// SPDX-License-Identifier: (GPL-2.0 OR MIT) /* Copyright 2017 Microsemi Corporation * Copyright 2018-2019 NXP */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "felix.h" #define VSC9959_NUM_PORTS 6 #define VSC9959_TAS_GCL_ENTRY_MAX 63 #define VSC9959_TAS_MIN_GATE_LEN_NS 33 #define VSC9959_VCAP_POLICER_BASE 63 #define VSC9959_VCAP_POLICER_MAX 383 #define VSC9959_SWITCH_PCI_BAR 4 #define VSC9959_IMDIO_PCI_BAR 0 #define VSC9959_PORT_MODE_SERDES (OCELOT_PORT_MODE_SGMII | \ OCELOT_PORT_MODE_QSGMII | \ OCELOT_PORT_MODE_1000BASEX | \ OCELOT_PORT_MODE_2500BASEX | \ OCELOT_PORT_MODE_USXGMII) static const u32 vsc9959_port_modes[VSC9959_NUM_PORTS] = { VSC9959_PORT_MODE_SERDES, VSC9959_PORT_MODE_SERDES, VSC9959_PORT_MODE_SERDES, VSC9959_PORT_MODE_SERDES, OCELOT_PORT_MODE_INTERNAL, OCELOT_PORT_MODE_INTERNAL, }; static const u32 vsc9959_ana_regmap[] = { REG(ANA_ADVLEARN, 0x0089a0), REG(ANA_VLANMASK, 0x0089a4), REG_RESERVED(ANA_PORT_B_DOMAIN), REG(ANA_ANAGEFIL, 0x0089ac), REG(ANA_ANEVENTS, 0x0089b0), REG(ANA_STORMLIMIT_BURST, 0x0089b4), REG(ANA_STORMLIMIT_CFG, 0x0089b8), REG(ANA_ISOLATED_PORTS, 0x0089c8), REG(ANA_COMMUNITY_PORTS, 0x0089cc), REG(ANA_AUTOAGE, 0x0089d0), REG(ANA_MACTOPTIONS, 0x0089d4), REG(ANA_LEARNDISC, 0x0089d8), REG(ANA_AGENCTRL, 0x0089dc), REG(ANA_MIRRORPORTS, 0x0089e0), REG(ANA_EMIRRORPORTS, 0x0089e4), REG(ANA_FLOODING, 0x0089e8), REG(ANA_FLOODING_IPMC, 0x008a08), REG(ANA_SFLOW_CFG, 0x008a0c), REG(ANA_PORT_MODE, 0x008a28), REG(ANA_CUT_THRU_CFG, 0x008a48), REG(ANA_PGID_PGID, 0x008400), REG(ANA_TABLES_ANMOVED, 0x007f1c), REG(ANA_TABLES_MACHDATA, 0x007f20), REG(ANA_TABLES_MACLDATA, 0x007f24), REG(ANA_TABLES_STREAMDATA, 0x007f28), REG(ANA_TABLES_MACACCESS, 0x007f2c), REG(ANA_TABLES_MACTINDX, 0x007f30), REG(ANA_TABLES_VLANACCESS, 0x007f34), REG(ANA_TABLES_VLANTIDX, 0x007f38), REG(ANA_TABLES_ISDXACCESS, 0x007f3c), REG(ANA_TABLES_ISDXTIDX, 0x007f40), REG(ANA_TABLES_ENTRYLIM, 0x007f00), REG(ANA_TABLES_PTP_ID_HIGH, 0x007f44), REG(ANA_TABLES_PTP_ID_LOW, 0x007f48), REG(ANA_TABLES_STREAMACCESS, 0x007f4c), REG(ANA_TABLES_STREAMTIDX, 0x007f50), REG(ANA_TABLES_SEQ_HISTORY, 0x007f54), REG(ANA_TABLES_SEQ_MASK, 0x007f58), REG(ANA_TABLES_SFID_MASK, 0x007f5c), REG(ANA_TABLES_SFIDACCESS, 0x007f60), REG(ANA_TABLES_SFIDTIDX, 0x007f64), REG(ANA_MSTI_STATE, 0x008600), REG(ANA_OAM_UPM_LM_CNT, 0x008000), REG(ANA_SG_ACCESS_CTRL, 0x008a64), REG(ANA_SG_CONFIG_REG_1, 0x007fb0), REG(ANA_SG_CONFIG_REG_2, 0x007fb4), REG(ANA_SG_CONFIG_REG_3, 0x007fb8), REG(ANA_SG_CONFIG_REG_4, 0x007fbc), REG(ANA_SG_CONFIG_REG_5, 0x007fc0), REG(ANA_SG_GCL_GS_CONFIG, 0x007f80), REG(ANA_SG_GCL_TI_CONFIG, 0x007f90), REG(ANA_SG_STATUS_REG_1, 0x008980), REG(ANA_SG_STATUS_REG_2, 0x008984), REG(ANA_SG_STATUS_REG_3, 0x008988), REG(ANA_PORT_VLAN_CFG, 0x007800), REG(ANA_PORT_DROP_CFG, 0x007804), REG(ANA_PORT_QOS_CFG, 0x007808), REG(ANA_PORT_VCAP_CFG, 0x00780c), REG(ANA_PORT_VCAP_S1_KEY_CFG, 0x007810), REG(ANA_PORT_VCAP_S2_CFG, 0x00781c), REG(ANA_PORT_PCP_DEI_MAP, 0x007820), REG(ANA_PORT_CPU_FWD_CFG, 0x007860), REG(ANA_PORT_CPU_FWD_BPDU_CFG, 0x007864), REG(ANA_PORT_CPU_FWD_GARP_CFG, 0x007868), REG(ANA_PORT_CPU_FWD_CCM_CFG, 0x00786c), REG(ANA_PORT_PORT_CFG, 0x007870), REG(ANA_PORT_POL_CFG, 0x007874), REG(ANA_PORT_PTP_CFG, 0x007878), REG(ANA_PORT_PTP_DLY1_CFG, 0x00787c), REG(ANA_PORT_PTP_DLY2_CFG, 0x007880), REG(ANA_PORT_SFID_CFG, 0x007884), REG(ANA_PFC_PFC_CFG, 