// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2019, Vladimir Oltean <olteanv@gmail.com> */ #include "sja1105.h" /* The adjfine API clamps ppb between [-32,768,000, 32,768,000], and * therefore scaled_ppm between [-2,147,483,648, 2,147,483,647]. * Set the maximum supported ppb to a round value smaller than the maximum. * * Percentually speaking, this is a +/- 0.032x adjustment of the * free-running counter (0.968x to 1.032x). */ #define SJA1105_MAX_ADJ_PPB 32000000 #define SJA1105_SIZE_PTP_CMD 4 /* Timestamps are in units of 8 ns clock ticks (equivalent to a fixed * 125 MHz clock) so the scale factor (MULT / SHIFT) needs to be 8. * Furthermore, wisely pick SHIFT as 28 bits, which translates * MULT into 2^31 (0x80000000). This is the same value around which * the hardware PTPCLKRATE is centered, so the same ppb conversion * arithmetic can be reused. */ #define SJA1105_CC_SHIFT 28 #define SJA1105_CC_MULT (8 << SJA1105_CC_SHIFT) /* Having 33 bits of cycle counter left until a 64-bit overflow during delta * conversion, we multiply this by the 8 ns counter resolution and arrive at * a comfortable 68.71 second refresh interval until the delta would cause * an integer overflow, in absence of any other readout. * Approximate to 1 minute. */ #define SJA1105_REFRESH_INTERVAL (HZ * 60) /* This range is actually +/- SJA1105_MAX_ADJ_PPB * divided by 1000 (ppb -> ppm) and with a 16-bit * "fractional" part (actually fixed point). * | * v * Convert scaled_ppm from the +/- ((10^6) << 16) range * into the +/- (1 << 31) range. * * This forgoes a "ppb" numeric representation (up to NSEC_PER_SEC) * and defines the scaling factor between scaled_ppm and the actual * frequency adjustments (both cycle counter and hardware). * * ptpclkrate = scaled_ppm * 2^31 / (10^6 * 2^16) * simplifies to * ptpclkrate = scaled_ppm * 2^9 / 5^6 */ #define SJA1105_CC_MULT_NUM (1 << 9) #define SJA1105_CC_MULT_DEM 15625 #define ptp_to_sja1105(d) container_of((d), struct sja1105_private, ptp_caps) #define cc_to_sja1105(d) container_of((d), struct sja1105_private, tstamp_cc) #define dw_to_sja1105(d) container_of((d), struct sja1105_private, refresh_work) struct sja1105_ptp_cmd { u64 resptp; /* reset */ }; int sja1105_get_ts_info(struct dsa_switch *ds, int port, struct ethtool_ts_info *info) { struct sja1105_private *priv = ds->priv; /* Called during cleanup */ if (!priv->clock) return -ENODEV; info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | SOF_TIMESTAMPING_RX_HARDWARE | SOF_TIMESTAMPING_RAW_HARDWARE; info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON); info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT); info->phc_index = ptp_clock_index(priv->clock); return 0; } int sja1105et_ptp_cmd(const void *ctx, const void *data) { const struct sja1105_ptp_cmd *cmd = data; const struct sja1105_private *priv = ctx; const struct sja1105_regs *regs = priv->info->regs; const int size = SJA1105_SIZE_PTP_CMD; u8 buf[SJA1105_SIZE_PTP_CMD] = {0}; /* No need to keep this as part of the structure */ u64 valid = 1; sja1105_pack(buf, &valid, 31, 31, size); sja1105_pack(buf, &cmd->resptp, 2, 2, size); return sja1105_spi_send_packed_buf(priv, SPI_WRITE, regs->ptp_control, buf, SJA1105_SIZE_PTP_CMD); } int sja1105pqrs_ptp_cmd(const void *ctx, const void *data) { const struct sja1105_ptp_cmd *cmd = data; const struct sja1105_private *priv = ctx; const struct sja1105_regs *regs = priv->info->regs; const int size = SJA1105_SIZE_PTP_CMD; u8 buf[SJA1105_SIZE_PTP_CMD] = {0}; /* No need to keep this as part of the structure */ u64 valid = 1; sja1105_pack(buf, &valid, 31, 31, size); sja1105_pack(buf, &cmd->resptp, 3, 3, size); return