// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2018, Sensor-Technik Wiedemann GmbH * Copyright (c) 2018-2019, Vladimir Oltean */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sja1105.h" #include "sja1105_tas.h" #define SJA1105_UNKNOWN_MULTICAST 0x010000000000ull /* Configure the optional reset pin and bring up switch */ static int sja1105_hw_reset(struct device *dev, unsigned int pulse_len, unsigned int startup_delay) { struct gpio_desc *gpio; gpio = gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH); if (IS_ERR(gpio)) return PTR_ERR(gpio); if (!gpio) return 0; gpiod_set_value_cansleep(gpio, 1); /* Wait for minimum reset pulse length */ msleep(pulse_len); gpiod_set_value_cansleep(gpio, 0); /* Wait until chip is ready after reset */ msleep(startup_delay); gpiod_put(gpio); return 0; } static void sja1105_port_allow_traffic(struct sja1105_l2_forwarding_entry *l2_fwd, int from, int to, bool allow) { if (allow) l2_fwd[from].reach_port |= BIT(to); else l2_fwd[from].reach_port &= ~BIT(to); } static bool sja1105_can_forward(struct sja1105_l2_forwarding_entry *l2_fwd, int from, int to) { return !!(l2_fwd[from].reach_port & BIT(to)); } static int sja1105_is_vlan_configured(struct sja1105_private *priv, u16 vid) { struct sja1105_vlan_lookup_entry *vlan; int count, i; vlan = priv->static_config.tables[BLK_IDX_VLAN_LOOKUP].entries; count = priv->static_config.tables[BLK_IDX_VLAN_LOOKUP].entry_count; for (i = 0; i < count; i++) if (vlan[i].vlanid == vid) return i; /* Return an invalid entry index if not found */ return -1; } static int sja1105_drop_untagged(struct dsa_switch *ds, int port, bool drop) { struct sja1105_private *priv = ds->priv; struct sja1105_mac_config_entry *mac; mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries; if (mac[port].drpuntag == drop) return 0; mac[port].drpuntag = drop; return sja1105_dynamic_config_write(priv, BLK_IDX_MAC_CONFIG, port, &mac[port], true); } static int sja1105_pvid_apply(struct sja1105_private *priv, int port, u16 pvid) { struct sja1105_mac_config_entry *mac; mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries; if (mac[port].vlanid == pvid) return 0; mac[port].vlanid = pvid; return sja1105_dynamic_config_write(priv, BLK_IDX_MAC_CONFIG, port, &mac[port], true); } static int sja1105_commit_pvid(struct dsa_switch *ds, int port) { struct dsa_port *dp = dsa_to_port(ds, port); struct net_device *br = dsa_port_bridge_dev_get(dp); struct sja1105_private *priv = ds->priv; struct sja1105_vlan_lookup_entry *vlan; bool drop_untagged = false; int match, rc; u16 pvid; if (br && br_vlan_enabled(br)) pvid = priv->bridge_pvid[port]; else pvid = priv->tag_8021q_pvid[port]; rc = sja1105_pvid_apply(priv, port, pvid); if (rc) return rc; /* Only force dropping of untagged packets when the port is under a * VLAN-aware bridge. When the tag_8021q pvid is used, we are * deliberately removing the RX VLAN from the port's VMEMB_PORT list, * to prevent DSA tag spoofing from the link partner. Untagged packets * are the only ones that should be received with tag_8021q, so * definitely don't drop them. */ if (pvid == priv->bridge_pvid[port]) { vlan = priv->static_config.tables[BLK_IDX_VLAN_LOOKUP].entries; match = sja1105_is_vlan_configured(priv, pvid); if (match < 0 || !(vlan[match].vmemb_port & BIT(port))) drop_untagged = true; } if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) drop_untagged = true; return sja1105_drop_untagged(ds, port, drop_untagged); } static int sja1105_init_mac_settings(struct sja1105_private *priv) { struct sja1105_mac_config_entry default_mac = { /* Enable all 8 priority queues on egress. * Every queue i holds top[i] - base[i] frames. * Sum of top[i] - base[i] is 511 (max hardware limit). */ .top = {0x3F, 0x7F, 0xBF, 0xFF, 0x13F, 0x17F, 0x1BF, 0x1FF}, .base = {0x0, 0x40, 0x80, 0xC0, 0x100, 0x140, 0x180, 0x1C0}, .enabled = {true, true, true, true, true, true, true, true}, /* Keep standard IFG of 12 bytes on egress. */ .ifg = 0, /* Always put the MAC speed in automatic mode, where it can be * adjusted at runtime by PHYLINK. */ .speed = priv->info->port_speed[SJA1105_SPEED_AUTO], /* No static correction for 1-step 1588 events */ .tp_delin = 0, .tp_delout = 0, /* Disable aging for critical TTEthernet traffic */ .maxage = 0xFF, /* Internal VLAN (pvid) to apply to untagged ingress */ .vlanprio = 0, .vlanid = 1, .ing_mirr = false, .egr_mirr = false, /* Don't drop traffic with other EtherType than ETH_P_IP */ .drpnona664 = false, /* Don't drop double-tagged traffic */ .drpdtag = false, /* Don't drop untagged traffic */ .drpuntag = false, /* Don't retag 802.1p (VID 0) traffic with the pvid */ .retag = false, /* Disable learning and I/O on user ports by default - * STP will enable it. */ .dyn_learn = false, .egress = false, .ingress = false, }; struct sja1105_mac_config_entry *mac; struct dsa_switch *ds = priv->ds; struct sja1105_table *table; struct dsa_port *dp; table = &priv->static_config.tables[BLK_IDX_MAC_CONFIG]; /* Discard previous MAC Configuration Table */ if (table->entry_count) { kfree(table->entries); table->entry_count = 0; } table->entries = kcalloc(table->ops->max_entry_count, table->ops->unpacked_entry_size, GFP_KERNEL); if (!table->entries) return -ENOMEM; table->entry_count = table->ops->max_entry_count; mac = table->entries; list_for_each_entry(dp, &ds->dst->ports, list) { if (dp->ds != ds) continue; mac[dp->index] = default_mac; /* Let sja1105_bridge_stp_state_set() keep address learning * enabled for the DSA ports. CPU ports use software-assisted * learning to ensure that only FDB entries belonging to the * bridge are learned, and that they are learned towards all * CPU ports in a cross-chip topology if multiple CPU ports * exist. */ if (dsa_port_is_dsa(dp)) dp->learning = true; /* Disallow untagged packets from being received on the * CPU and DSA ports. */ if (dsa_port_is_cpu(dp) || dsa_port_is_dsa(dp)) mac[dp->index].drpuntag = true; } return 0; } static int sja1105_init_mii_settings(struct sja1105_private *priv) { struct device *dev = &priv->spidev->dev; struct sja1105_xmii_params_entry *mii; struct dsa_switch *ds = priv->ds; struct sja1105_table *table; int i; table = &priv->static_config.tables[BLK_IDX_XMII_PARAMS]; /* Discard previous xMII Mode Parameters Table */ if (table->entry_count) { kfree(table->entries); table->entry_count = 0; } table->entries = kcalloc(table->ops->max_entry_count, table->ops->unpacked_entry_size, GFP_KERNEL); if (!table->entries) return -ENOMEM; /* Override table based on PHYLINK DT bindings */ table->entry_count = table->ops->max_entry_count; mii = table->entries; for (i = 0; i < ds->num_ports; i++) { sja1105_mii_role_t role = XMII_MAC; if (dsa_is_unused_port(priv->ds, i)) continue; switch (priv->phy_mode[i]) { case PHY_INTERFACE_MODE_INTERNAL: if (priv->info->internal_phy[i] == SJA1105_NO_PHY) goto unsupported; mii->xmii_mode[i] = XMII_MODE_MII; if (priv->info->internal_phy[i] == SJA1105_PHY_BASE_TX) mii->special[i] = true; break; case PHY_INTERFACE_MODE_REVMII: role = XMII_PHY; fallthrough; case PHY_INTERFACE_MODE_MII: if (!priv->info->supports_mii[i]) goto unsupported; mii->xmii_mode[i] = XMII_MODE_MII; break; case PHY_INTERFACE_MODE_REVRMII: role = XMII_PHY; fallthrough; case PHY_INTERFACE_MODE_RMII: if (!priv->info->supports_rmii[i]) goto unsupported; mii->xmii_mode[i] = XMII_MODE_RMII; break; case PHY_INTERFACE_MODE_RGMII: case PHY_INTERFACE_MODE_RGMII_ID: case PHY_INTERFACE_MODE_RGMII_RXID: case PHY_INTERFACE_MODE_RGMII_TXID: if (!priv->info->supports_rgmii[i]) goto unsupported; mii->xmii_mode[i] = XMII_MODE_RGMII; break; case PHY_INTERFACE_MODE_SGMII: if (!priv->info->supports_sgmii[i]) goto unsupported; mii->xmii_mode[i] = XMII_MODE_SGMII; mii->special[i] = true; break; case PHY_INTERFACE_MODE_2500BASEX: if (!priv->info->supports_2500basex[i]) goto unsupported; mii->xmii_mode[i] = XMII_MODE_SGMII; mii->special[i] = true; break; unsupported: default: dev_err(dev, "Unsupported PHY mode %s on port %d!\n", phy_modes(priv->phy_mode[i]), i); return -EINVAL; } mii->phy_mac[i] = role; } return 0; } static int sja1105_init_static_fdb(struct sja1105_private *priv) { struct sja1105_l2_lookup_entry *l2_lookup; struct sja1105_table *table; int port; table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP]; /* We only populate the FDB table through dynamic L2 Address Lookup * entries, except for a special entry at the end which is a catch-all * for unknown multicast and will be used to control flooding domain. */ if (table->entry_count) { kfree(table->entries); table->entry_count = 0; } if (!priv->info->can_limit_mcast_flood) return 0; table->entries = kcalloc(1, table->ops->unpacked_entry_size, GFP_KERNEL); if (!table->entries) return -ENOMEM; table->entry_count = 1; l2_lookup = table->entries; /* All L2 multicast addresses have an odd first octet */ l2_lookup[0].macaddr = SJA1105_UNKNOWN_MULTICAST; l2_lookup[0].mask_macaddr = SJA1105_UNKNOWN_MULTICAST; l2_lookup[0].lockeds = true; l2_lookup[0].index = SJA1105_MAX_L2_LOOKUP_COUNT - 1; /* Flood multicast to every port by default */ for (port = 0; port < priv->ds->num_ports; port++) if (!dsa_is_unused_port(priv->ds, port)) l2_lookup[0].destports |= BIT(port); return 0; } static int sja1105_init_l2_lookup_params(struct sja1105_private *priv) { struct sja1105_l2_lookup_params_entry default_l2_lookup_params = { /* Learned FDB entries are forgotten after 300 seconds */ .maxage = SJA1105_AGEING_TIME_MS(300000), /* All entries within a FDB bin are available for learning */ .dyn_tbsz = SJA1105ET_FDB_BIN_SIZE, /* And the P/Q/R/S equivalent setting: */ .start_dynspc = 0, /* 2^8 + 2^5 + 2^3 + 2^2 + 2^1 + 1 in Koopman notation */ .poly = 0x97, /* Always use Independent VLAN Learning (IVL) */ .shared_learn = false, /* Don't discard management traffic based on ENFPORT - * we don't perform SMAC port enforcement anyway, so * what we are setting here doesn't matter. */ .no_enf_hostprt = false, /* Don't learn SMAC for mac_fltres1 and mac_fltres0. * Maybe correlate with no_linklocal_learn from bridge driver? */ .no_mgmt_learn = true, /* P/Q/R/S only */ .use_static = true, /* Dynamically learned FDB entries can overwrite other (older) * dynamic FDB entries */ .owr_dyn = true, .drpnolearn = true, }; struct dsa_switch *ds = priv->ds; int port, num_used_ports = 0; struct sja1105_table *table; u64 max_fdb_entries; for (port = 0; port < ds->num_ports; port++) if (!dsa_is_unused_port(ds, port)) num_used_ports++; max_fdb_entries = SJA1105_MAX_L2_LOOKUP_COUNT / num_used_ports; for (port = 0; port < ds->num_ports; port++) { if (dsa_is_unused_port(ds, port)) continue; default_l2_lookup_params.maxaddrp[port] = max_fdb_entries; } table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP_PARAMS]; if (table->entry_count) { kfree(table->entries); table->entry_count = 0; } table->entries = kcalloc(table->ops->max_entry_count, table->ops->unpacked_entry_size, GFP_KERNEL); if (!table->entries) return -ENOMEM; table->entry_count = table->ops->max_entry_count; /* This table only has a single entry */ ((struct sja1105_l2_lookup_params_entry *)table->entries)[0] = default_l2_lookup_params; return 0; } /* Set up a default VLAN for untagged traffic injected from the CPU * using management routes (e.g. STP, PTP) as opposed to tag_8021q. * All DT-defined ports are members of this VLAN, and there are no * restrictions on forwarding (since the CPU selects the