0x008800), REG_RESERVED(ANA_PFC_PFC_TIMER), REG_RESERVED(ANA_IPT_OAM_MEP_CFG), REG_RESERVED(ANA_IPT_IPT), REG_RESERVED(ANA_PPT_PPT), REG_RESERVED(ANA_FID_MAP_FID_MAP), REG(ANA_AGGR_CFG, 0x008a68), REG(ANA_CPUQ_CFG, 0x008a6c), REG_RESERVED(ANA_CPUQ_CFG2), REG(ANA_CPUQ_8021_CFG, 0x008a74), REG(ANA_DSCP_CFG, 0x008ab4), REG(ANA_DSCP_REWR_CFG, 0x008bb4), REG(ANA_VCAP_RNG_TYPE_CFG, 0x008bf4), REG(ANA_VCAP_RNG_VAL_CFG, 0x008c14), REG_RESERVED(ANA_VRAP_CFG), REG_RESERVED(ANA_VRAP_HDR_DATA), REG_RESERVED(ANA_VRAP_HDR_MASK), REG(ANA_DISCARD_CFG, 0x008c40), REG(ANA_FID_CFG, 0x008c44), REG(ANA_POL_PIR_CFG, 0x004000), REG(ANA_POL_CIR_CFG, 0x004004), REG(ANA_POL_MODE_CFG, 0x004008), REG(ANA_POL_PIR_STATE, 0x00400c), REG(ANA_POL_CIR_STATE, 0x004010), REG_RESERVED(ANA_POL_STATE), REG(ANA_POL_FLOWC, 0x008c48), REG(ANA_POL_HYST, 0x008cb4), REG_RESERVED(ANA_POL_MISC_CFG), }; static const u32 vsc9959_qs_regmap[] = { REG(QS_XTR_GRP_CFG, 0x000000), REG(QS_XTR_RD, 0x000008), REG(QS_XTR_FRM_PRUNING, 0x000010), REG(QS_XTR_FLUSH, 0x000018), REG(QS_XTR_DATA_PRESENT, 0x00001c), REG(QS_XTR_CFG, 0x000020), REG(QS_INJ_GRP_CFG, 0x000024), REG(QS_INJ_WR, 0x00002c), REG(QS_INJ_CTRL, 0x000034), REG(QS_INJ_STATUS, 0x00003c), REG(QS_INJ_ERR, 0x000040), REG_RESERVED(QS_INH_DBG), }; static const u32 vsc9959_vcap_regmap[] = { /* VCAP_CORE_CFG */ REG(VCAP_CORE_UPDATE_CTRL, 0x000000), REG(VCAP_CORE_MV_CFG, 0x000004), /* VCAP_CORE_CACHE */ REG(VCAP_CACHE_ENTRY_DAT, 0x000008), REG(VCAP_CACHE_MASK_DAT, 0x000108), REG(VCAP_CACHE_ACTION_DAT, 0x000208), REG(VCAP_CACHE_CNT_DAT, 0x000308), REG(VCAP_CACHE_TG_DAT, 0x000388), /* VCAP_CONST */ REG(VCAP_CONST_VCAP_VER, 0x000398), REG(VCAP_CONST_ENTRY_WIDTH, 0x00039c), REG(VCAP_CONST_ENTRY_CNT, 0x0003a0), REG(VCAP_CONST_ENTRY_SWCNT, 0x0003a4), REG(VCAP_CONST_ENTRY_TG_WIDTH, 0x0003a8), REG(VCAP_CONST_ACTION_DEF_CNT, 0x0003ac), REG(VCAP_CONST_ACTION_WIDTH, 0x0003b0), REG(VCAP_CONST_CNT_WIDTH, 0x0003b4), REG(VCAP_CONST_CORE_CNT, 0x0003b8), REG(VCAP_CONST_IF_CNT, 0x0003bc), }; static const u32 vsc9959_qsys_regmap[] = { REG(QSYS_PORT_MODE, 0x00f460), REG(QSYS_SWITCH_PORT_MODE, 0x00f480), REG(QSYS_STAT_CNT_CFG, 0x00f49c), REG(QSYS_EEE_CFG, 0x00f4a0), REG(QSYS_EEE_THRES, 0x00f4b8), REG(QSYS_IGR_NO_SHARING, 0x00f4bc), REG(QSYS_EGR_NO_SHARING, 0x00f4c0), REG(QSYS_SW_STATUS, 0x00f4c4), REG(QSYS_EXT_CPU_CFG, 0x00f4e0), REG_RESERVED(QSYS_PAD_CFG), REG(QSYS_CPU_GROUP_MAP, 0x00f4e8), REG_RESERVED(QSYS_QMAP), REG_RESERVED(QSYS_ISDX_SGRP), REG_RESERVED(QSYS_TIMED_FRAME_ENTRY), REG(QSYS_TFRM_MISC, 0x00f50c), REG(QSYS_TFRM_PORT_DLY, 0x00f510), REG(QSYS_TFRM_TIMER_CFG_1, 0x00f514), REG(QSYS_TFRM_TIMER_CFG_2, 0x00f518), REG(QSYS_TFRM_TIMER_CFG_3, 0x00f51c), REG(QSYS_TFRM_TIMER_CFG_4, 0x00f520), REG(QSYS_TFRM_TIMER_CFG_5, 0x00f524), REG(QSYS_TFRM_TIMER_CFG_6, 0x00f528), REG(QSYS_TFRM_TIMER_CFG_7, 0x00f52c), REG(QSYS_TFRM_TIMER_CFG_8, 0x00f530), REG(QSYS_RED_PROFILE, 0x00f534), REG(QSYS_RES_QOS_MODE, 0x00f574), REG(QSYS_RES_CFG, 0x00c000), REG(QSYS_RES_STAT, 0x00c004), REG(QSYS_EGR_DROP_MODE, 0x00f578), REG(QSYS_EQ_CTRL, 0x00f57c), REG_RESERVED(QSYS_EVENTS_CORE), REG(QSYS_QMAXSDU_CFG_0, 0x00f584), REG(QSYS_QMAXSDU_CFG_1, 0x00f5a0), REG(QSYS_QMAXSDU_CFG_2, 0x00f5bc), REG(QSYS_QMAXSDU_CFG_3, 0x00f5d8), REG(QSYS_QMAXSDU_CFG_4, 0x00f5f4), REG(QSYS_QMAXSDU_CFG_5, 0x00f610), REG(QSYS_QMAXSDU_CFG_6, 0x00f62c), REG(QSYS_QMAXSDU_CFG_7, 0x00f648), REG(QSYS_PREEMPTION_CFG, 0x00f664), REG(QSYS_CIR_CFG, 0x000000), REG(QSYS_EIR_CFG, 0x000004), REG(QSYS_SE_CFG, 