sja1105_spi_send_packed_buf(priv, SPI_WRITE, regs->ptp_control, buf, SJA1105_SIZE_PTP_CMD); } /* The switch returns partial timestamps (24 bits for SJA1105 E/T, which wrap * around in 0.135 seconds, and 32 bits for P/Q/R/S, wrapping around in 34.35 * seconds). * * This receives the RX or TX MAC timestamps, provided by hardware as * the lower bits of the cycle counter, sampled at the time the timestamp was * collected. * * To reconstruct into a full 64-bit-wide timestamp, the cycle counter is * read and the high-order bits are filled in. * * Must be called within one wraparound period of the partial timestamp since * it was generated by the MAC. */ u64 sja1105_tstamp_reconstruct(struct sja1105_private *priv, u64 now, u64 ts_partial) { u64 partial_tstamp_mask = CYCLECOUNTER_MASK(priv->info->ptp_ts_bits); u64 ts_reconstructed; ts_reconstructed = (now & ~partial_tstamp_mask) | ts_partial; /* Check lower bits of current cycle counter against the timestamp. * If the current cycle counter is lower than the partial timestamp, * then wraparound surely occurred and must be accounted for. */ if ((now & partial_tstamp_mask) <= ts_partial) ts_reconstructed -= (partial_tstamp_mask + 1); return ts_reconstructed; } /* Reads the SPI interface for an egress timestamp generated by the switch * for frames sent using management routes. * * SJA1105 E/T layout of the 4-byte SPI payload: * * 31 23 15 7 0 * | | | | | * +-----+-----+-----+ ^ * ^ | * | | * 24-bit timestamp Update bit * * * SJA1105 P/Q/R/S layout of the 8-byte SPI payload: * * 31 23 15 7 0 63 55 47 39 32 * | | | | | | | | | | * ^ +-----+-----+-----+-----+ * | ^ * | | * Update bit 32-bit timestamp * * Notice that the update bit is in the same place. * To have common code for E/T and P/Q/R/S for reading the timestamp, * we need to juggle with the offset and the bit indices. */ int sja1105_ptpegr_ts_poll(struct sja1105_private *priv, int port, u64 *ts) { const struct sja1105_regs *regs = priv->info->regs; int tstamp_bit_start, tstamp_bit_end; int timeout = 10; u8 packed_buf[8]; u64 update; int rc; do { rc = sja1105_spi_send_packed_buf(priv, SPI_READ, regs->ptpegr_ts[port], packed_buf, priv->info->ptpegr_ts_bytes); if (rc < 0) return rc; sja1105_unpack(packed_buf, &update, 0, 0, priv->info->ptpegr_ts_bytes); if (update) break; usleep_range(10, 50); } while (--timeout); if (!timeout) return -ETIMEDOUT; /* Point the end bit to the second 32-bit word on P/Q/R/S, * no-op on E/T. */ tstamp_bit_end = (priv->info->ptpegr_ts_bytes - 4) * 8; /* Shift the 24-bit timestamp on E/T to be collected from 31:8. * No-op on P/Q/R/S. */ tstamp_bit_end += 32 - priv->info->ptp_ts_bits; tstamp_bit_start = tstamp_bit_end + priv->info->ptp_ts_bits - 1; *ts = 0; sja1105_unpack(packed_buf, ts, tstamp_bit_start, tstamp_bit_end, priv->info->ptpegr_ts_bytes); return 0; } int sja1105_ptp_reset(struct sja1105_private *priv) { struct dsa_switch *ds = priv->ds; struct sja1105_ptp_cmd cmd = {0}; int rc; mutex_lock(&priv->ptp_lock); cmd.resptp = 1; dev_dbg(ds->dev, "Resetting PTP clock\n"); rc = priv->info->ptp_cmd(priv, &cmd); timecounter_init(&priv->tstamp_tc, &priv->tstamp_cc, ktime_to_ns(ktime_get_real())); mutex_unlock(&priv->ptp_lock); return rc; } static int sja1105_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) { struct sja1105_private *priv = ptp_to_sja1105(ptp); u64 ns; mutex_lock(&priv->ptp_lock); ns = timecounter_read(&priv->tstamp_tc); mutex_unlock(&priv->ptp_lock); *ts = ns_to_timespec64(ns); return 0; } static int sja1105_ptp_settime(struct ptp_clock_info *ptp, const struct timespec64 *ts) { struct sja1105_private *priv = ptp_to_sja1105(ptp); u64 ns = timespec64_to_ns(ts); mutex_lock(&priv->ptp_lock); timecounter_init(&priv->tstamp_tc, &priv->tstamp_cc, ns); mutex_unlock(&priv->ptp_lock); return 0; } static int sja1105_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) { struct sja1105_private *priv = ptp_to_sja1105(ptp); s64 clkrate; clkrate = (s64)scaled_ppm * SJA1105_CC_MULT_NUM; clkrate = div_s64(clkrate, SJA1105_CC_MULT_DEM); mutex_lock(&priv->ptp_lock); /* Force a readout to update the timer *before* changing its frequency. * * This way, its corrected time curve can at all times be modeled * as a linear "A * x + B" function, where: * * - B are past frequency adjustments and offset shifts, all * accumulated into the cycle_last variable. * * - A is the new frequency adjustments we're just about to set. * * Reading now makes B accumulate the correct amount of time, * corrected at the old rate, before changing it. * * Hardware timestamps then become simple points on the curve and * are approximated using the above function. This is still better * than letting the switch take the timestamps using the hardware * rate-corrected clock (PTPCLKVAL) - the comparison in this case would * be that we're shifting the ruler at the same time as we're taking * measurements with it. * * The disadvantage is that it's possible to receive timestamps when * a frequency adjustment took place in the near past. * In this case they will be approximated using the new ppb value * instead of a compound function made of two segments (one at the old * and the other at the new rate) - introducing some inaccuracy. */ timecounter_read(&priv->tstamp_tc); priv->tstamp_cc.mult = SJA1105_CC_MULT + clkrate; mutex_unlock(&priv->ptp_lock); return 0; } static int sja1105_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) { struct sja1105_private *priv = ptp_to_sja1105(ptp); mutex_lock(&priv->ptp_lock); timecounter_adjtime(&priv->tstamp_tc, delta); mutex_unlock(&priv->ptp_lock); return 0; } static u64 sja1105_ptptsclk_read(const struct cyclecounter *cc) { struct sja1105_private *priv = cc_to_sja1105(cc); const struct sja1105_regs *regs = priv->info->regs; u64 ptptsclk = 0; int rc; rc = sja1105_spi_send_int(priv, SPI_READ, regs->ptptsclk, &ptptsclk, 8); if (rc < 0) dev_err_ratelimited(priv->ds->dev, "failed to read ptp cycle counter: %d\n", rc); return ptptsclk; } static void sja1105_ptp_overflow_check(struct work_struct *work) { struct delayed_work *dw = to_delayed_work(work); struct sja1105_private *priv = dw_to_sja1105(dw); struct timespec64 ts; sja1105_ptp_gettime(&priv->ptp_caps, &ts); schedule_delayed_work(&priv->refresh_work, SJA1105_REFRESH_INTERVAL); } static const struct ptp_clock_info sja1105_ptp_caps = { .owner = THIS_MODULE, .name = "SJA1105 PHC", .adjfine = sja1105_ptp_adjfine, .adjtime = sja1105_ptp_adjtime, .gettime64 = sja1105_ptp_gettime, .settime64 = sja1105_ptp_settime, .max_adj = SJA1105_MAX_ADJ_PPB, }; int sja1105_ptp_clock_register(struct sja1105_private *priv) { struct dsa_switch *ds = priv->ds; /* Set up the cycle counter */ priv->tstamp_cc = (struct cyclecounter) { .read = sja1105_ptptsclk_read, .mask = CYCLECOUNTER_MASK(64), .shift = SJA1105_CC_SHIFT, .mult = SJA1105_CC_MULT, }; mutex_init(&priv->ptp_lock); priv->ptp_caps = sja1105_ptp_caps; priv->clock = ptp_clock_register(&priv->ptp_caps, ds->dev); if (IS_ERR_OR_NULL(priv->clock)) return PTR_ERR(priv->clock); INIT_DELAYED_WORK(&priv->refresh_work, sja1105_ptp_overflow_check); schedule_delayed_work(&priv->refresh_work, SJA1105_REFRESH_INTERVAL); return sja1105_ptp_reset(priv); } void sja1105_ptp_clock_unregister(struct sja1105_private *priv) { if (IS_ERR_OR_NULL(priv->clock)) return; cancel_delayed_work_sync(&priv->refresh_work); ptp_clock_unregister(priv->clock); priv->clock = NULL; }