destination). * Frames from this VLAN will always be transmitted as untagged, and * neither the bridge nor the 8021q module cannot create this VLAN ID. */ static int sja1105_init_static_vlan(struct sja1105_private *priv) { struct sja1105_table *table; struct sja1105_vlan_lookup_entry pvid = { .type_entry = SJA1110_VLAN_D_TAG, .ving_mirr = 0, .vegr_mirr = 0, .vmemb_port = 0, .vlan_bc = 0, .tag_port = 0, .vlanid = SJA1105_DEFAULT_VLAN, }; struct dsa_switch *ds = priv->ds; int port; table = &priv->static_config.tables[BLK_IDX_VLAN_LOOKUP]; if (table->entry_count) { kfree(table->entries); table->entry_count = 0; } table->entries = kzalloc(table->ops->unpacked_entry_size, GFP_KERNEL); if (!table->entries) return -ENOMEM; table->entry_count = 1; for (port = 0; port < ds->num_ports; port++) { if (dsa_is_unused_port(ds, port)) continue; pvid.vmemb_port |= BIT(port); pvid.vlan_bc |= BIT(port); pvid.tag_port &= ~BIT(port); if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) { priv->tag_8021q_pvid[port] = SJA1105_DEFAULT_VLAN; priv->bridge_pvid[port] = SJA1105_DEFAULT_VLAN; } } ((struct sja1105_vlan_lookup_entry *)table->entries)[0] = pvid; return 0; } static int sja1105_init_l2_forwarding(struct sja1105_private *priv) { struct sja1105_l2_forwarding_entry *l2fwd; struct dsa_switch *ds = priv->ds; struct dsa_switch_tree *dst; struct sja1105_table *table; struct dsa_link *dl; int port, tc; int from, to; table = &priv->static_config.tables[BLK_IDX_L2_FORWARDING]; if (table->entry_count) { kfree(table->entries); table->entry_count = 0; } table->entries = kcalloc(table->ops->max_entry_count, table->ops->unpacked_entry_size, GFP_KERNEL); if (!table->entries) return -ENOMEM; table->entry_count = table->ops->max_entry_count; l2fwd = table->entries; /* First 5 entries in the L2 Forwarding Table define the forwarding * rules and the VLAN PCP to ingress queue mapping. * Set up the ingress queue mapping first. */ for (port = 0; port < ds->num_ports; port++) { if (dsa_is_unused_port(ds, port)) continue; for (tc = 0; tc < SJA1105_NUM_TC; tc++) l2fwd[port].vlan_pmap[tc] = tc; } /* Then manage the forwarding domain for user ports. These can forward * only to the always-on domain (CPU port and DSA links) */ for (from = 0; from < ds->num_ports; from++) { if (!dsa_is_user_port(ds, from)) continue; for (to = 0; to < ds->num_ports; to++) { if (!dsa_is_cpu_port(ds, to) && !dsa_is_dsa_port(ds, to)) continue; l2fwd[from].bc_domain |= BIT(to); l2fwd[from].fl_domain |= BIT(to); sja1105_port_allow_traffic(l2fwd, from, to, true); } } /* Then manage the forwarding domain for DSA links and CPU ports (the * always-on domain). These can send packets to any enabled port except * themselves. */ for (from = 0; from < ds->num_ports; from++) { if (!dsa_is_cpu_port(ds, from) && !dsa_is_dsa_port(ds, from)) continue; for (to = 0; to < ds->num_ports; to++) { if (dsa_is_unused_port(ds, to)) continue; if (from == to) continue; l2fwd[from].bc_domain |= BIT(to); l2fwd[from].fl_domain |= BIT(to); sja1105_port_allow_traffic(l2fwd, from, to, true); } } /* In odd topologies ("H" connections where there is a DSA link to * another switch which also has its own CPU port), TX packets can loop * back into the system (they are flooded from CPU port 1 to the DSA * link, and from there to CPU port 2). Prevent this from happening by * cutting RX from DSA links towards our CPU port, if the remote switch * has its own CPU port and therefore doesn't need ours for network * stack termination. */ dst = ds->dst; list_for_each_entry(dl, &dst->rtable, list) { if (dl->dp->ds != ds || dl->link_dp->cpu_dp == dl->dp->cpu_dp) continue; from = dl->dp->index; to = dsa_upstream_port(ds, from); dev_warn(ds->dev, "H topology detected, cutting RX from DSA link %d to CPU port %d to prevent TX packet loops\n", from, to); sja1105_port_allow_traffic(l2fwd, from, to, false); l2fwd[from].bc_domain &= ~BIT(to); l2fwd[from].fl_domain &= ~BIT(to); } /* Finally, manage the egress flooding domain. All ports start up with * flooding enabled, including the CPU port and DSA links. */ for (port = 0; port < ds->num_ports; port++) { if (dsa_is_unused_port(ds, port)) continue; priv->ucast_egress_floods |= BIT(port); priv->bcast_egress_floods |= BIT(port); } /* Next 8 entries define VLAN PCP mapping from ingress to egress. * Create a one-to-one mapping. */ for (tc = 0; tc < SJA1105_NUM_TC; tc++) { for (port = 0; port < ds->num_ports; port++) { if (dsa_is_unused_port(ds, port)) continue; l2fwd[ds->num_ports + tc].vlan_pmap[port] = tc; } l2fwd[ds->num_ports + tc].type_egrpcp2outputq = true; } return 0; } static int sja1110_init_pcp_remapping(struct sja1105_private *priv) { struct sja1110_pcp_remapping_entry *pcp_remap; struct dsa_switch *ds = priv->ds; struct sja1105_table *table; int port, tc; table = &priv->static_config.tables[BLK_IDX_PCP_REMAPPING]; /* Nothing to do for SJA1105 */ if (!table->ops->max_entry_count) return 0; if (table->entry_count) { kfree(table->entries); table->entry_count = 0; } table->entries = kcalloc(table->ops->max_entry_count, table->ops->unpacked_entry_size, GFP_KERNEL); if (!table->entries) return -ENOMEM; table->entry_count = table->ops->max_entry_count; pcp_remap = table->entries; /* Repeat the configuration done for vlan_pmap */ for (port = 0; port < ds->num_ports; port++) { if (dsa_is_unused_port(ds, port)) continue; for (tc = 0; tc < SJA1105_NUM_TC; tc++) pcp_remap[port].egrpcp[tc] = tc; } return 0; } static int sja1105_init_l2_forwarding_params(struct sja1105_private *priv) { struct sja1105_l2_forwarding_params_entry *l2fwd_params; struct sja1105_table *table; table = &priv->static_config.tables[BLK_IDX_L2_FORWARDING_PARAMS]; if (table->entry_count) { kfree(table->entries); table->entry_count = 0; } table->entries = kcalloc(table->ops->max_entry_count, table->ops->unpacked_entry_size, GFP_KERNEL); if (!table->entries) return -ENOMEM; table->entry_count = table->ops->max_entry_count; /* This table only has a single entry */ l2fwd_params = table->entries; /* Disallow dynamic reconfiguration of vlan_pmap */ l2fwd_params->max_dynp = 0; /* Use a single memory partition for all ingress queues */ l2fwd_params->part_spc[0] = priv->info->max_frame_mem; return 0; } void sja1105_frame_memory_partitioning(struct sja1105_private *priv) { struct sja1105_l2_forwarding_params_entry *l2_fwd_params; struct sja1105_vl_forwarding_params_entry *vl_fwd_params; struct sja1105_table *table; table = &priv->static_config.tables[BLK_IDX_L2_FORWARDING_PARAMS]; l2_fwd_params = table->entries; l2_fwd_params->part_spc[0] = SJA1105_MAX_FRAME_MEMORY; /* If we have any critical-traffic virtual links, we need to reserve * some frame buffer memory for them. At the moment, hardcode the value * at 100 blocks of 128 bytes of memory each. This leaves 829 blocks * remaining for best-effort traffic. TODO: figure out a more flexible * way to perform the frame buffer partitioning. */ if (!priv->static_config.tables[BLK_IDX_VL_FORWARDING].entry_count) return; table = &priv->static_config.tables[BLK_IDX_VL_FORWARDING_PARAMS]; vl_fwd_params = table->entries; l2_fwd_params->part_spc[0] -= SJA1105_VL_FRAME_MEMORY; vl_fwd_params->partspc[0] = SJA1105_VL_FRAME_MEMORY; } /* SJA1110 TDMACONFIGIDX values: * * | 100 Mbps ports | 1Gbps ports | 2.5Gbps ports | Disabled ports * -----+----------------+---------------+---------------+--------------- * 0 | 0, [5:10] | [1:2] | [3:4] | retag * 1 |0, [5:10], retag| [1:2] | [3:4] | - * 2 | 0, [5:10] | [1:3], retag | 4 | - * 3 | 0, [5:10] |[1:2], 4, retag| 3 | - * 4 | 0, 2, [5:10] | 1, retag | [3:4] | - * 5 | 0, 1, [5:10] | 2, retag | [3:4] | - * 14 | 0, [5:10] | [1:4], retag | - | - * 15 | [5:10] | [0:4], retag | - | - */ static void sja1110_select_tdmaconfigidx(struct sja1105_private *priv) { struct sja1105_general_params_entry *general_params; struct sja1105_table *table; bool port_1_is_base_tx; bool port_3_is_2500; bool port_4_is_2500; u64 tdmaconfigidx; if (priv->info->device_id != SJA1110_DEVICE_ID) return; table = &priv->static_config.tables[BLK_IDX_GENERAL_PARAMS]; general_params = table->entries; /* All the settings below are "as opposed to SGMII", which is the * other pinmuxing option. */ port_1_is_base_tx = priv->phy_mode[1] == PHY_INTERFACE_MODE_INTERNAL; port_3_is_2500 = priv->phy_mode[3] == PHY_INTERFACE_MODE_2500BASEX; port_4_is_2500 = priv->phy_mode[4] == PHY_INTERFACE_MODE_2500BASEX; if (port_1_is_base_tx) /* Retagging port will operate at 1 Gbps */ tdmaconfigidx = 5; else if (port_3_is_2500 && port_4_is_2500) /* Retagging port will operate at 100 Mbps */ tdmaconfigidx = 1; else if (port_3_is_2500) /* Retagging port will operate at 1 Gbps */ tdmaconfigidx = 3; else if (port_4_is_2500) /* Retagging port will operate at 1 Gbps */ tdmaconfigidx = 2; else /* Retagging port will operate at 1 Gbps */ tdmaconfigidx = 14; general_params->tdmaconfigidx = tdmaconfigidx; } static int sja1105_init_topology(struct sja1105_private *priv, struct sja1105_general_params_entry *general_params) { struct dsa_switch *ds = priv->ds; int port; /* The host port is the destination for traffic matching mac_fltres1 * and mac_fltres0 on all ports except itself. Default to an invalid * value. */ general_params->host_port = ds->num_ports; /* Link-local traffic received on casc_port will be forwarded * to host_port without embedding the source port and device ID * info in the destination MAC address, and no RX timestamps will be * taken either (presumably because it is a cascaded port and a * downstream SJA switch already did that). * To disable the feature, we need to do different things depending on * switch generation. On SJA1105 we need to set an invalid port, while * on SJA1110 which support multiple cascaded ports, this field is a * bitmask so it must be left zero. */ if (!priv->info->multiple_cascade_ports) general_params->casc_port = ds->num_ports; for (port = 0; port < ds->num_ports; port++) { bool is_upstream = dsa_is_upstream_port(ds, port); bool is_dsa_link = dsa_is_dsa_port(ds, port); /* Upstream ports can be dedicated CPU ports or * upstream-facing DSA links */ if (is_upstream) { if (general_params->host_port == ds->num_ports) { general_params->host_port = port; } else { dev_err(ds->dev, "Port %llu is already a host port, configuring %d as one too is not supported\n", general_params->host_port, port); return -EINVAL; } } /* Cascade ports are downstream-facing DSA links */ if (is_dsa_link && !is_upstream) { if (priv->info->multiple_cascade_ports) { general_params->casc_port |= BIT(port); } else if (general_params->casc_port == ds->num_ports) { general_params->casc_port = port; } else { dev_err(ds->dev, "Port %llu is already a cascade port, configuring %d as one too is not supported\n", general_params->casc_port, port); return -EINVAL; } } } if (general_params->host_port == ds->num_ports) { dev_err(ds->dev, "No host port configured\n"); return -EINVAL; } return 0; } static int sja1105_init_general_params(struct sja1105_private *priv) { struct sja1105_general_params_entry default_general_params = { /* Allow dynamic changing of the mirror port */ .mirr_ptacu = true, .switchid = priv->ds->index, /* Priority queue for link-local management frames * (both ingress to and egress from CPU - PTP, STP etc) */ .hostprio = 7, .mac_fltres1 = SJA1105_LINKLOCAL_FILTER_A, .mac_flt1 = SJA1105_LINKLOCAL_FILTER_A_MASK, .incl_srcpt1 = false, .send_meta1 = false, .mac_fltres0 = SJA1105_LINKLOCAL_FILTER_B, .mac_flt0 = SJA1105_LINKLOCAL_FILTER_B_MASK, .incl_srcpt0 = false, .send_meta0 = false, /* Default to an invalid value */ .mirr_port = priv->ds->num_ports, /* No TTEthernet */ .vllupformat = SJA1105_VL_FORMAT_PSFP, .vlmarker = 0, .vlmask = 0, /* Only update correctionField for 1-step PTP (L2 transport) */ .ignore2stf = 0, /* Forcefully disable VLAN filtering by telling * the switch that VLAN has a different EtherType. */ .tpid = ETH_P_SJA1105, .tpid2 = ETH_P_SJA1105, /* Enable the TTEthernet engine on SJA1110 */ .tte_en = true, /* Set up the EtherType for control packets on SJA1110 */ .header_type = ETH_P_SJA1110, }; struct sja1105_general_params_entry *general_params; struct sja1105_table *table; int rc; rc = sja1105_init_topology(priv, &default_general_params); if (rc) return rc; table = &priv->static_config.tables[BLK_IDX_GENERAL_PARAMS]; if (table->entry_count) { kfree(table->entries); table->entry_count = 0; } table->entries = kcalloc(table->ops->max_entry_count, table->ops->unpacked_entry_size, GFP_KERNEL); if (!table->entries) return -ENOMEM; table->entry_count = table->ops->max_entry_count; general_params = table->entries; /* This table only has a single entry */ general_params[0] = default_general_params; sja1110_select_tdmaconfigidx(priv); return 0; } static int sja1105_init_avb_params(struct sja1105_private *priv) { struct sja1105_avb_params_entry *avb; struct sja1105_table *table; table = &priv->static_config.tables[BLK_IDX_AVB_PARAMS]; /* Discard previous AVB Parameters Table */ if (table->entry_count) { kfree(table->entries); table->entry_count = 0; } table->entries = kcalloc(table->ops->max_entry_count, table->ops->unpacked_entry_size, GFP_KERNEL); if (!table->entries) return -ENOMEM; table->entry_count = table->ops->max_entry_count; avb = table->entries; /* Configure the MAC addresses for meta frames */ avb->destmeta = SJA1105_META_DMAC; avb->srcmeta = SJA1105_META_SMAC; /* On P/Q/R/S, configure the direction of the PTP_CLK pin as input by * default. This is because there might be boards with a hardware * layout where enabling the pin as output might cause an electrical * clash. On E/T the pin is always an output, which the board designers * probably already knew, so even if there are going to be electrical * issues, there's nothing we can do. */ avb->cas_master = false; return 0; } /* The L2 policing table is 2-stage. The table is looked up for each frame * according to the ingress port, whether it was broadcast or not, and the * classified traffic class (given by VLAN PCP). This portion of the lookup is * fixed, and gives access to the SHARINDX, an indirection register pointing * within the policing table itself, which is used to resolve the policer that * will be used for this frame. * * Stage 1 Stage 2 * +------------+--------+ +---------------------------------+ * |Port 0 TC 0 |SHARINDX| | Policer 0: Rate, Burst, MTU | * +------------+--------+ +---------------------------------+ * |Port 0 TC 1 |SHARINDX| | Policer 1: Rate, Burst, MTU | * +------------+--------+ +---------------------------------+ * ... | Policer 2: Rate, Burst, MTU | * +------------+--------+ +---------------------------------+ * |Port 0 TC 7 |SHARINDX| | Policer 3: Rate, Burst, MTU | * +------------+--------+ +---------------------------------+ * |Port 1 TC 0 |SHARINDX| | Policer 4: Rate, Burst, MTU | * +------------+--------+ +---------------------------------+ * ... | Policer 5: Rate, Burst, MTU | * +------------+--------+ +---------------------------------+ * |Port 1 TC 7 |SHARINDX| | Policer 6: Rate, Burst, MTU | * +------------+--------+ +---------------------------------+ * ... | Policer 7: Rate, Burst, MTU | * +------------+--------+ +---------------------------------+ * |Port 4 TC 7 |SHARINDX| ... * +------------+--------+ * |Port 0 BCAST|SHARINDX| ... * +------------+--------+ * |Port 1 BCAST|SHARINDX| ... * +------------+--------+ * ... ... * +------------+--------+ +---------------------------------+ * |Port 4 BCAST|SHARINDX| | Policer 44: Rate, Burst, MTU | * +------------+--------+ +---------------------------------+ * * In this driver, we shall use policers 0-4 as statically alocated port * (matchall) policers. So we need to make the SHARINDX for all lookups * corresponding to this ingress port (8 VLAN PCP lookups and 1 broadcast * lookup) equal. * The remaining policers (40) shall be dynamically allocated for flower * policers, where the key is either vlan_prio or dst_mac ff:ff:ff:ff:ff:ff. */ #define SJA1105_RATE_MBPS(speed) (((speed) * 64000) / 1000) static int sja1105_init_l2_policing(struct sja1105_private *priv) { struct sja1105_l2_policing_entry *policing; struct dsa_switch *ds = priv->ds; struct sja1105_table *table; int port, tc; table = &priv->static_config.tables[BLK_IDX_L2_POLICING]; /* Discard previous L2 Policing Table */ if (table->entry_count) { kfree(table->entries); table->entry_count = 0; } table->entries = kcalloc(table->ops->max_entry_count, table->ops->unpacked_entry_size, GFP_KERNEL); if (!table->entries) return -ENOMEM; table->entry_count = table->ops->max_entry_count; policing = table->entries; /* Setup shared indices for the matchall policers */ for (port = 0; port < ds->num_ports; port++) { int mcast = (ds->num_ports * (SJA1105_NUM_TC + 1)) + port; int bcast = (ds->num_ports * SJA1105_NUM_TC) + port; for (tc = 0; tc < SJA1105_NUM_TC; tc++) policing[port * SJA1105_NUM_TC + tc].sharindx = port; policing[bcast].sharindx = port; /* Only SJA1110 has multicast policers */ if (mcast < table->ops->max_entry_count) policing[mcast].sharindx = port; } /* Setup the matchall policer parameters */ for (port = 0; port < ds->num_ports; port++) { int mtu = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN; if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) mtu += VLAN_HLEN; policing[port].smax = 65535; /* Burst size in bytes */ policing[port].rate = SJA1105_RATE_MBPS(1000); policing[port].maxlen = mtu; policing[port].partition = 0; } return 0; } static int sja1105_static_config_load(struct sja1105_private *priv) { int rc; sja1105_static_config_free(&priv->static_config); rc = sja1105_static_config_init(&priv->static_config, priv->info->static_ops, priv->info->device_id); if (rc) return rc; /* Build static configuration */ rc = sja1105_init_mac_settings(priv); if (rc < 0) return rc; rc = sja1105_init_mii_settings(priv); if (rc < 0) return rc; rc = sja1105_init_static_fdb(priv); if (rc < 0) return rc; rc = sja1105_init_static_vlan(priv); if (rc < 0) return rc; rc = sja1105_init_l2_lookup_params(priv); if (rc < 0) return rc; rc = sja1105_init_l2_forwarding(priv); if (rc < 0) return rc; rc = sja1105_init_l2_forwarding_params(priv); if (rc < 0) return rc; rc = sja1105_init_l2_policing(priv); if (rc < 0) return rc; rc = sja1105_init_general_params(priv); if (rc < 0) return rc; rc = sja1105_init_avb_params(priv); if (rc < 0) return rc; rc = sja1110_init_pcp_remapping(priv); if (rc < 0) return rc; /* Send initial configuration to hardware via SPI */ return sja1105_static_config_upload(priv); } /* This is the "new way" for a MAC driver to configure its RGMII delay lines, * based on the explicit "rx-internal-delay-ps" and "tx-internal-delay-ps" * properties. It has the advantage of working with fixed links and with PHYs * that apply RGMII delays too, and the MAC driver needs not perform any * special checks. * * Previously we were acting upon the "phy-mode" property when we were * operating in fixed-link, basically acting as a PHY, but with a reversed * interpretation: PHY_INTERFACE_MODE_RGMII_TXID means that the MAC should * behave as if it is connected to a PHY which has applied RGMII delays in the * TX direction. So if anything, RX delays should have been added by the MAC, * but we were adding TX delays. * * If the "{rx,tx}-internal-delay-ps" properties are not specified, we fall * back to the legacy behavior and apply delays on fixed-link ports based on * the reverse interpretation of the phy-mode. This is a deviation from the * expected default behavior which is to simply apply no delays. To achieve * that behavior with the new bindings, it is mandatory to specify * "{rx,tx}-internal-delay-ps" with a value of 0. */ static int sja1105_parse_rgmii_delays(struct sja1105_private *priv, int port, struct device_node *port_dn) { phy_interface_t phy_mode = priv->phy_mode[port]; struct device *dev = &priv->spidev->dev; int rx_delay = -1, tx_delay = -1; if (!phy_interface_mode_is_rgmii(phy_mode)) return 0; of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay); of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay); if (rx_delay == -1 && tx_delay == -1 && priv->fixed_link[port]) { dev_warn(dev, "Port %d interpreting RGMII delay settings based on \"phy-mode\" property, " "please update device tree to specify \"rx-internal-delay-ps\" and " "\"tx-internal-delay-ps\"", port); if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID || phy_mode == PHY_INTERFACE_MODE_RGMII_ID) rx_delay = 2000; if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID || phy_mode == PHY_INTERFACE_MODE_RGMII_ID) tx_delay = 2000; } if (rx_delay < 0) rx_delay = 0; if (tx_delay < 0) tx_delay = 0; if ((rx_delay || tx_delay) && !priv->info->setup_rgmii_delay) { dev_err(dev, "Chip cannot apply RGMII delays\n"); return -EINVAL; } if ((rx_delay && rx_delay < SJA1105_RGMII_DELAY_MIN_PS) || (tx_delay && tx_delay < SJA1105_RGMII_DELAY_MIN_PS) || (rx_delay > SJA1105_RGMII_DELAY_MAX_PS) || (tx_delay > SJA1105_RGMII_DELAY_MAX_PS)) { dev_err(dev, "port %d RGMII delay values out of range, must be between %d and %d ps\n", port, SJA1105_RGMII_DELAY_MIN_PS, SJA1105_RGMII_DELAY_MAX_PS); return -ERANGE; } priv->rgmii_rx_delay_ps[port] = rx_delay; priv->rgmii_tx_delay_ps[port] = tx_delay; return 0; } static int sja1105_parse_ports_node(struct sja1105_private *priv, struct device_node *ports_node) { struct device *dev = &priv->spidev->dev; struct device_node *child; for_each_available_child_of_node(ports_node, child) { struct device_node *phy_node; phy_interface_t phy_mode; u32 index; int err; /* Get switch port number from DT */ if (of_property_read_u32(child, "reg", &index) < 0) { dev_err(dev, "Port number not defined in device tree " "(property \"reg\")\n"); of_node_put(child); return -ENODEV; } /* Get PHY mode from DT */ err = of_get_phy_mode(child, &phy_mode); if (err) { dev_err(dev, "Failed to read phy-mode or " "phy-interface-type property for port %d\n", index); of_node_put(child); return -ENODEV; } phy_node = of_parse_phandle(child, "phy-handle", 0); if (!phy_node) { if (!of_phy_is_fixed_link(child)) { dev_err(dev, "phy-handle or fixed-link " "properties missing!