0x000008), REG(QSYS_SE_DWRR_CFG, 0x00000c), REG_RESERVED(QSYS_SE_CONNECT), REG(QSYS_SE_DLB_SENSE, 0x000040), REG(QSYS_CIR_STATE, 0x000044), REG(QSYS_EIR_STATE, 0x000048), REG_RESERVED(QSYS_SE_STATE), REG(QSYS_HSCH_MISC_CFG, 0x00f67c), REG(QSYS_TAG_CONFIG, 0x00f680), REG(QSYS_TAS_PARAM_CFG_CTRL, 0x00f698), REG(QSYS_PORT_MAX_SDU, 0x00f69c), REG(QSYS_PARAM_CFG_REG_1, 0x00f440), REG(QSYS_PARAM_CFG_REG_2, 0x00f444), REG(QSYS_PARAM_CFG_REG_3, 0x00f448), REG(QSYS_PARAM_CFG_REG_4, 0x00f44c), REG(QSYS_PARAM_CFG_REG_5, 0x00f450), REG(QSYS_GCL_CFG_REG_1, 0x00f454), REG(QSYS_GCL_CFG_REG_2, 0x00f458), REG(QSYS_PARAM_STATUS_REG_1, 0x00f400), REG(QSYS_PARAM_STATUS_REG_2, 0x00f404), REG(QSYS_PARAM_STATUS_REG_3, 0x00f408), REG(QSYS_PARAM_STATUS_REG_4, 0x00f40c), REG(QSYS_PARAM_STATUS_REG_5, 0x00f410), REG(QSYS_PARAM_STATUS_REG_6, 0x00f414), REG(QSYS_PARAM_STATUS_REG_7, 0x00f418), REG(QSYS_PARAM_STATUS_REG_8, 0x00f41c), REG(QSYS_PARAM_STATUS_REG_9, 0x00f420), REG(QSYS_GCL_STATUS_REG_1, 0x00f424), REG(QSYS_GCL_STATUS_REG_2, 0x00f428), }; static const u32 vsc9959_rew_regmap[] = { REG(REW_PORT_VLAN_CFG, 0x000000), REG(REW_TAG_CFG, 0x000004), REG(REW_PORT_CFG, 0x000008), REG(REW_DSCP_CFG, 0x00000c), REG(REW_PCP_DEI_QOS_MAP_CFG, 0x000010), REG(REW_PTP_CFG, 0x000050), REG(REW_PTP_DLY1_CFG, 0x000054), REG(REW_RED_TAG_CFG, 0x000058), REG(REW_DSCP_REMAP_DP1_CFG, 0x000410), REG(REW_DSCP_REMAP_CFG, 0x000510), REG_RESERVED(REW_STAT_CFG), REG_RESERVED(REW_REW_STICKY), REG_RESERVED(REW_PPT), }; static const u32 vsc9959_sys_regmap[] = { REG(SYS_COUNT_RX_OCTETS, 0x000000), REG(SYS_COUNT_RX_UNICAST, 0x000004), REG(SYS_COUNT_RX_MULTICAST, 0x000008), REG(SYS_COUNT_RX_BROADCAST, 0x00000c), REG(SYS_COUNT_RX_SHORTS, 0x000010), REG(SYS_COUNT_RX_FRAGMENTS, 0x000014), REG(SYS_COUNT_RX_JABBERS, 0x000018), REG(SYS_COUNT_RX_CRC_ALIGN_ERRS, 0x00001c), REG(SYS_COUNT_RX_SYM_ERRS, 0x000020), REG(SYS_COUNT_RX_64, 0x000024), REG(SYS_COUNT_RX_65_127, 0x000028), REG(SYS_COUNT_RX_128_255, 0x00002c), REG(SYS_COUNT_RX_256_511, 0x000030), REG(SYS_COUNT_RX_512_1023, 0x000034), REG(SYS_COUNT_RX_1024_1526, 0x000038), REG(SYS_COUNT_RX_1527_MAX, 0x00003c), REG(SYS_COUNT_RX_PAUSE, 0x000040), REG(SYS_COUNT_RX_CONTROL, 0x000044), REG(SYS_COUNT_RX_LONGS, 0x000048), REG(SYS_COUNT_RX_CLASSIFIED_DROPS, 0x00004c), REG(SYS_COUNT_RX_RED_PRIO_0, 0x000050), REG(SYS_COUNT_RX_RED_PRIO_1, 0x000054), REG(SYS_COUNT_RX_RED_PRIO_2, 0x000058), REG(SYS_COUNT_RX_RED_PRIO_3, 0x00005c), REG(SYS_COUNT_RX_RED_PRIO_4, 0x000060), REG(SYS_COUNT_RX_RED_PRIO_5, 0x000064), REG(SYS_COUNT_RX_RED_PRIO_6, 0x000068), REG(SYS_COUNT_RX_RED_PRIO_7, 0x00006c), REG(SYS_COUNT_RX_YELLOW_PRIO_0, 0x000070), REG(SYS_COUNT_RX_YELLOW_PRIO_1, 0x000074), REG(SYS_COUNT_RX_YELLOW_PRIO_2, 0x000078), REG(SYS_COUNT_RX_YELLOW_PRIO_3, 0x00007c), REG(SYS_COUNT_RX_YELLOW_PRIO_4, 0x000080), REG(SYS_COUNT_RX_YELLOW_PRIO_5, 0x000084), REG(SYS_COUNT_RX_YELLOW_PRIO_6, 0x000088), REG(SYS_COUNT_RX_YELLOW_PRIO_7, 0x00008c), REG(SYS_COUNT_RX_GREEN_PRIO_0, 0x000090), REG(SYS_COUNT_RX_GREEN_PRIO_1, 0x000094), REG(SYS_COUNT_RX_GREEN_PRIO_2, 0x000098), REG(SYS_COUNT_RX_GREEN_PRIO_3, 0x00009c), REG(SYS_COUNT_RX_GREEN_PRIO_4, 0x0000a0), REG(SYS_COUNT_RX_GREEN_PRIO_5, 0x0000a4), REG(SYS_COUNT_RX_GREEN_PRIO_6, 0x0000a8), REG(SYS_COUNT_RX_GREEN_PRIO_7, 0x0000ac), REG(SYS_COUNT_RX_ASSEMBLY_ERRS, 0x0000b0), REG(SYS_COUNT_RX_SMD_ERRS, 0x0000b4), REG(SYS_COUNT_RX_ASSEMBLY_OK, 0x0000b8), REG(SYS_COUNT_RX_MERGE_FRAGMENTS, 