x_regfield { struct reg_field rf; struct regmap_field **rmf; }; struct xrs700x_mib { unsigned int offset; const char *name; int stats64_offset; }; #define XRS700X_MIB_ETHTOOL_ONLY(o, n) {o, n, -1} #define XRS700X_MIB(o, n, m) {o, n, offsetof(struct rtnl_link_stats64, m)} static const struct xrs700x_mib xrs700x_mibs[] = { XRS700X_MIB(XRS_RX_GOOD_OCTETS_L, "rx_good_octets", rx_bytes), XRS700X_MIB_ETHTOOL_ONLY(XRS_RX_BAD_OCTETS_L, "rx_bad_octets"), XRS700X_MIB(XRS_RX_UNICAST_L, "rx_unicast", rx_packets), XRS700X_MIB(XRS_RX_BROADCAST_L, "rx_broadcast", rx_packets), XRS700X_MIB(XRS_RX_MULTICAST_L, "rx_multicast", multicast), XRS700X_MIB(XRS_RX_UNDERSIZE_L, "rx_undersize", rx_length_errors), XRS700X_MIB(XRS_RX_FRAGMENTS_L, "rx_fragments", rx_length_errors), XRS700X_MIB(XRS_RX_OVERSIZE_L, "rx_oversize", rx_length_errors), XRS700X_MIB(XRS_RX_JABBER_L, "rx_jabber", rx_length_errors), XRS700X_MIB(XRS_RX_ERR_L, "rx_err", rx_errors), XRS700X_MIB(XRS_RX_CRC_L, "rx_crc", rx_crc_errors), XRS700X_MIB_ETHTOOL_ONLY(XRS_RX_64_L, "rx_64"), XRS700X_MIB_ETHTOOL_ONLY(XRS_RX_65_127_L, "rx_65_127"), XRS700X_MIB_ETHTOOL_ONLY(XRS_RX_128_255_L, "rx_128_255"), XRS700X_MIB_ETHTOOL_ONLY(XRS_RX_256_511_L, "rx_256_511"), XRS700X_MIB_ETHTOOL_ONLY(XRS_RX_512_1023_L, "rx_512_1023"), XRS700X_MIB_ETHTOOL_ONLY(XRS_RX_1024_1536_L, "rx_1024_1536"), XRS700X_MIB_ETHTOOL_ONLY(XRS_RX_HSR_PRP_L, "rx_hsr_prp"), XRS700X_MIB_ETHTOOL_ONLY(XRS_RX_WRONGLAN_L, "rx_wronglan"), XRS700X_MIB_ETHTOOL_ONLY(XRS_RX_DUPLICATE_L, "rx_duplicate"), XRS700X_MIB(XRS_TX_OCTETS_L, "tx_octets", tx_bytes), XRS700X_MIB(XRS_TX_UNICAST_L, "tx_unicast", tx_packets), XRS700X_MIB(XRS_TX_BROADCAST_L, "tx_broadcast", tx_packets), XRS700X_MIB(XRS_TX_MULTICAST_L, "tx_multicast", tx_packets), XRS700X_MIB_ETHTOOL_ONLY(XRS_TX_HSR_PRP_L, "tx_hsr_prp"), XRS700X_MIB(XRS_PRIQ_DROP_L, "priq_drop", tx_dropped), XRS700X_MIB(XRS_EARLY_DROP_L, "early_drop", tx_dropped), }; static const u8 eth_hsrsup_addr[ETH_ALEN] = { 0x01, 0x15, 0x4e, 0x00, 0x01, 0x00}; static void xrs700x_get_strings(struct dsa_switch *ds, int port, u32 stringset, u8 *data) { int i; if (stringset != ETH_SS_STATS) return; for (i = 0; i < ARRAY_SIZE(xrs700x_mibs); i++) { strscpy(data, xrs700x_mibs[i].name, ETH_GSTRING_LEN); data += ETH_GSTRING_LEN; } } static int xrs700x_get_sset_count(struct dsa_switch *ds, int port, int sset) { if (sset != ETH_SS_STATS) return -EOPNOTSUPP; return ARRAY_SIZE(xrs700x_mibs); } static void xrs700x_read_port_counters(struct xrs700x *priv, int port) { struct xrs700x_port *p = &priv->ports[port]; struct rtnl_link_stats64 stats; int i; memset(&stats, 0, sizeof(stats)); mutex_lock(&p->mib_mutex); /* Capture counter values */ regmap_write(priv->regmap, XRS_CNT_CTRL(port), 1); for (i = 0; i < ARRAY_SIZE(xrs700x_mibs); i++) { unsigned int high = 0, low = 0, reg; reg = xrs700x_mibs[i].offset + XRS_PORT_OFFSET * port; regmap_read(priv->regmap, reg, &low); regmap_read(priv->regmap, reg + 2, &high); p->mib_data[i] += (high << 16) | low; if (xrs700x_mibs[i].stats64_offset >= 0) { u8 *s = (u8 *)&stats + xrs700x_mibs[i].stats64_offset; *(u64 *)s += p->mib_data[i]; } } /* multicast must be added to rx_packets (which already includes * unicast and broadcast) */ stats.rx_packets += stats.multicast; u64_stats_update_begin(&p->syncp); p->stats64 = stats; u64_stats_update_end(&p->syncp); mutex_unlock(&p->mib_mutex); } static void xrs700x_mib_work(struct work_struct *work) { struct xrs700x *priv = container_of(work, struct xrs700x, mib_work.work); int i; for (i = 0; i < priv->ds->num_ports; i++) xrs700x_read_port_counters(priv, i); schedule_delayed_work(&priv->mib_work, XRS700X_MIB_INTERVAL); } static void xrs700x_get_ethtool_stats(struct dsa_switch *ds, int port, u64 *data) { struct xrs700x *priv = ds->priv; struct xrs700x_port *p = &priv->ports[port]; xrs700x_read_port_counters(priv, port); mutex_lock(&p->mib_mutex); memcpy(data, p->mib_data, sizeof(*data) * ARRAY_SIZE(xrs700x_mibs)); mutex_unlock(&p->mib_mutex); } static void xrs700x_get_stats64(struct dsa_switch *ds, int port, struct rtnl_link_stats64 *s) { struct xrs700x *priv = ds->priv; struct xrs700x_port *p = &priv->ports[port]; unsigned int start; do { start = u64_stats_fetch_begin(&p->syncp); *s = p->stats64; } while (u64_stats_fetch_retry(&p->syncp, start)); } static int xrs700x_setup_regmap_range(struct xrs700x *priv) { struct xrs700x_regfield regfields[] = { { .rf = REG_FIELD_ID(XRS_PORT_STATE(0), 0, 1, priv->ds->num_ports, XRS_PORT_OFFSET), .rmf = &priv->ps_forward }, { .rf = REG_FIELD_ID(XRS_PORT_STATE(0), 2, 3, priv->ds->num_ports, XRS_PORT_OFFSET), .rmf = &priv->ps_management }, { .rf = REG_FIELD_ID(XRS_PORT_STATE(0), 4, 9, priv->ds->num_ports, XRS_PORT_OFFSET), .rmf = &priv->ps_sel_speed }, { .rf = REG_FIELD_ID(XRS_PORT_STATE(0), 10, 11, priv->ds->num_ports, XRS_PORT_OFFSET), .rmf = &priv->ps_cur_speed } }; int i = 0; for (; i < ARRAY_SIZE(regfields); i++) { *regfields[i].rmf = devm_regmap_field_alloc(priv->dev, priv->regmap, regfields[i].rf); if (IS_ERR(*regfields[i].rmf)) return PTR_ERR(*regfields[i].rmf); } return 0; } static enum dsa_tag_protocol xrs700x_get_tag_protocol(struct dsa_switch *ds, int port, enum dsa_tag_protocol m) { return DSA_TAG_PROTO_XRS700X; } static int xrs700x_reset(struct dsa_switch *ds) { struct xrs700x *priv = ds->priv; unsigned int val; int ret; ret = regmap_write(priv->regmap, XRS_GENERAL, XRS_GENERAL_RESET); if (ret) goto error; ret = regmap_read_poll_timeout(priv->regmap, XRS_GENERAL, val, !(val & XRS_GENERAL_RESET), 10, 1000); error: if (ret) { dev_err_ratelimited(priv->dev, "error resetting switch: %d\n", ret); } return ret; } static void xrs700x_port_stp_state_set(struct dsa_switch *ds, int port, u8 state) { struct xrs700x *priv = ds->priv; unsigned int bpdus = 1; unsigned int val; switch (state) { case BR_STATE_DISABLED: bpdus = 0; fallthrough; case BR_STATE_BLOCKING: case BR_STATE_LISTENING: val = XRS_PORT_DISABLED; break; case BR_STATE_LEARNING: val = XRS_PORT_LEARNING; break; case BR_STATE_FORWARDING: val = XRS_PORT_FORWARDING; break; default: dev_err(ds->dev, "invalid STP state: %d\n", state); return; } regmap_fields_write(priv->ps_forward, port, val); /* Enable/disable