\n"); of_node_put(child); return -ENODEV; } /* phy-handle is missing, but fixed-link isn't. * So it's a fixed link. Default to PHY role. */ priv->fixed_link[index] = true; } else { of_node_put(phy_node); } priv->phy_mode[index] = phy_mode; err = sja1105_parse_rgmii_delays(priv, index, child); if (err) { of_node_put(child); return err; } } return 0; } static int sja1105_parse_dt(struct sja1105_private *priv) { struct device *dev = &priv->spidev->dev; struct device_node *switch_node = dev->of_node; struct device_node *ports_node; int rc; ports_node = of_get_child_by_name(switch_node, "ports"); if (!ports_node) ports_node = of_get_child_by_name(switch_node, "ethernet-ports"); if (!ports_node) { dev_err(dev, "Incorrect bindings: absent \"ports\" node\n"); return -ENODEV; } rc = sja1105_parse_ports_node(priv, ports_node); of_node_put(ports_node); return rc; } /* Convert link speed from SJA1105 to ethtool encoding */ static int sja1105_port_speed_to_ethtool(struct sja1105_private *priv, u64 speed) { if (speed == priv->info->port_speed[SJA1105_SPEED_10MBPS]) return SPEED_10; if (speed == priv->info->port_speed[SJA1105_SPEED_100MBPS]) return SPEED_100; if (speed == priv->info->port_speed[SJA1105_SPEED_1000MBPS]) return SPEED_1000; if (speed == priv->info->port_speed[SJA1105_SPEED_2500MBPS]) return SPEED_2500; return SPEED_UNKNOWN; } /* Set link speed in the MAC configuration for a specific port. */ static int sja1105_adjust_port_config(struct sja1105_private *priv, int port, int speed_mbps) { struct sja1105_mac_config_entry *mac; struct device *dev = priv->ds->dev; u64 speed; int rc; /* On P/Q/R/S, one can read from the device via the MAC reconfiguration * tables. On E/T, MAC reconfig tables are not readable, only writable. * We have to *know* what the MAC looks like. For the sake of keeping * the code common, we'll use the static configuration tables as a * reasonable approximation for both E/T and P/Q/R/S. */ mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries; switch (speed_mbps) { case SPEED_UNKNOWN: /* PHYLINK called sja1105_mac_config() to inform us about * the state->interface, but AN has not completed and the * speed is not yet valid. UM10944.pdf says that setting * SJA1105_SPEED_AUTO at runtime disables the port, so that is * ok for power consumption in case AN will never complete - * otherwise PHYLINK should come back with a new update. */ speed = priv->info->port_speed[SJA1105_SPEED_AUTO]; break; case SPEED_10: speed = priv->info->port_speed[SJA1105_SPEED_10MBPS]; break; case SPEED_100: speed = priv->info->port_speed[SJA1105_SPEED_100MBPS]; break; case SPEED_1000: speed = priv->info->port_speed[SJA1105_SPEED_1000MBPS]; break; case SPEED_2500: speed = priv->info->port_speed[SJA1105_SPEED_2500MBPS]; break; default: dev_err(dev, "Invalid speed %iMbps\n", speed_mbps); return -EINVAL; } /* Overwrite SJA1105_SPEED_AUTO from the static MAC configuration * table, since this will be used for the clocking setup, and we no * longer need to store it in the static config (already told hardware * we want auto during upload phase). * Actually for the SGMII port, the MAC is fixed at 1 Gbps and * we need to configure the PCS only (if even that). */ if (priv->phy_mode[port] == PHY_INTERFACE_MODE_SGMII) mac[port].speed = priv->info->port_speed[SJA1105_SPEED_1000MBPS]; else if (priv->phy_mode[port] == PHY_INTERFACE_MODE_2500BASEX) mac[port].speed = priv->info->port_speed[SJA1105_SPEED_2500MBPS]; else mac[port].speed = speed; /* Write to the dynamic reconfiguration tables */ rc = sja1105_dynamic_config_write(priv, BLK_IDX_MAC_CONFIG, port, &mac[port], true); if (rc < 0) { dev_err(dev, "Failed to write MAC config: %d\n", rc); return rc; } /* Reconfigure the PLLs for the RGMII interfaces (required 125 MHz at * gigabit, 25 MHz at 100 Mbps and 2.5 MHz at 10 Mbps). For MII and * RMII no change of the clock setup is required. Actually, changing * the clock setup does interrupt the clock signal for a certain time * which causes trouble for all PHYs relying on this signal. */ if (!phy_interface_mode_is_rgmii(priv->phy_mode[port])) return 0; return sja1105_clocking_setup_port(priv, port); } static struct phylink_pcs * sja1105_mac_select_pcs(struct dsa_switch *ds, int port, phy_interface_t iface) { struct sja1105_private *priv = ds->priv; struct dw_xpcs *xpcs = priv->xpcs[port]; if (xpcs) return &xpcs->pcs; return NULL; } static void sja1105_mac_link_down(struct dsa_switch *ds, int port, unsigned int mode, phy_interface_t interface) { sja1105_inhibit_tx(ds->priv, BIT(port), true); } static void sja1105_mac_link_up(struct dsa_switch *ds, int port, unsigned int mode, phy_interface_t interface, struct phy_device *phydev, int speed, int duplex, bool tx_pause, bool rx_pause) { struct sja1105_private *priv = ds->priv; sja1105_adjust_port_config(priv, port, speed); sja1105_inhibit_tx(priv, BIT(port), false); } static void sja1105_phylink_get_caps(struct dsa_switch *ds, int port, struct phylink_config *config) { struct sja1105_private *priv = ds->priv; struct sja1105_xmii_params_entry *mii; phy_interface_t phy_mode; /* This driver does not make use of the speed, duplex, pause or the * advertisement in its mac_config, so it is safe to mark this driver * as non-legacy. */ config->legacy_pre_march2020 = false; phy_mode = priv->phy_mode[port]; if (phy_mode == PHY_INTERFACE_MODE_SGMII || phy_mode == PHY_INTERFACE_MODE_2500BASEX) { /* Changing the PHY mode on SERDES ports is possible and makes * sense, because that is done through the XPCS. We allow * changes between SGMII and 2500base-X. */ if (priv->info->supports_sgmii[port]) __set_bit(PHY_INTERFACE_MODE_SGMII, config->supported_interfaces); if (priv->info->supports_2500basex[port]) __set_bit(PHY_INTERFACE_MODE_2500BASEX, config->supported_interfaces); } else { /* The SJA1105 MAC programming model is through the static * config (the xMII Mode table cannot be dynamically * reconfigured), and we have to program that early. */ __set_bit(phy_mode, config->supported_interfaces); } /* The MAC does not support pause frames, and also doesn't * support half-duplex traffic modes. */ config->mac_capabilities = MAC_10FD | MAC_100FD; mii = priv->static_config.tables[BLK_IDX_XMII_PARAMS].entries; if (mii->xmii_mode[port] == XMII_MODE_RGMII || mii->xmii_mode[port] == XMII_MODE_SGMII) config->mac_capabilities |= MAC_1000FD; if (priv->info->supports_2500basex[port]) config->mac_capabilities |= MAC_2500FD; } static int sja1105_find_static_fdb_entry(struct sja1105_private *priv, int port, const struct sja1105_l2_lookup_entry *requested) { struct sja1105_l2_lookup_entry *l2_lookup; struct sja1105_table *table; int i; table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP]; l2_lookup = table->entries; for (i = 0; i < table->entry_count; i++) if (l2_lookup[i].macaddr == requested->macaddr && l2_lookup[i].vlanid == requested->vlanid && l2_lookup[i].destports & BIT(port)) return i; return -1; } /* We want FDB entries added statically through the bridge command to persist * across switch resets, which are a common thing during normal SJA1105 * operation. So we have to back them up in the static configuration tables * and hence apply them on next static config upload... yay! */ static int sja1105_static_fdb_change(struct sja1105_private *priv, int port, const struct sja1105_l2_lookup_entry *requested, bool keep) { struct sja1105_l2_lookup_entry *l2_lookup; struct sja1105_table *table; int rc, match; table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP]; match = sja1105_find_static_fdb_entry(priv, port, requested); if (match < 0) { /* Can't delete a missing entry. */ if (!keep) return 0; /* No match => new entry */ rc = sja1105_table_resize(table, table->entry_count + 1); if (rc) return rc; match = table->entry_count - 1; } /* Assign pointer after the resize (it may be new memory) */ l2_lookup = table->entries; /* We have a match. * If the job was to add this FDB entry, it's already done (mostly * anyway, since the port forwarding mask may have changed, case in * which we update it). * Otherwise we have to delete it. */ if (keep) { l2_lookup[match] = *requested; return 0; } /* To remove, the strategy is to overwrite the element with * the last one, and then reduce the array size by 1 */ l2_lookup[match] = l2_lookup[table->entry_count - 1]; return sja1105_table_resize(table, table->entry_count - 1); } /* First-generation switches have a 4-way set associative TCAM that * holds the FDB entries. An FDB index spans from 0 to 1023 and is comprised of * a "bin" (grouping of 4 entries) and a "way" (an entry within a bin). * For the placement of a newly learnt FDB entry, the switch selects the bin * based on a hash function, and the way within that bin incrementally. */ static int sja1105et_fdb_index(int bin, int way) { return bin * SJA1105ET_FDB_BIN_SIZE + way; } static int sja1105et_is_fdb_entry_in_bin(struct sja1105_private *priv, int bin, const u8 *addr, u16 vid, struct sja1105_l2_lookup_entry *match, int *last_unused) { int way; for (way = 0; way < SJA1105ET_FDB_BIN_SIZE; way++) { struct sja1105_l2_lookup_entry l2_lookup = {0}; int index = sja1105et_fdb_index(bin, way); /* Skip unused entries, optionally marking them * into the return value */ if (sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP, index, &l2_lookup)) { if (last_unused) *last_unused = way; continue; } if (l2_lookup.macaddr == ether_addr_to_u64(addr) && l2_lookup.vlanid == vid) { if (match) *match = l2_lookup; return way; } } /* Return an invalid entry index if not found */ return -1; } int sja1105et_fdb_add(struct dsa_switch *ds, int port, const unsigned char *addr, u16 vid) { struct sja1105_l2_lookup_entry l2_lookup = {0}, tmp; struct sja1105_private *priv = ds->priv; struct device *dev = ds->dev; int last_unused = -1; int start, end, i; int bin, way, rc; bin = sja1105et_fdb_hash(priv, addr, vid); way = sja1105et_is_fdb_entry_in_bin(priv, bin, addr, vid, &l2_lookup, &last_unused); if (way >= 0) { /* We have an FDB entry. Is our port in the destination * mask? If yes, we need to do nothing. If not, we need * to rewrite the entry by adding this port to it. */ if ((l2_lookup.destports & BIT(port)) && l2_lookup.lockeds) return 0; l2_lookup.destports |= BIT(port); } else { int index = sja1105et_fdb_index(bin, way); /* We don't have an FDB entry. We construct a new one and * try to find a place for it within the FDB table. */ l2_lookup.macaddr = ether_addr_to_u64(addr); l2_lookup.destports = BIT(port); l2_lookup.vlanid = vid; if (last_unused >= 0) { way = last_unused; } else { /* Bin is full, need to evict somebody. * Choose victim at random. If you get these messages * often, you may need to consider changing the * distribution function: * static_config[BLK_IDX_L2_LOOKUP_PARAMS].entries->poly */ get_random_bytes(&way, sizeof(u8)); way %= SJA1105ET_FDB_BIN_SIZE; dev_warn(dev, "Warning, FDB bin %d full while adding entry for %pM. Evicting entry %u.