0x0000bc), REG(SYS_COUNT_RX_PMAC_OCTETS, 0x0000c0), REG(SYS_COUNT_RX_PMAC_UNICAST, 0x0000c4), REG(SYS_COUNT_RX_PMAC_MULTICAST, 0x0000c8), REG(SYS_COUNT_RX_PMAC_BROADCAST, 0x0000cc), REG(SYS_COUNT_RX_PMAC_SHORTS, 0x0000d0), REG(SYS_COUNT_RX_PMAC_FRAGMENTS, 0x0000d4), REG(SYS_COUNT_RX_PMAC_JABBERS, 0x0000d8), REG(SYS_COUNT_RX_PMAC_CRC_ALIGN_ERRS, 0x0000dc), REG(SYS_COUNT_RX_PMAC_SYM_ERRS, 0x0000e0), REG(SYS_COUNT_RX_PMAC_64, 0x0000e4), REG(SYS_COUNT_RX_PMAC_65_127, 0x0000e8), REG(SYS_COUNT_RX_PMAC_128_255, 0x0000ec), REG(SYS_COUNT_RX_PMAC_256_511, 0x0000f0), REG(SYS_COUNT_RX_PMAC_512_1023, 0x0000f4), REG(SYS_COUNT_RX_PMAC_1024_1526, 0x0000f8), REG(SYS_COUNT_RX_PMAC_1527_MAX, 0x0000fc), REG(SYS_COUNT_RX_PMAC_PAUSE, 0x000100), REG(SYS_COUNT_RX_PMAC_CONTROL, 0x000104), REG(SYS_COUNT_RX_PMAC_LONGS, 0x000108), REG(SYS_COUNT_TX_OCTETS, 0x000200), REG(SYS_COUNT_TX_UNICAST, 0x000204), REG(SYS_COUNT_TX_MULTICAST, 0x000208), REG(SYS_COUNT_TX_BROADCAST, 0x00020c), REG(SYS_COUNT_TX_COLLISION, 0x000210), REG(SYS_COUNT_TX_DROPS, 0x000214), REG(SYS_COUNT_TX_PAUSE, 0x000218), REG(SYS_COUNT_TX_64, 0x00021c), REG(SYS_COUNT_TX_65_127, 0x000220), REG(SYS_COUNT_TX_128_255, 0x000224), REG(SYS_COUNT_TX_256_511, 0x000228), REG(SYS_COUNT_TX_512_1023, 0x00022c), REG(SYS_COUNT_TX_1024_1526, 0x000230), REG(SYS_COUNT_TX_1527_MAX, 0x000234), REG(SYS_COUNT_TX_YELLOW_PRIO_0, 0x000238), REG(SYS_COUNT_TX_YELLOW_PRIO_1, 0x00023c), REG(SYS_COUNT_TX_YELLOW_PRIO_2, 0x000240), REG(SYS_COUNT_TX_YELLOW_PRIO_3, 0x000244), REG(SYS_COUNT_TX_YELLOW_PRIO_4, 0x000248), REG(SYS_COUNT_TX_YELLOW_PRIO_5, 0x00024c), REG(SYS_COUNT_TX_YELLOW_PRIO_6, 0x000250), REG(SYS_COUNT_TX_YELLOW_PRIO_7, 0x000254), REG(SYS_COUNT_TX_GREEN_PRIO_0, 0x000258), REG(SYS_COUNT_TX_GREEN_PRIO_1, 0x00025c), REG(SYS_COUNT_TX_GREEN_PRIO_2, 0x000260), REG(SYS_COUNT_TX_GREEN_PRIO_3, 0x000264), REG(SYS_COUNT_TX_GREEN_PRIO_4, 0x000268), REG(SYS_COUNT_TX_GREEN_PRIO_5, 0x00026c), REG(SYS_COUNT_TX_GREEN_PRIO_6, 0x000270), REG(SYS_COUNT_TX_GREEN_PRIO_7, 0x000274), REG(SYS_COUNT_TX_AGED, 0x000278), REG(SYS_COUNT_TX_MM_HOLD, 0x00027c), REG(SYS_COUNT_TX_MERGE_FRAGMENTS, 0x000280), REG(SYS_COUNT_TX_PMAC_OCTETS, 0x000284), REG(SYS_COUNT_TX_PMAC_UNICAST, 0x000288), REG(SYS_COUNT_TX_PMAC_MULTICAST, 0x00028c), REG(SYS_COUNT_TX_PMAC_BROADCAST, 0x000290), REG(SYS_COUNT_TX_PMAC_PAUSE, 0x000294), REG(SYS_COUNT_TX_PMAC_64, 0x000298), REG(SYS_COUNT_TX_PMAC_65_127, 0x00029c), REG(SYS_COUNT_TX_PMAC_128_255, 0x0002a0), REG(SYS_COUNT_TX_PMAC_256_511, 0x0002a4), REG(SYS_COUNT_TX_PMAC_512_1023, 0x0002a8), REG(SYS_COUNT_TX_PMAC_1024_1526, 0x0002ac), REG(SYS_COUNT_TX_PMAC_1527_MAX, 0x0002b0), REG(SYS_COUNT_DROP_LOCAL, 0x000400), REG(SYS_COUNT_DROP_TAIL, 0x000404), REG(SYS_COUNT_DROP_YELLOW_PRIO_0, 0x000408), REG(SYS_COUNT_DROP_YELLOW_PRIO_1, 0x00040c), REG(SYS_COUNT_DROP_YELLOW_PRIO_2, 0x000410), REG(SYS_COUNT_DROP_YELLOW_PRIO_3, 0x000414), REG(SYS_COUNT_DROP_YELLOW_PRIO_4, 0x000418), REG(SYS_COUNT_DROP_YELLOW_PRIO_5, 0x00041c), REG(SYS_COUNT_DROP_YELLOW_PRIO_6, 0x000420), REG(SYS_COUNT_DROP_YELLOW_PRIO_7, 0x000424), REG(SYS_COUNT_DROP_GREEN_PRIO_0, 0x000428), REG(SYS_COUNT_DROP_GREEN_PRIO_1, 0x00042c), REG(SYS_COUNT_DROP_GREEN_PRIO_2, 0x000430), REG(SYS_COUNT_DROP_GREEN_PRIO_3, 0x000434), REG(SYS_COUNT_DROP_GREEN_PRIO_4, 0x000438), REG(SYS_COUNT_DROP_GREEN_PRIO_5, 0x00043c), REG(SYS_COUNT_DROP_GREEN_PRIO_6, 0x000440), REG(SYS_COUNT_DROP_GREEN_PRIO_7, 