inbound policy added by xrs700x_port_add_bpdu_ipf() * which allows BPDU forwarding to the CPU port when the front facing * port is in disabled/learning state. */ regmap_update_bits(priv->regmap, XRS_ETH_ADDR_CFG(port, 0), 1, bpdus); dev_dbg_ratelimited(priv->dev, "%s - port: %d, state: %u, val: 0x%x\n", __func__, port, state, val); } /* Add an inbound policy filter which matches the BPDU destination MAC * and forwards to the CPU port. Leave the policy disabled, it will be * enabled as needed. */ static int xrs700x_port_add_bpdu_ipf(struct dsa_switch *ds, int port) { struct xrs700x *priv = ds->priv; unsigned int val = 0; int i = 0; int ret; /* Compare all 48 bits of the destination MAC address. */ ret = regmap_write(priv->regmap, XRS_ETH_ADDR_CFG(port, 0), 48 << 2); if (ret) return ret; /* match BPDU destination 01:80:c2:00:00:00 */ for (i = 0; i < sizeof(eth_stp_addr); i += 2) { ret = regmap_write(priv->regmap, XRS_ETH_ADDR_0(port, 0) + i, eth_stp_addr[i] | (eth_stp_addr[i + 1] << 8)); if (ret) return ret; } /* Mirror BPDU to CPU port */ for (i = 0; i < ds->num_ports; i++) { if (dsa_is_cpu_port(ds, i)) val |= BIT(i); } ret = regmap_write(priv->regmap, XRS_ETH_ADDR_FWD_MIRROR(port, 0), val); if (ret) return ret; ret = regmap_write(priv->regmap, XRS_ETH_ADDR_FWD_ALLOW(port, 0), 0); if (ret) return ret; return 0; } /* Add an inbound policy filter which matches the HSR/PRP supervision MAC * range and forwards to the CPU port without discarding duplicates. * This is required to correctly populate the HSR/PRP node_table. * Leave the policy disabled, it will be enabled as needed. */ static int xrs700x_port_add_hsrsup_ipf(struct dsa_switch *ds, int port) { struct xrs700x *priv = ds->priv; unsigned int val = 0; int i = 0; int ret; /* Compare 40 bits of the destination MAC address. */ ret = regmap_write(priv->regmap, XRS_ETH_ADDR_CFG(port, 1), 40 << 2); if (ret) return ret; /* match HSR/PRP supervision destination 01:15:4e:00:01:XX */ for (i = 0; i < sizeof(eth_hsrsup_addr); i += 2) { ret = regmap_write(priv->regmap, XRS_ETH_ADDR_0(port, 1) + i, eth_hsrsup_addr[i] | (eth_hsrsup_addr[i + 1] << 8)); if (ret) return ret; } /* Mirror HSR/PRP supervision to CPU port */ for (i = 0; i < ds->num_ports; i++) { if (dsa_is_cpu_port(ds, i)) val |= BIT(i); } ret = regmap_write(priv->regmap, XRS_ETH_ADDR_FWD_MIRROR(port, 1), val); if (ret) return ret; /* Allow must be set prevent duplicate discard */ ret = regmap_write(priv->regmap, XRS_ETH_ADDR_FWD_ALLOW(port, 1), val); if (ret) return ret; return 0; } static int xrs700x_port_setup(struct dsa_switch *ds, int port) { bool cpu_port = dsa_is_cpu_port(ds, port); struct xrs700x *priv = ds->priv; unsigned int val = 0; int ret, i; xrs700x_port_stp_state_set(ds, port, BR_STATE_DISABLED); /* Disable forwarding to non-CPU ports */ for (i = 0; i < ds->num_ports; i++) { if (!dsa_is_cpu_port(ds, i)) val |= BIT(i); } /* 1 = Disable forwarding to the port */ ret = regmap_write(priv->regmap, XRS_PORT_FWD_MASK(port), val); if (ret) return ret; val = cpu_port ? XRS_PORT_MODE_MANAGEMENT : XRS_PORT_MODE_NORMAL; ret = regmap_fields_write(priv->ps_management, port, val); if (ret) return ret; if (!cpu_port) { ret = xrs700x_port_add_bpdu_ipf(ds, port); if (ret) return ret; ret = xrs700x_port_add_hsrsup_ipf(ds, port); if (ret) return ret; } return 0; } static int xrs700x_setup(struct dsa_switch *ds) { struct xrs700x *priv = ds->priv; int ret, i; ret = xrs700x_reset(ds); if (ret) return ret; for (i = 0; i < ds->num_ports; i++) { ret = xrs700x_port_setup(ds, i); if (ret) return ret; } schedule_delayed_work(&priv->mib_work, XRS700X_MIB_INTERVAL); return 0; } static void xrs700x_teardown(struct dsa_switch *ds) { struct xrs700x *priv = ds->priv; cancel_delayed_work_sync(&priv->mib_work); } static void xrs700x_phylink_validate(struct dsa_switch *ds, int port, unsigned long *supported, struct phylink_link_state *state) { __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; switch (port) { case 0: break; case 1: case 2: case 3: phylink_set(mask, 1000baseT_Full); break; default: bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS); dev_err(ds->dev, "Unsupported port: %i\n", port); return; } phylink_set_port_modes(mask); /* The switch only supports full duplex. */ phylink_set(mask, 10baseT_Full); phylink_set(mask, 100baseT_Full); bitmap_and(supported, supported, mask, __ETHTOOL_LINK_MODE_MASK_NBITS); bitmap_and(state->advertising, state->advertising, mask, __ETHTOOL_LINK_MODE_MASK_NBITS); } static void xrs700x_mac_link_up(struct dsa_switch *ds, int port, unsigned int mode, phy_interface_t interface, struct phy_device *phydev, int speed, int duplex, bool tx_pause, bool rx_pause) { struct xrs700x *priv = ds->priv; unsigned int val; switch (speed) { case SPEED_1000: val = XRS_PORT_SPEED_1000; break; case SPEED_100: val = XRS_PORT_SPEED_100; break; case SPEED_10: val = XRS_PORT_SPEED_10; break; default: return; } regmap_fields_write(priv->ps_sel_speed, port, val); dev_dbg_ratelimited(priv->dev, "%s: port: %d mode: %u speed: %u\n", __func__, port, mode, speed); } static int xrs700x_bridge_common(struct dsa_switch *ds, int port, struct net_device *bridge, bool join) { unsigned int i, cpu_mask = 0, mask = 0; struct xrs700x *priv = ds->priv; int ret; for (i = 0; i < ds->num_ports; i++) { if (dsa_is_cpu_port(ds, i)) continue; cpu_mask |= BIT(i); if (dsa_to_port(ds, i)->bridge_dev == bridge) continue; mask |= BIT(i); } for (i = 0; i < ds->num_ports; i++) { if (dsa_to_port(ds, i)->bridge_dev != bridge) continue; /* 1 = Disable forwarding to the port */ ret = regmap_write(priv->regmap, XRS_PORT_FWD_MASK(i), mask); if (ret) return ret; } if (!join) { ret = regmap_write(priv->regmap, XRS_PORT_FWD_MASK(port), cpu_mask); if (ret) return ret; } return 0; } static int xrs700x_bridge_join(struct dsa_switch *ds, int port, struct net_device *bridge) { return xrs700x_bridge_common(ds, port, bridge, true); } static void xrs700x_bridge_leave(struct dsa_switch *ds, int port, struct net_device *bridge) { xrs700x_bridge_common(ds, port, bridge, false); } static int xrs700x_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr) { unsigned int val = XRS_HSR_CFG_HSR_PRP; struct dsa_port *partner = NULL, *dp; struct xrs700x *priv = ds->priv; struct net_device *slave; int ret, i, hsr_pair[2]; enum hsr_version ver; ret = hsr_get_version(hsr, &ver); if (ret) return ret; /* Only ports 1 and 2 can be HSR/PRP redundant ports. */ if (port != 1 && port != 2) return -EOPNOTSUPP; if (ver == HSR_V1) val |= XRS_HSR_CFG_HSR; else if (ver == PRP_V1) val |= XRS_HSR_CFG_PRP; else return -EOPNOTSUPP; dsa_hsr_foreach_port(dp, ds, hsr) { if (dp->index != port) { partner = dp; break; } } /* We can't enable redundancy on the switch until both * redundant ports have signed up. */ if (!partner) return 0; regmap_fields_write(priv->ps_forward, partner->index, XRS_PORT_DISABLED); regmap_fields_write(priv->ps_forward, port, XRS_PORT_DISABLED); regmap_write(priv->regmap, XRS_HSR_CFG(partner->index), val | XRS_HSR_CFG_LANID_A); regmap_write(priv->regmap, XRS_HSR_CFG(port), val | XRS_HSR_CFG_LANID_B); /* Clear bits for both redundant ports (HSR only) and the CPU port to * enable forwarding. */ val = GENMASK(ds->num_ports - 1, 0); if (ver == HSR_V1) { val &= ~BIT(partner->index); val &= ~BIT(port); } val &= ~BIT(dsa_upstream_port(ds, port)); regmap_write(priv->regmap, XRS_PORT_FWD_MASK(partner->index), val); regmap_write(priv->regmap, XRS_PORT_FWD_MASK(port), val); regmap_fields_write(priv->ps_forward, partner->index, XRS_PORT_FORWARDING); regmap_fields_write(priv->ps_forward, port, XRS_PORT_FORWARDING); /* Enable inbound policy added by xrs700x_port_add_hsrsup_ipf() * which allows HSR/PRP supervision forwarding to the CPU port without * discarding duplicates. */ regmap_update_bits(priv->regmap, XRS_ETH_ADDR_CFG(partner->index, 1), 1, 1); regmap_update_bits(priv->regmap, XRS_ETH_ADDR_CFG(port, 1), 1, 1); hsr_pair[0] = port; hsr_pair[1] = partner->index; for (i = 0; i < ARRAY_SIZE(hsr_pair); i++) { slave = dsa_to_port(ds, hsr_pair[i])->slave; slave->features |= XRS7000X_SUPPORTED_HSR_FEATURES; } return 0; } static int xrs700x_hsr_leave(struct dsa_switch *ds, int port, struct net_device *hsr) { struct dsa_port *partner = NULL, *dp; struct xrs700x *priv = ds->priv; struct net_device *slave; int i, hsr_pair[2]; unsigned int val; dsa_hsr_foreach_port(dp, ds, hsr) { if (dp->index != port) { partner = dp; break; } } if (!partner) return 0; regmap_fields_write(priv->ps_forward, partner->index, XRS_PORT_DISABLED); regmap_fields_write(priv->ps_forward, port, XRS_PORT_DISABLED); regmap_write(priv->regmap, XRS_HSR_CFG(partner->index), 0); regmap_write(priv->regmap, XRS_HSR_CFG(port), 0); /* Clear bit for the CPU port to enable forwarding. */ val = GENMASK(ds->num_ports - 1, 0); val &= ~BIT(dsa_upstream_port(ds, port)); regmap_write(priv->regmap, XRS_PORT_FWD_MASK(partner->index), val); regmap_write(priv->regmap, XRS_PORT_FWD_MASK(port), val); regmap_fields_write(priv->ps_forward, partner->index, XRS_PORT_FORWARDING); regmap_fields_write(priv->ps_forward, port, XRS_PORT_FORWARDING); /* Disable inbound policy added by xrs700x_port_add_hsrsup_ipf() * which allows HSR/PRP supervision forwarding to the CPU port without * discarding duplicates. */ regmap_update_bits(priv->regmap, XRS_ETH_ADDR_CFG(partner->index, 1), 1, 0); regmap_update_bits(priv->regmap, XRS_ETH_ADDR_CFG(port, 1), 1, 0); hsr_pair[0] = port; hsr_pair[1] = partner->index; for (i = 0; i < ARRAY_SIZE(hsr_pair); i++) { slave = dsa_to_port(ds, hsr_pair[i])->slave; slave->features &= ~XRS7000X_SUPPORTED_HSR_FEATURES; } return 0; } static const struct dsa_switch_ops xrs700x_ops = { .get_tag_protocol = xrs700x_get_tag_protocol, .setup = xrs700x_setup, .teardown = xrs700x_teardown, .port_stp_state_set = xrs700x_port_stp_state_set, .phylink_validate = xrs700x_phylink_validate, .phylink_mac_link_up = xrs700x_mac_link_up, .get_strings = xrs700x_get_strings, .get_sset_count = xrs700x_get_sset_count, .get_ethtool_stats = xrs700x_get_ethtool_stats, .get_stats64 = xrs700x_get_stats64, .port_bridge_join = xrs700x_bridge_join, .port_bridge_leave = xrs700x_bridge_leave, .port_hsr_join = xrs700x_hsr_join, .port_hsr_leave = xrs700x_hsr_leave, }; static int xrs700x_detect(struct xrs700x *priv) { const struct xrs700x_info *info; unsigned int id; int ret; ret = regmap_read(priv->regmap, XRS_DEV_ID0, &id); if (ret) { dev_err(priv->dev, "error %d while reading switch id.\n", ret); return ret; } info = of_device_get_match_data(priv->dev); if (!info) return -EINVAL; if (info->id == id) { priv->ds->num_ports = info->num_ports; dev_info(priv->dev, "%s detected.\n", info->name); return 0; } dev_err(priv->dev, "expected switch id 0x%x but found 0x%x.\n", info->id, id); return -ENODEV; } struct xrs700x *xrs700x_switch_alloc(struct device *base, void *devpriv) { struct dsa_switch *ds; struct xrs700x *priv; ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL); if (!ds) return NULL; ds->dev = base; priv = devm_kzalloc(base, sizeof(*priv), GFP_KERNEL); if (!priv) return NULL; INIT_DELAYED_WORK(&priv->mib_work, xrs700x_mib_work); ds->ops = &xrs700x_ops; ds->priv = priv; priv->dev = base; priv->ds = ds; priv->priv = devpriv; return priv; } EXPORT_SYMBOL(xrs700x_switch_alloc); static int xrs700x_alloc_port_mib(struct xrs700x *priv, int port) { struct xrs700x_port *p = &priv->ports[port]; p->mib_data = devm_kcalloc(priv->dev, ARRAY_SIZE(xrs700x_mibs), sizeof(*p->mib_data), GFP_KERNEL); if (!p->mib_data) return -ENOMEM; mutex_init(&p->mib_mutex); u64_stats_init(&p->syncp); return 0; } int xrs700x_switch_register(struct xrs700x *priv) { int ret; int i; ret = xrs700x_detect(priv); if (ret) return ret; ret = xrs700x_setup_regmap_range(priv); if (ret) return ret; priv->ports = devm_kcalloc(priv->dev, priv->ds->num_ports, sizeof(*priv->ports), GFP_KERNEL); if (!priv->ports) return -ENOMEM; for (i = 0; i < priv->ds->num_ports; i++) { ret = xrs700x_alloc_port_mib(priv, i); if (ret) return ret; } return dsa_register_switch(priv->ds); } EXPORT_SYMBOL(xrs700x_switch_register); void xrs700x_switch_remove(struct xrs700x *priv) { dsa_unregister_switch(priv->ds); } EXPORT_SYMBOL(xrs700x_switch_remove); MODULE_AUTHOR("George McCollister "); MODULE_DESCRIPTION("Arrow SpeedChips XRS700x DSA driver"); MODULE_LICENSE("GPL v2");