\n", bin, addr, way); /* Evict entry */ sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP, index, NULL, false); } } l2_lookup.lockeds = true; l2_lookup.index = sja1105et_fdb_index(bin, way); rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP, l2_lookup.index, &l2_lookup, true); if (rc < 0) return rc; /* Invalidate a dynamically learned entry if that exists */ start = sja1105et_fdb_index(bin, 0); end = sja1105et_fdb_index(bin, way); for (i = start; i < end; i++) { rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP, i, &tmp); if (rc == -ENOENT) continue; if (rc) return rc; if (tmp.macaddr != ether_addr_to_u64(addr) || tmp.vlanid != vid) continue; rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP, i, NULL, false); if (rc) return rc; break; } return sja1105_static_fdb_change(priv, port, &l2_lookup, true); } int sja1105et_fdb_del(struct dsa_switch *ds, int port, const unsigned char *addr, u16 vid) { struct sja1105_l2_lookup_entry l2_lookup = {0}; struct sja1105_private *priv = ds->priv; int index, bin, way, rc; bool keep; bin = sja1105et_fdb_hash(priv, addr, vid); way = sja1105et_is_fdb_entry_in_bin(priv, bin, addr, vid, &l2_lookup, NULL); if (way < 0) return 0; index = sja1105et_fdb_index(bin, way); /* We have an FDB entry. Is our port in the destination mask? If yes, * we need to remove it. If the resulting port mask becomes empty, we * need to completely evict the FDB entry. * Otherwise we just write it back. */ l2_lookup.destports &= ~BIT(port); if (l2_lookup.destports) keep = true; else keep = false; rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP, index, &l2_lookup, keep); if (rc < 0) return rc; return sja1105_static_fdb_change(priv, port, &l2_lookup, keep); } int sja1105pqrs_fdb_add(struct dsa_switch *ds, int port, const unsigned char *addr, u16 vid) { struct sja1105_l2_lookup_entry l2_lookup = {0}, tmp; struct sja1105_private *priv = ds->priv; int rc, i; /* Search for an existing entry in the FDB table */ l2_lookup.macaddr = ether_addr_to_u64(addr); l2_lookup.vlanid = vid; l2_lookup.mask_macaddr = GENMASK_ULL(ETH_ALEN * 8 - 1, 0); l2_lookup.mask_vlanid = VLAN_VID_MASK; l2_lookup.destports = BIT(port); tmp = l2_lookup; rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP, SJA1105_SEARCH, &tmp); if (rc == 0 && tmp.index != SJA1105_MAX_L2_LOOKUP_COUNT - 1) { /* Found a static entry and this port is already in the entry's * port mask => job done */ if ((tmp.destports & BIT(port)) && tmp.lockeds) return 0; l2_lookup = tmp; /* l2_lookup.index is populated by the switch in case it * found something. */ l2_lookup.destports |= BIT(port); goto skip_finding_an_index; } /* Not found, so try to find an unused spot in the FDB. * This is slightly inefficient because the strategy is knock-knock at * every possible position from 0 to 1023. */ for (i = 0; i < SJA1105_MAX_L2_LOOKUP_COUNT; i++) { rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP, i, NULL); if (rc < 0) break; } if (i == SJA1105_MAX_L2_LOOKUP_COUNT) { dev_err(ds->dev, "FDB is full, cannot add entry.\n"); return -EINVAL; } l2_lookup.index = i; skip_finding_an_index: l2_lookup.lockeds = true; rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP, l2_lookup.index, &l2_lookup, true); if (rc < 0) return rc; /* The switch learns dynamic entries and looks up the FDB left to * right. It is possible that our addition was concurrent with the * dynamic learning of the same address, so now that the static entry * has been installed, we are certain that address learning for this * particular address has been turned off, so the dynamic entry either * is in the FDB at an index smaller than the static one, or isn't (it * can also be at a larger index, but in that case it is inactive * because the static FDB entry will match first, and the dynamic one * will eventually age out). Search for a dynamically learned address * prior to our static one and invalidate it. */ tmp = l2_lookup; rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP, SJA1105_SEARCH, &tmp); if (rc < 0) { dev_err(ds->dev, "port %d failed to read back entry for %pM vid %d: %pe\n", port, addr, vid, ERR_PTR(rc)); return rc; } if (tmp.index < l2_lookup.index) { rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP, tmp.index, NULL, false); if (rc < 0) return rc; } return sja1105_static_fdb_change(priv, port, &l2_lookup, true); } int sja1105pqrs_fdb_del(struct dsa_switch *ds, int port, const unsigned char *addr, u16 vid) { struct sja1105_l2_lookup_entry l2_lookup = {0}; struct sja1105_private *priv = ds->priv; bool keep; int rc; l2_lookup.macaddr = ether_addr_to_u64(addr); l2_lookup.vlanid = vid; l2_lookup.mask_macaddr = GENMASK_ULL(ETH_ALEN * 8 - 1, 0); l2_lookup.mask_vlanid = VLAN_VID_MASK; l2_lookup.destports = BIT(port); rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP, SJA1105_SEARCH, &l2_lookup); if (rc < 0) return 0; l2_lookup.destports &= ~BIT(port); /* Decide whether we remove just this port from the FDB entry, * or if we remove it completely. */ if (l2_lookup.destports) keep = true; else keep = false; rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP, l2_lookup.index, &l2_lookup, keep); if (rc < 0) return rc; return sja1105_static_fdb_change(priv, port, &l2_lookup, keep); } static int sja1105_fdb_add(struct dsa_switch *ds, int port, const unsigned char *addr, u16 vid, struct dsa_db db) { struct sja1105_private *priv = ds->priv; if (!vid) { switch (db.type) { case DSA_DB_PORT: vid = dsa_tag_8021q_standalone_vid(db.dp); break; case DSA_DB_BRIDGE: vid = dsa_tag_8021q_bridge_vid(db.bridge.num); break; default: return -EOPNOTSUPP; } } return priv->info->fdb_add_cmd(ds, port, addr, vid); } static int sja1105_fdb_del(struct dsa_switch *ds, int port, const unsigned char *addr, u16 vid, struct dsa_db db) { struct sja1105_private *priv = ds->priv; if (!vid) { switch (db.type) { case DSA_DB_PORT: vid = dsa_tag_8021q_standalone_vid(db.dp); break; case DSA_DB_BRIDGE: vid = dsa_tag_8021q_bridge_vid(db.bridge.num); break; default: return -EOPNOTSUPP; } } return priv->info->fdb_del_cmd(ds, port, addr, vid); } static int sja1105_fdb_dump(struct dsa_switch *ds, int port, dsa_fdb_dump_cb_t *cb, void *data) { struct sja1105_private *priv = ds->priv; struct device *dev = ds->dev; int i; for (i = 0; i < SJA1105_MAX_L2_LOOKUP_COUNT; i++) { struct sja1105_l2_lookup_entry l2_lookup = {0}; u8 macaddr[ETH_ALEN]; int rc; rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP, i, &l2_lookup); /* No fdb entry at i, not an issue */ if (rc == -ENOENT) continue; if (rc) { dev_err(dev, "Failed to dump FDB: %d\n", rc); return rc; } /* FDB dump callback is per port. This means we have to * disregard a valid entry if it's not for this port, even if * only to revisit it later. This is inefficient because the * 1024-sized FDB table needs to be traversed 4 times through * SPI during a 'bridge fdb show' command. */ if (!(l2_lookup.destports & BIT(port))) continue; /* We need to hide the FDB entry for unknown multicast */ if (l2_lookup.macaddr == SJA1105_UNKNOWN_MULTICAST && l2_lookup.mask_macaddr == SJA1105_UNKNOWN_MULTICAST) continue; u64_to_ether_addr(l2_lookup.macaddr, macaddr); /* We need to hide the dsa_8021q VLANs from the user. */ if (vid_is_dsa_8021q(l2_lookup.vlanid)) l2_lookup.vlanid = 0; rc = cb(macaddr, l2_lookup.vlanid, l2_lookup.lockeds, data); if (rc) return rc; } return 0; } static void sja1105_fast_age(struct dsa_switch *ds, int port) { struct dsa_port *dp = dsa_to_port(ds, port); struct sja1105_private *priv = ds->priv; struct dsa_db db = { .type = DSA_DB_BRIDGE, .bridge = { .dev = dsa_port_bridge_dev_get(dp), .num = dsa_port_bridge_num_get(dp), }, }; int i; for (i = 0; i < SJA1105_MAX_L2_LOOKUP_COUNT; i++) { struct sja1105_l2_lookup_entry l2_lookup = {0}; u8 macaddr[ETH_ALEN]; int rc; rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP, i, &l2_lookup); /* No fdb entry at i, not an issue */ if (rc == -ENOENT) continue; if (rc) { dev_err(ds->dev, "Failed to read FDB: %pe\n", ERR_PTR(rc)); return; } if (!(l2_lookup.destports & BIT(port))) continue; /* Don't delete static FDB entries */ if (l2_lookup.lockeds) continue; u64_to_ether_addr(l2_lookup.macaddr, macaddr); rc = sja1105_fdb_del(ds, port, macaddr, l2_lookup.vlanid, db); if (rc) { dev_err(ds->dev, "Failed to delete FDB entry %pM vid %lld: %pe\n", macaddr, l2_lookup.vlanid, ERR_PTR(rc)); return; } } } static int sja1105_mdb_add(struct dsa_switch *ds, int port, const struct switchdev_obj_port_mdb *mdb, struct dsa_db db) { return sja1105_fdb_add(ds, port, mdb->addr, mdb->vid, db); } static int sja1105_mdb_del(struct dsa_switch *ds, int port, const struct switchdev_obj_port_mdb *mdb, struct dsa_db db) { return sja1105_fdb_del(ds, port, mdb->addr, mdb->vid, db); } /* Common function for unicast and broadcast flood configuration. * Flooding is configured between each {ingress, egress} port pair, and since * the bridge's semantics are those of "egress flooding", it means we must * enable flooding towards this port from all ingress ports that are in the * same forwarding domain. */ static int sja1105_manage_flood_domains(struct sja1105_private *priv) { struct sja1105_l2_forwarding_entry *l2_fwd; struct dsa_switch *ds = priv->ds; int from, to, rc; l2_fwd = priv->static_config.tables[BLK_IDX_L2_FORWARDING].entries; for (from = 0; from < ds->num_ports; from++) { u64 fl_domain = 0, bc_domain = 0; for (to = 0; to < priv->ds->num_ports; to++) { if (!sja1105_can_forward(l2_fwd, from, to)) continue; if (priv->ucast_egress_floods & BIT(to)) fl_domain |= BIT(to); if (priv->bcast_egress_floods & BIT(to)) bc_domain |= BIT(to); } /* Nothing changed, nothing to do */ if (l2_fwd[from].fl_domain == fl_domain && l2_fwd[from].bc_domain == bc_domain) continue; l2_fwd[from].fl_domain = fl_domain; l2_fwd[from].bc_domain = bc_domain; rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_FORWARDING, from, &l2_fwd[from], true); if (rc < 0) return rc; } return 0; } static int sja1105_bridge_member(struct dsa_switch *ds, int port, struct dsa_bridge bridge, bool member) { struct sja1105_l2_forwarding_entry *l2_fwd; struct sja1105_private *priv = ds->priv; int i, rc; l2_fwd = priv->static_config.tables[BLK_IDX_L2_FORWARDING].entries; for (i = 0; i < ds->num_ports; i++) { /* Add this port to the forwarding matrix of the * other ports in the same bridge, and viceversa. */ if (!dsa_is_user_port(ds, i)) continue; /* For the ports already under the bridge, only one thing needs * to be done, and that is to add this port to their * reachability domain. So we can perform the SPI write for * them immediately. However, for this port itself (the one * that is new to the bridge), we need to add all other ports * to its reachability domain. So we do that incrementally in * this loop, and perform the SPI write only at the end, once * the domain contains all other bridge ports. */ if (i == port) continue; if (!dsa_port_offloads_bridge(dsa_to_port(ds, i), &bridge)) continue; sja1105_port_allow_traffic(l2_fwd, i, port, member); sja1105_port_allow_traffic(l2_fwd, port, i, member); rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_FORWARDING, i, &l2_fwd[i], true); if (rc < 0) return rc; } rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_FORWARDING, port, &l2_fwd[port], true); if (rc) return rc; rc = sja1105_commit_pvid(ds, port); if (rc) return rc; return sja1105_manage_flood_domains(priv); } static void sja1105_bridge_stp_state_set(struct dsa_switch *ds, int port, u8 state) { struct dsa_port *dp = dsa_to_port(ds, port); struct sja1105_private *priv = ds->priv; struct sja1105_mac_config_entry *mac; mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries; switch (state) { case BR_STATE_DISABLED: case BR_STATE_BLOCKING: /* From UM10944 description of DRPDTAG (why put this there?): * "Management traffic flows to the port regardless of the state * of the INGRESS flag". So BPDUs are still be allowed to pass. * At the moment no difference between DISABLED and BLOCKING. */ mac[port].ingress = false; mac[port].egress = false; mac[port].dyn_learn = false; break; case BR_STATE_LISTENING: mac[port].ingress = true; mac[port].egress = false; mac[port].dyn_learn = false; break; case BR_STATE_LEARNING: mac[port].ingress = true; mac[port].egress = false; mac[port].dyn_learn = dp->learning; break; case BR_STATE_FORWARDING: mac[port].ingress = true; mac[port].egress = true; mac[port].dyn_learn = dp->learning; break; default: dev_err(ds->dev, "invalid STP state: %d\n", state); return; } sja1105_dynamic_config_write(priv, BLK_IDX_MAC_CONFIG, port, &mac[port], true); } static int sja1105_bridge_join(struct dsa_switch *ds, int port, struct dsa_bridge