0x000444), REG(SYS_COUNT_SF_MATCHING_FRAMES, 0x000800), REG(SYS_COUNT_SF_NOT_PASSING_FRAMES, 0x000804), REG(SYS_COUNT_SF_NOT_PASSING_SDU, 0x000808), REG(SYS_COUNT_SF_RED_FRAMES, 0x00080c), REG(SYS_RESET_CFG, 0x000e00), REG(SYS_SR_ETYPE_CFG, 0x000e04), REG(SYS_VLAN_ETYPE_CFG, 0x000e08), REG(SYS_PORT_MODE, 0x000e0c), REG(SYS_FRONT_PORT_MODE, 0x000e2c), REG(SYS_FRM_AGING, 0x000e44), REG(SYS_STAT_CFG, 0x000e48), REG(SYS_SW_STATUS, 0x000e4c), REG_RESERVED(SYS_MISC_CFG), REG(SYS_REW_MAC_HIGH_CFG, 0x000e6c), REG(SYS_REW_MAC_LOW_CFG, 0x000e84), REG(SYS_TIMESTAMP_OFFSET, 0x000e9c), REG(SYS_PAUSE_CFG, 0x000ea0), REG(SYS_PAUSE_TOT_CFG, 0x000ebc), REG(SYS_ATOP, 0x000ec0), REG(SYS_ATOP_TOT_CFG, 0x000edc), REG(SYS_MAC_FC_CFG, 0x000ee0), REG(SYS_MMGT, 0x000ef8), REG_RESERVED(SYS_MMGT_FAST), REG_RESERVED(SYS_EVENTS_DIF), REG_RESERVED(SYS_EVENTS_CORE), REG(SYS_PTP_STATUS, 0x000f14), REG(SYS_PTP_TXSTAMP, 0x000f18), REG(SYS_PTP_NXT, 0x000f1c), REG(SYS_PTP_CFG, 0x000f20), REG(SYS_RAM_INIT, 0x000f24), REG_RESERVED(SYS_CM_ADDR), REG_RESERVED(SYS_CM_DATA_WR), REG_RESERVED(SYS_CM_DATA_RD), REG_RESERVED(SYS_CM_OP), REG_RESERVED(SYS_CM_DATA), }; static const u32 vsc9959_ptp_regmap[] = { REG(PTP_PIN_CFG, 0x000000), REG(PTP_PIN_TOD_SEC_MSB, 0x000004), REG(PTP_PIN_TOD_SEC_LSB, 0x000008), REG(PTP_PIN_TOD_NSEC, 0x00000c), REG(PTP_PIN_WF_HIGH_PERIOD, 0x000014), REG(PTP_PIN_WF_LOW_PERIOD, 0x000018), REG(PTP_CFG_MISC, 0x0000a0), REG(PTP_CLK_CFG_ADJ_CFG, 0x0000a4), REG(PTP_CLK_CFG_ADJ_FREQ, 0x0000a8), }; static const u32 vsc9959_gcb_regmap[] = { REG(GCB_SOFT_RST, 0x000004), }; static const u32 vsc9959_dev_gmii_regmap[] = { REG(DEV_CLOCK_CFG, 0x0), REG(DEV_PORT_MISC, 0x4), REG(DEV_EVENTS, 0x8), REG(DEV_EEE_CFG, 0xc), REG(DEV_RX_PATH_DELAY, 0x10), REG(DEV_TX_PATH_DELAY, 0x14), REG(DEV_PTP_PREDICT_CFG, 0x18), REG(DEV_MAC_ENA_CFG, 0x1c), REG(DEV_MAC_MODE_CFG, 0x20), REG(DEV_MAC_MAXLEN_CFG, 0x24), REG(DEV_MAC_TAGS_CFG, 0x28), REG(DEV_MAC_ADV_CHK_CFG, 0x2c), REG(DEV_MAC_IFG_CFG, 0x30), REG(DEV_MAC_HDX_CFG, 0x34), REG(DEV_MAC_DBG_CFG, 0x38), REG(DEV_MAC_FC_MAC_LOW_CFG, 0x3c), REG(DEV_MAC_FC_MAC_HIGH_CFG, 0x40), REG(DEV_MAC_STICKY, 0x44), REG(DEV_MM_ENABLE_CONFIG, 0x48), REG(DEV_MM_VERIF_CONFIG, 0x4C), REG(DEV_MM_STATUS, 0x50), REG_RESERVED(PCS1G_CFG), REG_RESERVED(PCS1G_MODE_CFG), REG_RESERVED(PCS1G_SD_CFG), REG_RESERVED(PCS1G_ANEG_CFG), REG_RESERVED(PCS1G_ANEG_NP_CFG), REG_RESERVED(PCS1G_LB_CFG), REG_RESERVED(PCS1G_DBG_CFG), REG_RESERVED(PCS1G_CDET_CFG), REG_RESERVED(PCS1G_ANEG_STATUS), REG_RESERVED(PCS1G_ANEG_NP_STATUS), REG_RESERVED(PCS1G_LINK_STATUS), REG_RESERVED(PCS1G_LINK_DOWN_CNT), REG_RESERVED(PCS1G_STICKY), REG_RESERVED(PCS1G_DEBUG_STATUS), REG_RESERVED(PCS1G_LPI_CFG), REG_RESERVED(PCS1G_LPI_WAKE_ERROR_CNT), REG_RESERVED(PCS1G_LPI_STATUS), REG_RESERVED(PCS1G_TSTPAT_MODE_CFG), REG_RESERVED(PCS1G_TSTPAT_STATUS), REG_RESERVED(DEV_PCS_FX100_CFG), REG_RESERVED(DEV_PCS_FX100_STATUS), }; static const u32 *vsc9959_regmap[TARGET_MAX] = { [ANA] = vsc9959_ana_regmap, [QS] = vsc9959_qs_regmap, [QSYS] = vsc9959_qsys_regmap, [REW] = vsc9959_rew_regmap, [SYS] = vsc9959_sys_regmap, [S0] = vsc9959_vcap_regmap, [S1] = vsc9959_vcap_regmap, [S2] = vsc9959_vcap_regmap, [PTP] = vsc9959_ptp_regmap, [GCB] = vsc9959_gcb_regmap, [DEV_GMII] = vsc9959_dev_gmii_regmap, }; /* Addresses are relative to the PCI device's base address */ static const struct resource vsc9959_resources[] = { DEFINE_RES_MEM_NAMED(0x0010000, 0x0010000, "sys"), DEFINE_RES_MEM_NAMED(0x0030000, 0x0010000, "rew"), DEFINE_RES_MEM_NAMED(0x0040000, 0x0000400, "s0"), DEFINE_RES_MEM_NAMED(0x0050000, 0x0000400, "s1"), DEFINE_RES_MEM_NAMED(0x0060000, 0x0000400, "s2"), DEFINE_RES_MEM_NAMED(0x0070000, 0x0000200, "devcpu_gcb"), DEFINE_RES_MEM_NAMED(0x0080000, 0x0000100, "qs"), DEFINE_RES_MEM_NAMED(0x0090000, 0x00000cc, "ptp"), DEFINE_RES_MEM_NAMED(0x0100000, 0x0010000, "port0"), DEFINE_RES_MEM_NAMED(0x0110000, 0x0010000, "port1"), DEFINE_RES_MEM_NAMED(0x0120000, 0x0010000, "port2"), DEFINE_RES_MEM_NAMED(0x0130000, 0x0010000, "port3"), DEFINE_RES_MEM_NAMED(0x0140000, 0x0010000, "port4"), DEFINE_RES_MEM_NAMED(0x0150000, 0x0010000, "port5"), DEFINE_RES_MEM_NAMED(0x0200000, 0x0020000, "qsys"), DEFINE_RES_MEM_NAMED(0x0280000, 0x0010000, "ana"), }; static const char * const vsc9959_resource_names[TARGET_MAX] = { [SYS] = "sys", [REW] = "rew", [S0] = "s0", [S1] = "s1", [S2] = "s2", [GCB] = "devcpu_gcb", [QS] = "qs", [PTP] = "ptp", [QSYS] = "qsys", [ANA] = "ana", }; /* Port MAC 0 Internal MDIO bus through which the SerDes acting as an * SGMII/QSGMII MAC PCS can be found. */ static const struct resource vsc9959_imdio_res = DEFINE_RES_MEM_NAMED(0x8030, 0x10, "imdio"); static const struct reg_field vsc9959_regfields[REGFIELD_MAX] = { [ANA_ADVLEARN_VLAN_CHK] = REG_FIELD(ANA_ADVLEARN, 6, 6), [ANA_ADVLEARN_LEARN_MIRROR] = REG_FIELD(ANA_ADVLEARN, 0, 5), [ANA_ANEVENTS_FLOOD_DISCARD] = REG_FIELD(ANA_ANEVENTS, 30, 30), [ANA_ANEVENTS_AUTOAGE] = REG_FIELD(ANA_ANEVENTS, 26, 26), [ANA_ANEVENTS_STORM_DROP] = REG_FIELD(ANA_ANEVENTS, 24, 24), [ANA_ANEVENTS_LEARN_DROP] = REG_FIELD(ANA_ANEVENTS, 23, 23), [ANA_ANEVENTS_AGED_ENTRY] = REG_FIELD(ANA_ANEVENTS, 22, 22), [ANA_ANEVENTS_CPU_LEARN_FAILED] = REG_FIELD(ANA_ANEVENTS, 21, 21), [ANA_ANEVENTS_AUTO_LEARN_FAILED] = REG_FIELD(ANA_ANEVENTS, 20, 20), [ANA_ANEVENTS_LEARN_REMOVE] = REG_FIELD(ANA_ANEVENTS, 19, 19), [ANA_ANEVENTS_AUTO_LEARNED] = REG_FIELD(ANA_ANEVENTS, 18, 18), [ANA_ANEVENTS_AUTO_MOVED] = REG_FIELD(ANA_ANEVENTS, 17, 17), [ANA_ANEVENTS_CLASSIFIED_DROP] = REG_FIELD(ANA_ANEVENTS, 15, 15), [ANA_ANEVENTS_CLASSIFIED_COPY] = REG_FIELD(ANA_ANEVENTS, 14, 14), [ANA_ANEVENTS_VLAN_DISCARD] = REG_FIELD(ANA_ANEVENTS, 13, 13), [ANA_ANEVENTS_FWD_DISCARD] = REG_FIELD(ANA_ANEVENTS, 12, 12), [ANA_ANEVENTS_MULTICAST_FLOOD] = REG_FIELD(ANA_ANEVENTS, 11, 11), [ANA_ANEVENTS_UNICAST_FLOOD] = REG_FIELD(ANA_ANEVENTS, 10, 10), [ANA_ANEVENTS_DEST_KNOWN] = REG_FIELD(ANA_ANEVENTS, 9, 9), [ANA_ANEVENTS_BUCKET3_MATCH] = REG_FIELD(ANA_ANEVENTS, 8, 8), [ANA_ANEVENTS_BUCKET2_MATCH] = REG_FIELD(ANA_ANEVENTS, 7, 7), [ANA_ANEVENTS_BUCKET1_MATCH] = REG_FIELD(ANA_ANEVENTS, 6, 6), [ANA_ANEVENTS_BUCKET0_MATCH] = REG_FIELD(ANA_ANEVENTS, 5, 5), [ANA_ANEVENTS_CPU_OPERATION] = REG_FIELD(ANA_ANEVENTS, 4, 4), [ANA_ANEVENTS_DMAC_LOOKUP] = REG_FIELD(ANA_ANEVENTS, 3, 3), [ANA_ANEVENTS_SMAC_LOOKUP] = REG_FIELD(ANA_ANEVENTS, 2, 2), [ANA_ANEVENTS_SEQ_GEN_ERR_0] = REG_FIELD(ANA_ANEVENTS, 1, 1), [ANA_ANEVENTS_SEQ_GEN_ERR_1] = REG_FIELD(ANA_ANEVENTS, 0, 0), [ANA_TABLES_MACACCESS_B_DOM] = REG_FIELD(ANA_TABLES_MACACCESS, 16, 16), [ANA_TABLES_MACTINDX_BUCKET] = REG_FIELD(ANA_TABLES_MACTINDX, 11, 12), [ANA_TABLES_MACTINDX_M_INDEX] = REG_FIELD(ANA_TABLES_MACTINDX, 0, 10), [SYS_RESET_CFG_CORE_ENA] = REG_FIELD(SYS_RESET_CFG, 0, 0), [GCB_SOFT_RST_SWC_RST] = REG_FIELD(GCB_SOFT_RST, 0, 0), /* Replicated per number of ports (7), register size 4 per port */ [QSYS_SWITCH_PORT_MODE_PORT_ENA] = REG_FIELD_ID(QSYS_SWITCH_PORT_MODE, 14, 14, 7, 4), [QSYS_SWITCH_PORT_MODE_SCH_NEXT_CFG] = REG_FIELD_ID(QSYS_SWITCH_PORT_MODE, 11, 13, 7, 4), [QSYS_SWITCH_PORT_MODE_YEL_RSRVD] = REG_FIELD_ID(QSYS_SWITCH_PORT_MODE, 10, 10, 7, 4), [QSYS_SWITCH_PORT_MODE_INGRESS_DROP_MODE] = REG_FIELD_ID(QSYS_SWITCH_PORT_MODE, 9, 9, 7, 4), [QSYS_SWITCH_PORT_MODE_TX_PFC_ENA] = REG_FIELD_ID(QSYS_SWITCH_PORT_MODE, 1, 8, 7, 4), [QSYS_SWITCH_PORT_MODE_TX_PFC_MODE] = REG_FIELD_ID(QSYS_SWITCH_PORT_MODE, 0, 0, 7, 4), [SYS_PORT_MODE_DATA_WO_TS] = REG_FIELD_ID(SYS_PORT_MODE, 5, 6, 7, 4), [SYS_PORT_MODE_INCL_INJ_HDR] = REG_FIELD_ID(SYS_PORT_MODE, 3, 4, 7, 4), [SYS_PORT_MODE_INCL_XTR_HDR] = REG_FIELD_ID(SYS_PORT_MODE, 1, 2, 7, 4), [SYS_PORT_MODE_INCL_HDR_ERR] = REG_FIELD_ID(SYS_PORT_MODE, 0, 0, 7, 4), [SYS_PAUSE_CFG_PAUSE_START] = REG_FIELD_ID(SYS_PAUSE_CFG, 10, 18, 7, 4), [SYS_PAUSE_CFG_PAUSE_STOP] = REG_FIELD_ID(SYS_PAUSE_CFG, 1, 9, 7, 4), [SYS_PAUSE_CFG_PAUSE_ENA] = REG_FIELD_ID(SYS_PAUSE_CFG, 0, 1, 7, 4), }; static const struct vcap_field vsc9959_vcap_es0_keys[] = { [VCAP_ES0_EGR_PORT] = { 0, 3}, [VCAP_ES0_IGR_PORT] = { 3, 3}, [VCAP_ES0_RSV] = { 6, 2}, [VCAP_ES0_L2_MC] = { 8, 1}, [VCAP_ES0_L2_BC] = { 9, 1}, [VCAP_ES0_VID] = { 10, 12}, [VCAP_ES0_DP] = { 22, 1}, [VCAP_ES0_PCP] = { 23, 3}, }; static const struct vcap_field vsc9959_vcap_es0_actions[] = { [VCAP_ES0_ACT_PUSH_OUTER_TAG] = { 0, 2}, [VCAP_ES0_ACT_PUSH_INNER_TAG] = { 2, 1}, [VCAP_ES0_ACT_TAG_A_TPID_SEL] = { 3, 2}, [VCAP_ES0_ACT_TAG_A_VID_SEL] = { 5, 1}, [VCAP_ES0_ACT_TAG_A_PCP_SEL] = { 6, 2}, [VCAP_ES0_ACT_TAG_A_DEI_SEL] = { 8, 2}, [VCAP_ES0_ACT_TAG_B_TPID_SEL] = { 10, 2}, [VCAP_ES0_ACT_TAG_B_VID_SEL] = { 12, 1}, [VCAP_ES0_ACT_TAG_B_PCP_SEL] = { 13, 2}, [VCAP_ES0_ACT_TAG_B_DEI_SEL] = { 15, 2}, [VCAP_ES0_ACT_VID_A_VAL] = { 17, 12}, [VCAP_ES0_ACT_PCP_A_VAL] = { 29, 3}, [VCAP_ES0_ACT_DEI_A_VAL] = { 32, 1}, [VCAP_ES0_ACT_VID_B_VAL] = { 33, 12}, [VCAP_ES0_ACT_PCP_B_VAL] = { 45, 3}, [VCAP_ES0_ACT_DEI_B_VAL] = { 48, 1}, [VCAP_ES0_ACT_RSV] = { 49, 23}, [VCAP_ES0_ACT_HIT_STICKY] = { 72, 1}, }; static const struct vcap_field vsc9959_vcap_is1_keys[] = { [VCAP_IS1_HK_TYPE] = { 0, 1}, [VCAP_IS1_HK_LOOKUP] = { 1, 2}, [VCAP_IS1_HK_IGR_PORT_MASK] = { 3, 7}, [VCAP_IS1_HK_RSV] = { 10, 9}, [VCAP_IS1_HK_OAM_Y1731] = { 19, 1}, [VCAP_IS1_HK_L2_MC] = { 20, 1}, [VCAP_IS1_HK_L2_BC] = { 21, 1}, [VCAP_IS1_HK_IP_MC] = { 22, 1}, [VCAP_IS1_HK_VLAN_TAGGED] = { 23, 1}, [VCAP_IS1_HK_VLAN_DBL_TAGGED] = { 24, 1}, [VCAP_IS1_HK_TPID] = { 25, 1}, [VCAP_IS1_HK_VID] = { 26, 12}, [VCAP_IS1_HK_DEI] = { 38, 1}, [VCAP_IS1_HK_PCP] = { 39, 3}, /* Specific Fields for IS1 Half Key S1_NORMAL */ [VCAP_IS1_HK_L2_SMAC] = { 42, 48}, [VCAP_IS1_HK_ETYPE_LEN] = { 90, 1}, [VCAP_IS1_HK_ETYPE] = { 91, 16}, [VCAP_IS1_HK_IP_SNAP] = {107, 1}, [VCAP_IS1_HK_IP4] = {108, 1}, /* Layer-3 Information */ [VCAP_IS1_HK_L3_FRAGMENT] = {109, 1}, [VCAP_IS1_HK_L3_FRAG_OFS_GT0] = {110, 1}, [VCAP_IS1_HK_L3_OPTIONS] = {111, 1}, [VCAP_IS1_HK_L3_DSCP] = {112, 6}, [VCAP_IS1_HK_L3_IP4_SIP] = {118, 32}, /* Layer-4 Information */ [VCAP_IS1_HK_TCP_UDP] = {150, 1}, [VCAP_IS1_HK_TCP] = {151, 1}, [VCAP_IS1_HK_L4_SPORT] = {152, 16}, [VCAP_IS1_HK_L4_RNG] = {168, 8}, /* Specific Fields for IS1 Half Key S1_5TUPLE_IP4 */ [VCAP_IS1_HK_IP4_INNER_TPID] = { 42, 1}, [VCAP_IS1_HK_IP4_INNER_VID] = { 43, 12}, [VCAP_IS1_HK_IP4_INNER_DEI] = { 55, 1}, [VCAP_IS1_HK_IP4_INNER_PCP] = { 56, 3}, [VCAP_IS1_HK_IP4_IP4] = { 