bridge, bool *tx_fwd_offload, struct netlink_ext_ack *extack) { int rc; rc = sja1105_bridge_member(ds, port, bridge, true); if (rc) return rc; rc = dsa_tag_8021q_bridge_join(ds, port, bridge); if (rc) { sja1105_bridge_member(ds, port, bridge, false); return rc; } *tx_fwd_offload = true; return 0; } static void sja1105_bridge_leave(struct dsa_switch *ds, int port, struct dsa_bridge bridge) { dsa_tag_8021q_bridge_leave(ds, port, bridge); sja1105_bridge_member(ds, port, bridge, false); } #define BYTES_PER_KBIT (1000LL / 8) static int sja1105_find_unused_cbs_shaper(struct sja1105_private *priv) { int i; for (i = 0; i < priv->info->num_cbs_shapers; i++) if (!priv->cbs[i].idle_slope && !priv->cbs[i].send_slope) return i; return -1; } static int sja1105_delete_cbs_shaper(struct sja1105_private *priv, int port, int prio) { int i; for (i = 0; i < priv->info->num_cbs_shapers; i++) { struct sja1105_cbs_entry *cbs = &priv->cbs[i]; if (cbs->port == port && cbs->prio == prio) { memset(cbs, 0, sizeof(*cbs)); return sja1105_dynamic_config_write(priv, BLK_IDX_CBS, i, cbs, true); } } return 0; } static int sja1105_setup_tc_cbs(struct dsa_switch *ds, int port, struct tc_cbs_qopt_offload *offload) { struct sja1105_private *priv = ds->priv; struct sja1105_cbs_entry *cbs; int index; if (!offload->enable) return sja1105_delete_cbs_shaper(priv, port, offload->queue); index = sja1105_find_unused_cbs_shaper(priv); if (index < 0) return -ENOSPC; cbs = &priv->cbs[index]; cbs->port = port; cbs->prio = offload->queue; /* locredit and sendslope are negative by definition. In hardware, * positive values must be provided, and the negative sign is implicit. */ cbs->credit_hi = offload->hicredit; cbs->credit_lo = abs(offload->locredit); /* User space is in kbits/sec, hardware in bytes/sec */ cbs->idle_slope = offload->idleslope * BYTES_PER_KBIT; cbs->send_slope = abs(offload->sendslope * BYTES_PER_KBIT); /* Convert the negative values from 64-bit 2's complement * to 32-bit 2's complement (for the case of 0x80000000 whose * negative is still negative). */ cbs->credit_lo &= GENMASK_ULL(31, 0); cbs->send_slope &= GENMASK_ULL(31, 0); return sja1105_dynamic_config_write(priv, BLK_IDX_CBS, index, cbs, true); } static int sja1105_reload_cbs(struct sja1105_private *priv) { int rc = 0, i; /* The credit based shapers are only allocated if * CONFIG_NET_SCH_CBS is enabled. */ if (!priv->cbs) return 0; for (i = 0; i < priv->info->num_cbs_shapers; i++) { struct sja1105_cbs_entry *cbs = &priv->cbs[i]; if (!cbs->idle_slope && !cbs->send_slope) continue; rc = sja1105_dynamic_config_write(priv, BLK_IDX_CBS, i, cbs, true); if (rc) break; } return rc; } static const char * const sja1105_reset_reasons[] = { [SJA1105_VLAN_FILTERING] = "VLAN filtering", [SJA1105_RX_HWTSTAMPING] = "RX timestamping", [SJA1105_AGEING_TIME] = "Ageing time", [SJA1105_SCHEDULING] = "Time-aware scheduling", [SJA1105_BEST_EFFORT_POLICING] = "Best-effort policing", [SJA1105_VIRTUAL_LINKS] = "Virtual links", }; /* For situations where we need to change a setting at runtime that is only * available through the static configuration, resetting the switch in order * to upload the new static config is unavoidable. Back up the settings we * modify at runtime (currently only MAC) and restore them after uploading, * such that this operation is relatively seamless. */ int sja1105_static_config_reload(struct sja1105_private *priv, enum sja1105_reset_reason reason) { struct ptp_system_timestamp ptp_sts_before; struct ptp_system_timestamp ptp_sts_after; int speed_mbps[SJA1105_MAX_NUM_PORTS]; u16 bmcr[SJA1105_MAX_NUM_PORTS] = {0}; struct sja1105_mac_config_entry *mac; struct dsa_switch *ds = priv->ds; s64 t1, t2, t3, t4; s64 t12, t34; int rc, i; s64 now; mutex_lock(&priv->mgmt_lock); mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries; /* Back up the dynamic link speed changed by sja1105_adjust_port_config * in order to temporarily restore it to SJA1105_SPEED_AUTO - which the * switch wants to see in the static config in order to allow us to * change it through the dynamic interface later. */ for (i = 0; i < ds->num_ports; i++) { speed_mbps[i] = sja1105_port_speed_to_ethtool(priv, mac[i].speed); mac[i].speed = priv->info->port_speed[SJA1105_SPEED_AUTO]; if (priv->xpcs[i]) bmcr[i] = mdiobus_c45_read(priv->mdio_pcs, i, MDIO_MMD_VEND2, MDIO_CTRL1); } /* No PTP operations can run right now */ mutex_lock(&priv->ptp_data.lock); rc = __sja1105_ptp_gettimex(ds, &now, &ptp_sts_before); if (rc < 0) { mutex_unlock(&priv->ptp_data.lock); goto out; } /* Reset switch and send updated static configuration */ rc = sja1105_static_config_upload(priv); if (rc < 0) { mutex_unlock(&priv->ptp_data.lock); goto out; } rc = __sja1105_ptp_settime(ds, 0, &ptp_sts_after); if (rc < 0) { mutex_unlock(&priv->ptp_data.lock); goto out; } t1 = timespec64_to_ns(&ptp_sts_before.pre_ts); t2 = timespec64_to_ns(&ptp_sts_before.post_ts); t3 = timespec64_to_ns(&ptp_sts_after.pre_ts); t4 = timespec64_to_ns(&ptp_sts_after.post_ts); /* Mid point, corresponds to pre-reset PTPCLKVAL */ t12 = t1 + (t2 - t1) / 2; /* Mid point, corresponds to post-reset PTPCLKVAL, aka 0 */ t34 = t3 + (t4 - t3) / 2; /* Advance PTPCLKVAL by the time it took since its readout */ now += (t34 - t12); __sja1105_ptp_adjtime(ds, now); mutex_unlock(&priv->ptp_data.lock); dev_info(priv->ds->dev, "Reset switch and programmed static config. Reason: %s\n", sja1105_reset_reasons[reason]); /* Configure the CGU (PLLs) for MII and RMII PHYs. * For these interfaces there is no dynamic configuration * needed, since PLLs have same settings at all speeds. */ if (priv->info->clocking_setup) { rc = priv->info->clocking_setup(priv); if (rc < 0) goto out; } for (i = 0; i < ds->num_ports; i++) { struct dw_xpcs *xpcs = priv->xpcs[i]; unsigned int neg_mode; rc = sja1105_adjust_port_config(priv, i, speed_mbps[i]); if (rc < 0) goto out; if (!xpcs) continue; if (bmcr[i] & BMCR_ANENABLE) neg_mode = PHYLINK_PCS_NEG_INBAND_ENABLED; else neg_mode = PHYLINK_PCS_NEG_OUTBAND; rc = xpcs_do_config(xpcs, priv->phy_mode[i], NULL, neg_mode); if (rc < 0) goto out; if (neg_mode == PHYLINK_PCS_NEG_OUTBAND) { int speed = SPEED_UNKNOWN; if (priv->phy_mode[i] == PHY_INTERFACE_MODE_2500BASEX) speed = SPEED_2500; else if (bmcr[i] & BMCR_SPEED1000) speed = SPEED_1000; else if (bmcr[i] & BMCR_SPEED100) speed = SPEED_100; else speed = SPEED_10; xpcs_link_up(&xpcs->pcs, neg_mode, priv->phy_mode[i], speed, DUPLEX_FULL); } } rc = sja1105_reload_cbs(priv); if (rc < 0) goto out; out: mutex_unlock(&priv->mgmt_lock); return rc; } static enum dsa_tag_protocol sja1105_get_tag_protocol(struct dsa_switch *ds, int port, enum dsa_tag_protocol mp) { struct sja1105_private *priv = ds->priv; return priv->info->tag_proto; } /* The TPID setting belongs to the General Parameters table, * which can only be partially reconfigured at runtime (and not the TPID). * So a switch reset is required. */ int sja1105_vlan_filtering(struct dsa_switch *ds, int port, bool enabled, struct netlink_ext_ack *extack) { struct sja1105_general_params_entry *general_params; struct sja1105_private *priv = ds->priv; struct sja1105_table *table; struct sja1105_rule *rule; u16 tpid, tpid2; int rc; list_for_each_entry(rule, &priv->flow_block.rules, list) { if (rule->type == SJA1105_RULE_VL) { NL_SET_ERR_MSG_MOD(extack, "Cannot change VLAN filtering with active VL rules"); return -EBUSY; } } if (enabled) { /* Enable VLAN filtering. */ tpid = ETH_P_8021Q; tpid2 = ETH_P_8021AD; } else { /* Disable VLAN filtering. */ tpid = ETH_P_SJA1105; tpid2 = ETH_P_SJA1105; } table = &priv->static_config.tables[BLK_IDX_GENERAL_PARAMS]; general_params = table->entries; /* EtherType used to identify inner tagged (C-tag) VLAN traffic */ general_params->tpid = tpid; /* EtherType used to identify outer tagged (S-tag) VLAN traffic */ general_params->tpid2 = tpid2; /* When VLAN filtering is on, we need to at least be able to * decode management traffic through the "backup plan". */ general_params->incl_srcpt1 = enabled; general_params->incl_srcpt0 = enabled; for (port = 0; port < ds->num_ports; port++) { if (dsa_is_unused_port(ds, port)) continue; rc = sja1105_commit_pvid(ds, port); if (rc) return rc; } rc = sja1105_static_config_reload(priv, SJA1105_VLAN_FILTERING); if (rc) NL_SET_ERR_MSG_MOD(extack, "Failed to change VLAN Ethertype"); return rc; } static int sja1105_vlan_add(struct sja1105_private *priv, int port, u16 vid, u16 flags, bool allowed_ingress) { struct sja1105_vlan_lookup_entry *vlan; struct sja1105_table *table; int match, rc; table = &priv->static_config.tables[BLK_IDX_VLAN_LOOKUP]; match = sja1105_is_vlan_configured(priv, vid); if (match < 0) { rc = sja1105_table_resize(table, table->entry_count + 1); if (rc) return rc; match = table->entry_count - 1; } /* Assign pointer after the resize (it's new memory) */ vlan = table->entries; vlan[match].type_entry = SJA1110_VLAN_D_TAG; vlan[match].vlanid = vid; vlan[match].vlan_bc |= BIT(port); if (allowed_ingress) vlan[match].vmemb_port |= BIT(port); else vlan[match].vmemb_port &= ~BIT(port); if (flags & BRIDGE_VLAN_INFO_UNTAGGED) vlan[match].tag_port &= ~BIT(port); else vlan[match].tag_port |= BIT(port); return sja1105_dynamic_config_write(priv, BLK_IDX_VLAN_LOOKUP, vid, &vlan[match], true); } static int sja1105_vlan_del(struct sja1105_private *priv, int port, u16 vid) { struct sja1105_vlan_lookup_entry *vlan; struct sja1105_table *table; bool keep = true; int match, rc; table = &priv->static_config.tables[BLK_IDX_VLAN_LOOKUP]; match = sja1105_is_vlan_configured(priv, vid); /* Can't delete a missing entry. */ if (match < 0) return 0; /* Assign pointer after the resize (it's new memory) */ vlan = table->entries; vlan[match].vlanid = vid; vlan[match].vlan_bc &= ~BIT(port); vlan[match].vmemb_port &= ~BIT(port); /* Also unset tag_port, just so we don't have a confusing bitmap * (no practical purpose). */ vlan[match].tag_port &= ~BIT(port); /* If there's no port left as member of this VLAN, * it's time for it to go. */ if (!vlan[match].vmemb_port) keep = false; rc = sja1105_dynamic_config_write(priv, BLK_IDX_VLAN_LOOKUP, vid, &vlan[match], keep); if (rc < 0) return rc; if (!keep) return sja1105_table_delete_entry(table, match); return 0; } static int sja1105_bridge_vlan_add(struct dsa_switch *ds, int port, const struct switchdev_obj_port_vlan *vlan, struct netlink_ext_ack *extack) { struct sja1105_private *priv = ds->priv; u16 flags = vlan->flags; int rc; /* Be sure to deny alterations to the configuration done by tag_8021q. */ if (vid_is_dsa_8021q(vlan->vid)) { NL_SET_ERR_MSG_MOD(extack, "Range 3072-4095 reserved for dsa_8021q operation"); return -EBUSY; } /* Always install bridge VLANs as egress-tagged on CPU and DSA ports */ if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) flags = 0; rc = sja1105_vlan_add(priv, port, vlan->vid, flags, true); if (rc) return rc; if (vlan->flags & BRIDGE_VLAN_INFO_PVID) priv->bridge_pvid[port] = vlan->vid; return sja1105_commit_pvid(ds, port); } static int sja1105_bridge_vlan_del(struct dsa_switch *ds, int port, const struct switchdev_obj_port_vlan *vlan) { struct sja1105_private *priv = ds->priv; int rc; rc = sja1105_vlan_del(priv, port, vlan->vid); if (rc) return rc; /* In case the pvid was deleted, make sure that untagged packets will * be dropped. */ return sja1105_commit_pvid(ds, port); } static int sja1105_dsa_8021q_vlan_add(struct dsa_switch *ds, int port, u16 vid, u16 flags) { struct sja1105_private *priv = ds->priv; bool allowed_ingress = true; int rc; /* Prevent attackers from trying to inject a DSA tag from * the outside world. */ if (dsa_is_user_port(ds, port)) allowed_ingress = false; rc = sja1105_vlan_add(priv, port, vid, flags, allowed_ingress); if (rc) return rc; if (flags & BRIDGE_VLAN_INFO_PVID) priv->tag_8021q_pvid[port] = vid; return sja1105_commit_pvid(ds, port); } static int sja1105_dsa_8021q_vlan_del(struct dsa_switch *ds, int port, u16 vid) { struct sja1105_private *priv = ds->priv; return sja1105_vlan_del(priv, port, vid); } static int sja1105_prechangeupper(struct dsa_switch *ds, int port, struct netdev_notifier_changeupper_info *info) { struct netlink_ext_ack *extack = info->info.extack; struct net_device *upper = info->upper_dev; struct dsa_switch_tree *dst = ds->dst; struct dsa_port *dp; if (is_vlan_dev(upper)) { NL_SET_ERR_MSG_MOD(extack, "8021q uppers are not supported"); return -EBUSY; } if (netif_is_bridge_master(upper)) { list_for_each_entry(dp, &dst->ports, list) { struct net_device *br = dsa_port_bridge_dev_get(dp); if (br && br != upper && br_vlan_enabled(br)) { NL_SET_ERR_MSG_MOD(extack, "Only one VLAN-aware bridge is supported"); return -EBUSY; } } } return 0; } static int sja1105_mgmt_xmit(struct dsa_switch *ds, int port, int slot, struct sk_buff *skb, bool takets) { struct sja1105_mgmt_entry mgmt_route = {0}; struct sja1105_private *priv = ds->priv; struct ethhdr *hdr; int timeout = 10; int rc; hdr = eth_hdr(skb); mgmt_route.macaddr = ether_addr_to_u64(hdr->h_dest); mgmt_route.destports = BIT(port); mgmt_route.enfport = 1; mgmt_route.tsreg = 0; mgmt_route.takets = takets; rc = sja1105_dynamic_config_write(priv, BLK_IDX_MGMT_ROUTE, slot, &mgmt_route, true); if (rc < 0) { kfree_skb(skb); return rc; } /* Transfer skb to the host port. */ dsa_enqueue_skb(skb, dsa_to_port(ds, port)->slave); /* Wait until the switch has processed the frame */ do { rc = sja1105_dynamic_config_read(priv, BLK_IDX_MGMT_ROUTE, slot, &mgmt_route); if (rc < 0) { dev_err_ratelimited(priv->ds->dev, "failed to poll for mgmt route\n"); continue; } /* UM10944: The ENFPORT flag of the respective entry is * cleared when a match is found. The host can use this * flag as an acknowledgment. */ cpu_relax(); } while (mgmt_route.enfport && --timeout); if (!timeout) { /* Clean up the management route so that a follow-up * frame may not match on it by mistake. * This is only hardware supported on P/Q/R/S - on E/T it is * a no-op and we are silently discarding the -EOPNOTSUPP. */ sja1105_dynamic_config_write(priv, BLK_IDX_MGMT_ROUTE, slot, &mgmt_route, false); dev_err_ratelimited(priv->ds->dev, "xmit timed out\n"); } return NETDEV_TX_OK; } #define work_to_xmit_work(w) \ container_of((w), struct sja1105_deferred_xmit_work, work) /* Deferred work is unfortunately necessary because setting up the management * route cannot be done from atomit context (SPI transfer takes a sleepable * lock on the bus) */ static void sja1105_port_deferred_xmit(struct kthread_work *work) { struct sja1105_deferred_xmit_work *xmit_work = work_to_xmit_work(work); struct sk_buff *clone, *skb = xmit_work->skb; struct dsa_switch *ds = xmit_work->dp->ds; struct sja1105_private *priv = ds->priv; int port = xmit_work->dp->index; clone = SJA1105_SKB_CB(skb)->clone; mutex_lock(&priv->mgmt_lock); sja1105_mgmt_xmit(ds, port, 0, skb, !!clone); /* The clone, if there, was made by dsa_skb_tx_timestamp */ if (clone) sja1105_ptp_txtstamp_skb(ds, port, clone); mutex_unlock(&priv->mgmt_lock); kfree(xmit_work); } static int sja1105_connect_tag_protocol(struct dsa_switch *ds, enum dsa_tag_protocol proto) { struct sja1105_private *priv = ds->priv; struct sja1105_tagger_data *tagger_data; if (proto != priv->info->tag_proto) return -EPROTONOSUPPORT; tagger_data = sja1105_tagger_data(ds); tagger_data->xmit_work_fn = sja1105_port_deferred_xmit; tagger_data->meta_tstamp_handler = sja1110_process_meta_tstamp; return 0; } /* The MAXAGE setting belongs to the L2 Forwarding Parameters table, * which cannot be reconfigured at runtime. So a switch reset is required. */ static int sja1105_set_ageing_time(struct dsa_switch *ds, unsigned int ageing_time) { struct sja1105_l2_lookup_params_entry *l2_lookup_params; struct sja1105_private *priv = ds->priv; struct sja1105_table *table; unsigned int maxage; table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP_PARAMS]; l2_lookup_params = table->entries; maxage = SJA1105_AGEING_TIME_MS(ageing_time); if (l2_lookup_params->maxage == maxage) return 0; l2_lookup_params->maxage = maxage; return sja1105_static_config_reload(priv, SJA1105_AGEING_TIME); } static int sja1105_change_mtu(struct dsa_switch *ds, int port, int new_mtu) { struct sja1105_l2_policing_entry *policing; struct sja1105_private *priv = ds->priv; new_mtu += VLAN_ETH_HLEN + ETH_FCS_LEN; if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) new_mtu += VLAN_HLEN; policing = priv->static_config.tables[BLK_IDX_L2_POLICING].entries; if (policing[port].maxlen == new_mtu) return 0; policing[port].maxlen = new_mtu; return sja1105_static_config_reload(priv, SJA1105_BEST_EFFORT_POLICING); } static int sja1105_get_max_mtu(struct dsa_switch *ds, int port) { return 2043 - VLAN_ETH_HLEN - ETH_FCS_LEN; } static int sja1105_port_setup_tc(struct dsa_switch *ds, int port, enum tc_setup_type type, void *type_data) { switch (type) { case TC_SETUP_QDISC_TAPRIO: return sja1105_setup_tc_taprio(ds, port, type_data); case TC_SETUP_QDISC_CBS: return sja1105_setup_tc_cbs(ds, port, type_data); default: return -EOPNOTSUPP; } } /* We have a single mirror (@to) port, but can configure ingress and egress * mirroring on all other (@from) ports. * We need to allow mirroring rules only as long as the @to port is always the * same, and we need to unset the @to port from mirr_port only when there is no * mirroring rule that references it. */ static int sja1105_mirror_apply(struct sja1105_private *priv, int from, int to, bool ingress, bool enabled) { struct sja1105_general_params_entry *general_params; struct sja1105_mac_config_entry *mac; struct dsa_switch *ds = priv->ds; struct sja1105_table *table; bool already_enabled; u64 new_mirr_port; int rc; table = &priv->static_config.tables[BLK_IDX_GENERAL_PARAMS]; general_params = table->entries; mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries; already_enabled = (general_params->mirr_port != ds->num_ports); if (already_enabled && enabled && general_params->mirr_port != to) { dev_err(priv->ds->dev, "Delete mirroring rules towards port %llu first\n", general_params->mirr_port); return -EBUSY; } new_mirr_port = to; if (!enabled) { bool keep = false; int port; /* Anybody still referencing mirr_port? */ for (port = 0; port < ds->num_ports; port++) { if (mac[port].ing_mirr || mac[port].egr_mirr) { keep = true; break; } } /* Unset already_enabled for next time */ if (!keep) new_mirr_port = ds->num_ports; } if (new_mirr_port != general_params->mirr_port) { general_params->mirr_port = new_mirr_port; rc = sja1105_dynamic_config_write(priv, BLK_IDX_GENERAL_PARAMS, 0, general_params, true); if (rc < 0) return rc; } if (ingress) mac[from].ing_mirr = enabled; else mac[from].egr_mirr = enabled; return sja1105_dynamic_config_write(priv, BLK_IDX_MAC_CONFIG, from, &mac[from], true); } static int sja1105_mirror_add(struct dsa_switch *ds, int port, struct dsa_mall_mirror_tc_entry *mirror, bool ingress, struct netlink_ext_ack *extack) { return sja1105_mirror_apply(ds->priv, port, mirror->to_local_port, ingress, true); } static void sja1105_mirror_del(struct dsa_switch *ds, int port, struct dsa_mall_mirror_tc_entry *mirror) { sja1105_mirror_apply(ds->priv, port, mirror->to_local_port, mirror->ingress, false); } static int sja1105_port_policer_add(struct dsa_switch *ds, int port, struct dsa_mall_policer_tc_entry *policer) { struct sja1105_l2_policing_entry *policing; struct sja1105_private *priv = ds->priv; policing = priv->static_config.tables[BLK_IDX_L2_POLICING].entries; /* In hardware, every 8 microseconds the credit level is incremented by * the value of RATE bytes divided by 64, up to a maximum of SMAX * bytes. */ policing[port].rate = div_u64(512 * policer->rate_bytes_per_sec, 1000000); policing[port].smax = policer->burst; return sja1105_static_config_reload(priv, SJA1105_BEST_EFFORT_POLICING); } static void sja1105_port_policer_del(struct dsa_switch *ds, int port) { struct sja1105_l2_policing_entry *policing; struct sja1105_private *priv = ds->priv; policing = priv->static_config.tables[BLK_IDX_L2_POLICING].entries; policing[port].rate = SJA1105_RATE_MBPS(1000); policing[port].smax = 65535; sja1105_static_config_reload(priv, SJA1105_BEST_EFFORT_POLICING); } static int sja1105_port_set_learning(struct sja1105_private *priv, int port, bool enabled) { struct sja1105_mac_config_entry *mac; mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries; mac[port].dyn_learn = enabled; return sja1105_dynamic_config_write(priv, BLK_IDX_MAC_CONFIG, port, &mac[port], true); } static int sja1105_port_ucast_bcast_flood(struct sja1105_private *priv, int to, struct switchdev_brport_flags flags) { if (flags.mask & BR_FLOOD) { if (flags.val & BR_FLOOD) priv->ucast_egress_floods |= BIT(to); else priv->ucast_egress_floods &= ~BIT(to); } if (flags.mask & BR_BCAST_FLOOD) { if (flags.val & BR_BCAST_FLOOD) priv->bcast_egress_floods |= BIT(to); else priv->bcast_egress_floods &= ~BIT(to); } return sja1105_manage_flood_domains(priv); } static int sja1105_port_mcast_flood(struct sja1105_private *priv, int to, struct switchdev_brport_flags flags, struct netlink_ext_ack *extack) { struct sja1105_l2_lookup_entry *l2_lookup; struct sja1105_table *table; int match; table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP]; l2_lookup = table->entries; for (match = 0; match < table->entry_count; match++) if (l2_lookup[match].macaddr == SJA1105_UNKNOWN_MULTICAST && l2_lookup[match].mask_macaddr == SJA1105_UNKNOWN_MULTICAST) break; if (match == table->entry_count) { NL_SET_ERR_MSG_MOD(extack, "Could not find FDB entry for unknown multicast"); return -ENOSPC; } if (flags.val & BR_MCAST_FLOOD) l2_lookup[match].destports |= BIT(to); else l2_lookup[match].destports &= ~BIT(to); return sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP, l2_lookup[match].index, &l2_lookup[match], true); } static int sja1105_port_pre_bridge_flags(struct dsa_switch *ds, int port, struct switchdev_brport_flags flags, struct netlink_ext_ack *extack) { struct sja1105_private *priv = ds->priv; if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD | BR_BCAST_FLOOD)) return -EINVAL; if (flags.mask & (BR_FLOOD | BR_MCAST_FLOOD) && !priv->info->can_limit_mcast_flood) { bool multicast = !!(flags.val & BR_MCAST_FLOOD); bool unicast = !!(flags.val & BR_FLOOD); if (unicast != multicast) { NL_SET_ERR_MSG_MOD(extack, "This chip cannot configure multicast flooding independently of unicast"); return -EINVAL; } } return 0; } static int sja1105_port_bridge_flags(struct dsa_switch *ds, int port, struct switchdev_brport_flags flags, struct netlink_ext_ack *extack) { struct sja1105_private *priv = ds->priv; int rc; if (flags.mask & BR_LEARNING) { bool learn_ena = !!(flags.val & BR_LEARNING); rc = sja1105_port_set_learning(priv, port, learn_ena); if (rc) return rc; } if (flags.mask & (BR_FLOOD | BR_BCAST_FLOOD)) { rc = sja1105_port_ucast_bcast_flood(priv, port, flags); if (rc) return rc; } /* For chips that can't offload BR_MCAST_FLOOD independently, there * is nothing to do here, we ensured the configuration is in sync by * offloading BR_FLOOD. */ if (flags.mask & BR_MCAST_FLOOD && priv->info->can_limit_mcast_flood) { rc = sja1105_port_mcast_flood(priv, port, flags, extack); if (rc) return rc; } return 0; } /* The programming model for the SJA1105 switch is "all-at-once" via static * configuration tables. Some of these can be dynamically modified at runtime, * but not the xMII mode parameters table. * Furthermode, some PHYs may not have crystals for generating their clocks * (e.g. RMII). Instead, their 50MHz clock is supplied via the SJA1105 port's * ref_clk pin. So port clocking needs to be initialized early, before * connecting to PHYs is attempted, otherwise they won't respond through MDIO. * Setting correct PHY link speed does not matter now. * But dsa_slave_phy_setup is called later than sja1105_setup, so the PHY * bindings are not yet parsed by DSA core. We need to parse early so that we * can populate the xMII mode parameters table. */ static int sja1105_setup(struct dsa_switch *ds) { struct sja1105_private *priv = ds->priv; int rc; if (priv->info->disable_microcontroller) { rc = priv->info->disable_microcontroller(priv); if (rc < 0) { dev_err(ds->dev, "Failed to disable microcontroller: %pe\n", ERR_PTR(rc)); return rc; } } /* Create and send configuration down to device */ rc = sja1105_static_config_load(priv); if (rc < 0) { dev_err(ds->dev, "Failed to load static config: %d\n", rc); return rc; } /* Configure the CGU (PHY link modes and speeds) */ if (priv->info->clocking_setup) { rc = priv->info->clocking_setup(priv); if (rc < 0) { dev_err(ds->dev, "Failed to configure MII clocking: %pe\n", ERR_PTR(rc)); goto out_static_config_free; } } sja1105_tas_setup(ds); sja1105_flower_setup(ds); rc = sja1105_ptp_clock_register(ds); if (rc < 0) { dev_err(ds->dev, "Failed to register PTP clock: %d\n", rc); goto out_flower_teardown; } rc = sja1105_mdiobus_register(ds); if (rc < 0) { dev_err(ds->dev, "Failed to register MDIO bus: %pe\n", ERR_PTR(rc)); goto out_ptp_clock_unregister; } rc = sja1105_devlink_setup(ds); if (rc < 0) goto out_mdiobus_unregister; rtnl_lock(); rc = dsa_tag_8021q_register(ds, htons(ETH_P_8021Q)); rtnl_unlock(); if (rc) goto out_devlink_teardown; /* On SJA1105, VLAN filtering per se is always enabled in hardware. * The only thing we can do to disable it is lie about what the 802.1Q * EtherType is. * So it will still try to apply VLAN filtering, but all ingress * traffic (except frames received with EtherType of ETH_P_SJA1105) * will be internally tagged with a distorted VLAN header where the * TPID is ETH_P_SJA1105, and the VLAN ID is the port pvid. */ ds->vlan_filtering_is_global = true; ds->untag_bridge_pvid = true; ds->fdb_isolation = true; /* tag_8021q has 3 bits for the VBID, and the value 0 is reserved */ ds->max_num_bridges = 7; /* Advertise the 8 egress queues */ ds->num_tx_queues = SJA1105_NUM_TC; ds->mtu_enforcement_ingress = true; ds->assisted_learning_on_cpu_port = true; return 0; out_devlink_teardown: sja1105_devlink_teardown(ds); out_mdiobus_unregister: sja1105_mdiobus_unregister(ds); out_ptp_clock_unregister: sja1105_ptp_clock_unregister(ds); out_flower_teardown: sja1105_flower_teardown(ds); sja1105_tas_teardown(ds); out_static_config_free: sja1105_static_config_free(&priv->static_config); return rc; } static void sja1105_teardown(struct dsa_switch *ds) { struct sja1105_private *priv = ds->priv; rtnl_lock(); dsa_tag_8021q_unregister(ds); rtnl_unlock(); sja1105_devlink_teardown(ds); sja1105_mdiobus_unregister(ds); sja1105_ptp_clock_unregister(ds); sja1105_flower_teardown(ds); sja1105_tas_teardown(ds); sja1105_static_config_free(&priv->static_config); } static const struct dsa_switch_ops sja1105_switch_ops = { .get_tag_protocol = sja1105_get_tag_protocol, .connect_tag_protocol = sja1105_connect_tag_protocol, .setup = sja1105_setup, .teardown = sja1105_teardown, .set_ageing_time = sja1105_set_ageing_time, .port_change_mtu = sja1105_change_mtu, .port_max_mtu = sja1105_get_max_mtu, .phylink_get_caps = sja1105_phylink_get_caps, .phylink_mac_select_pcs = sja1105_mac_select_pcs, .phylink_mac_link_up = sja1105_mac_link_up, .phylink_mac_link_down = sja1105_mac_link_down, .get_strings = sja1105_get_strings, .get_ethtool_stats = sja1105_get_ethtool_stats, .get_sset_count = sja1105_get_sset_count, .get_ts_info = sja1105_get_ts_info, .port_fdb_dump = sja1105_fdb_dump, .port_fdb_add = sja1105_fdb_add, .port_fdb_del = sja1105_fdb_del, .port_fast_age = sja1105_fast_age, .port_bridge_join = sja1105_bridge_join, .port_bridge_leave = sja1105_bridge_leave, .port_pre_bridge_flags = sja1105_port_pre_bridge_flags, .port_bridge_flags = sja1105_port_bridge_flags, .port_stp_state_set = sja1105_bridge_stp_state_set, .port_vlan_filtering = sja1105_vlan_filtering, .port_vlan_add = sja1105_bridge_vlan_add, .port_vlan_del = sja1105_bridge_vlan_del, .port_mdb_add = sja1105_mdb_add, .port_mdb_del = sja1105_mdb_del, .port_hwtstamp_get = sja1105_hwtstamp_get, .port_hwtstamp_set = sja1105_hwtstamp_set, .port_rxtstamp = sja1105_port_rxtstamp, .port_txtstamp = sja1105_port_txtstamp, .port_setup_tc = sja1105_port_setup_tc, .port_mirror_add = sja1105_mirror_add, .port_mirror_del = sja1105_mirror_del, .port_policer_add = sja1105_port_policer_add, .port_policer_del = sja1105_port_policer_del, .cls_flower_add = sja1105_cls_flower_add, .cls_flower_del = sja1105_cls_flower_del, .cls_flower_stats = sja1105_cls_flower_stats, .devlink_info_get = sja1105_devlink_info_get, .tag_8021q_vlan_add = sja1105_dsa_8021q_vlan_add, .tag_8021q_vlan_del = sja1105_dsa_8021q_vlan_del, .port_prechangeupper = sja1105_prechangeupper, }; static const struct of_device_id sja1105_dt_ids[]; static int sja1105_check_device_id(struct sja1105_private *priv) { const struct sja1105_regs *regs = priv->info->regs; u8 prod_id[SJA1105_SIZE_DEVICE_ID] = {0}; struct device *dev = &priv->spidev->dev; const struct of_device_id *match; u32 device_id; u64 part_no; int rc; rc = sja1105_xfer_u32(priv, SPI_READ, regs->device_id, &device_id, NULL); if (rc < 0) return rc; rc = sja1105_xfer_buf(priv, SPI_READ, regs->prod_id, prod_id, SJA1105_SIZE_DEVICE_ID); if (rc < 0) return rc; sja1105_unpack(prod_id, &part_no, 19, 4, SJA1105_SIZE_DEVICE_ID); for (match = sja1105_dt_ids; match->compatible[0]; match++) { const struct sja1105_info *info = match->data; /* Is what's been probed in our match table at all? */ if (info->device_id != device_id || info->part_no != part_no) continue; /* But is it what's in the device tree? */ if (priv->info->device_id != device_id || priv->info->part_no != part_no) { dev_warn(dev, "Device tree specifies chip %s but found %s, please fix it!\n", priv->info->name, info->name); /* It isn't. No problem, pick that up. */ priv->info = info; } return 0; } dev_err(dev, "Unexpected {device ID, part number}: 0x%x 0x%llx\n", device_id, part_no); return -ENODEV; } static int sja1105_probe(struct spi_device *spi) { struct device *dev = &spi->dev; struct sja1105_private *priv; size_t max_xfer, max_msg; struct dsa_switch *ds; int rc; if (!dev->of_node) { dev_err(dev, "No DTS bindings for SJA1105 driver\n"); return -EINVAL; } rc = sja1105_hw_reset(dev, 1, 1); if (rc) return rc; priv = devm_kzalloc(dev, sizeof(struct sja1105_private), GFP_KERNEL); if (!priv) return -ENOMEM; /* Populate our driver private structure (priv) based on * the device tree node that was probed (spi) */ priv->spidev = spi; spi_set_drvdata(spi, priv); /* Configure the SPI bus */ spi->bits_per_word = 8; rc = spi_setup(spi); if (rc < 0) { dev_err(dev, "Could not init SPI\n"); return rc; } /* In sja1105_xfer, we send spi_messages composed of two spi_transfers: * a small one for the message header and another one for the current * chunk of the packed buffer. * Check that the restrictions imposed by the SPI controller are * respected: the chunk buffer is smaller than the max transfer size, * and the total length of the chunk plus its message header is smaller * than the max message size. * We do that during probe time since the maximum transfer size is a * runtime invariant. */ max_xfer = spi_max_transfer_size(spi); max_msg = spi_max_message_size(spi); /* We need to send at least one 64-bit word of SPI payload per message * in order to be able to make useful progress. */ if (max_msg < SJA1105_SIZE_SPI_MSG_HEADER + 8) { dev_err(dev, "SPI master cannot send large enough buffers, aborting\n"); return -EINVAL; } priv->max_xfer_len = SJA1105_SIZE_SPI_MSG_MAXLEN; if (priv->max_xfer_len > max_xfer) priv->max_xfer_len = max_xfer; if (priv->max_xfer_len > max_msg - SJA1105_SIZE_SPI_MSG_HEADER) priv->max_xfer_len = max_msg - SJA1105_SIZE_SPI_MSG_HEADER; priv->info = of_device_get_match_data(dev); /* Detect hardware device */ rc = sja1105_check_device_id(priv); if (rc < 0) { dev_err(dev, "Device ID check failed: %d\n", rc); return rc; } dev_info(dev, "Probed switch chip: %s\n", priv->info->name); ds = devm_kzalloc(dev, sizeof(*ds), GFP_KERNEL); if (!ds) return -ENOMEM; ds->dev = dev; ds->num_ports = priv->info->num_ports; ds->ops = &sja1105_switch_ops; ds->priv = priv; priv->ds = ds; mutex_init(&priv->ptp_data.lock); mutex_init(&priv->dynamic_config_lock); mutex_init(&priv->mgmt_lock); spin_lock_init(&priv->ts_id_lock); rc = sja1105_parse_dt(priv); if (rc < 0) { dev_err(ds->dev, "Failed to parse DT: %d\n", rc); return rc; } if (IS_ENABLED(CONFIG_NET_SCH_CBS)) { priv->cbs = devm_kcalloc(dev, priv->info->num_cbs_shapers, sizeof(struct sja1105_cbs_entry), GFP_KERNEL); if (!priv->cbs) return -ENOMEM; } return dsa_register_switch(priv->ds); } static void sja1105_remove(struct spi_device *spi) { struct sja1105_private *priv = spi_get_drvdata(spi); if (!priv) return; dsa_unregister_switch(priv->ds); } static void sja1105_shutdown(struct spi_device *spi) { struct sja1105_private *priv = spi_get_drvdata(spi); if (!priv) return; dsa_switch_shutdown(priv->ds); spi_set_drvdata(spi, NULL); } static const struct of_device_id sja1105_dt_ids[] = { { .compatible = "nxp,sja1105e", .data = &sja1105e_info }, { .compatible = "nxp,sja1105t", .data = &sja1105t_info }, { .compatible = "nxp,sja1105p", .data = &sja1105p_info }, { .compatible = "nxp,sja1105q", .data = &sja1105q_info }, { .compatible = "nxp,sja1105r", .data = &sja1105r_info }, { .compatible = "nxp,sja1105s", .data = &sja1105s_info }, { .compatible = "nxp,sja1110a", .data = &sja1110a_info }, { .compatible = "nxp,sja1110b", .data = &sja1110b_info }, { .compatible = "nxp,sja1110c", .data = &sja1110c_info }, { .compatible = "nxp,sja1110d", .data = &sja1110d_info }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, sja1105_dt_ids); static const struct spi_device_id sja1105_spi_ids[] = { { "sja1105e" }, { "sja1105t" }, { "sja1105p" }, { "sja1105q" }, { "sja1105r" }, { "sja1105s" }, { "sja1110a" }, { "sja1110b" }, { "sja1110c" }, { "sja1110d" }, { }, }; MODULE_DEVICE_TABLE(spi, sja1105_spi_ids); static struct spi_driver sja1105_driver = { .driver = { .name = "sja1105", .owner = THIS_MODULE, .of_match_table = of_match_ptr(sja1105_dt_ids), }, .id_table = sja1105_spi_ids, .probe = sja1105_probe, .remove = sja1105_remove, .shutdown = sja1105_shutdown, }; module_spi_driver(sja1105_driver); MODULE_AUTHOR("Vladimir Oltean "); MODULE_AUTHOR("Georg Waibel "); MODULE_DESCRIPTION("SJA1105 Driver"); MODULE_LICENSE("GPL v2");