59, 1}, [VCAP_IS1_HK_IP4_L3_FRAGMENT] = { 60, 1}, [VCAP_IS1_HK_IP4_L3_FRAG_OFS_GT0] = { 61, 1}, [VCAP_IS1_HK_IP4_L3_OPTIONS] = { 62, 1}, [VCAP_IS1_HK_IP4_L3_DSCP] = { 63, 6}, [VCAP_IS1_HK_IP4_L3_IP4_DIP] = { 69, 32}, [VCAP_IS1_HK_IP4_L3_IP4_SIP] = {101, 32}, [VCAP_IS1_HK_IP4_L3_PROTO] = {133, 8}, [VCAP_IS1_HK_IP4_TCP_UDP] = {141, 1}, [VCAP_IS1_HK_IP4_TCP] = {142, 1}, [VCAP_IS1_HK_IP4_L4_RNG] = {143, 8}, [VCAP_IS1_HK_IP4_IP_PAYLOAD_S1_5TUPLE] = {151, 32}, }; static const struct vcap_field vsc9959_vcap_is1_actions[] = { [VCAP_IS1_ACT_DSCP_ENA] = { 0, 1}, [VCAP_IS1_ACT_DSCP_VAL] = { 1, 6}, [VCAP_IS1_ACT_QOS_ENA] = { 7, 1}, [VCAP_IS1_ACT_QOS_VAL] = { 8, 3}, [VCAP_IS1_ACT_DP_ENA] = { 11, 1}, [VCAP_IS1_ACT_DP_VAL] = { 12, 1}, [VCAP_IS1_ACT_PAG_OVERRIDE_MASK] = { 13, 8}, [VCAP_IS1_ACT_PAG_VAL] = { 21, 8}, [VCAP_IS1_ACT_RSV] = { 29, 9}, /* The fields below are incorrectly shifted by 2 in the manual */ [VCAP_IS1_ACT_VID_REPLACE_ENA] = { 38, 1}, [VCAP_IS1_ACT_VID_ADD_VAL] = { 39, 12}, [VCAP_IS1_ACT_FID_SEL] = { 51, 2}, [VCAP_IS1_ACT_FID_VAL] = { 53, 13}, [VCAP_IS1_ACT_PCP_DEI_ENA] = { 66, 1}, [VCAP_IS1_ACT_PCP_VAL] = { 67, 3}, [VCAP_IS1_ACT_DEI_VAL] = { 70, 1}, [VCAP_IS1_ACT_VLAN_POP_CNT_ENA] = { 71, 1}, [VCAP_IS1_ACT_VLAN_POP_CNT] = { 72, 2}, [VCAP_IS1_ACT_CUSTOM_ACE_TYPE_ENA] = { 74, 4}, [VCAP_IS1_ACT_HIT_STICKY] = { 78, 1}, }; static struct vcap_field vsc9959_vcap_is2_keys[] = { /* Common: 41 bits */ [VCAP_IS2_TYPE] = { 0, 4}, [VCAP_IS2_HK_FIRST] = { 4, 1}, [VCAP_IS2_HK_PAG] = { 5, 8}, [VCAP_IS2_HK_IGR_PORT_MASK] = { 13, 7}, [VCAP_IS2_HK_RSV2] = { 20, 1}, [VCAP_IS2_HK_HOST_MATCH] = { 21, 1}, [VCAP_IS2_HK_L2_MC] = { 22, 1}, [VCAP_IS2_HK_L2_BC] = { 23, 1}, [VCAP_IS2_HK_VLAN_TAGGED] = { 24, 1}, [VCAP_IS2_HK_VID] = { 25, 12}, [VCAP_IS2_HK_DEI] = { 37, 1}, [VCAP_IS2_HK_PCP] = { 38, 3}, /* MAC_ETYPE / MAC_LLC / MAC_SNAP / OAM common */ [VCAP_IS2_HK_L2_DMAC] = { 41, 48}, [VCAP_IS2_HK_L2_SMAC] = { 89, 48}, /* MAC_ETYPE (TYPE=000) */ [VCAP_IS2_HK_MAC_ETYPE_ETYPE] = {137, 16}, [VCAP_IS2_HK_MAC_ETYPE_L2_PAYLOAD0] = {153, 16}, [VCAP_IS2_HK_MAC_ETYPE_L2_PAYLOAD1] = {169, 8}, [VCAP_IS2_HK_MAC_ETYPE_L2_PAYLOAD2] = {177, 3}, /* MAC_LLC (TYPE=001) */ [VCAP_IS2_HK_MAC_LLC_L2_LLC] = {137, 40}, /* MAC_SNAP (TYPE=010) */ [VCAP_IS2_HK_MAC_SNAP_L2_SNAP] = {137, 40}, /* MAC_ARP (TYPE=011) */ [VCAP_IS2_HK_MAC_ARP_SMAC] = { 41, 48}, [VCAP_IS2_HK_MAC_ARP_ADDR_SPACE_OK] = { 89, 1}, [VCAP_IS2_HK_MAC_ARP_PROTO_SPACE_OK] = { 90, 1}, [VCAP_IS2_HK_MAC_ARP_LEN_OK] = { 91, 1}, [VCAP_IS2_HK_MAC_ARP_TARGET_MATCH] = { 92, 1}, [VCAP_IS2_HK_MAC_ARP_SENDER_MATCH] = { 93, 1}, [VCAP_IS2_HK_MAC_ARP_OPCODE_UNKNOWN] = { 94, 1}, [VCAP_IS2_HK_MAC_ARP_OPCODE] = { 95, 2}, [VCAP_IS2_HK_MAC_ARP_L3_IP4_DIP] = { 97, 32}, [VCAP_IS2_HK_MAC_ARP_L3_IP4_SIP] = {129, 32}, [VCAP_IS2_HK_MAC_ARP_DIP_EQ_SIP] = {161, 1}, /* IP4_TCP_UDP / IP4_OTHER common */ [VCAP_IS2_HK_IP4] = { 41, 1}, [VCAP_IS2_HK_L3_FRAGMENT] = { 42, 1}, [VCAP_IS2_HK_L3_FRAG_OFS_GT0] = { 43, 1}, [VCAP_IS2_HK_L3_OPTIONS] = { 44, 1}, [VCAP_IS2_HK_IP4_L3_TTL_GT0] = { 45, 1}, [VCAP_IS2_HK_L3_TOS] = { 46, 8}, [VCAP_IS2_HK_L3_IP4_DIP] = { 54, 32}, [VCAP_IS2_HK_L3_IP4_SIP] = { 86, 32}, [VCAP_IS2_HK_DIP_EQ_SIP] = {118, 1}, /* IP4_TCP_UDP (TYPE=100) */ [VCAP_IS2_HK_TCP] = {119, 1}, [VCAP_IS2_HK_L4_DPORT] = {120, 16}, [VCAP_IS2_HK_L4_SPORT] = {136, 16}, [VCAP_IS2_HK_L4_RNG] = {152, 8}, [VCAP_IS2_HK_L4_SPORT_EQ_DPORT] = {160, 1}, [VCAP_IS2_HK_L4_SEQUENCE_EQ0] = {161, 1}, [VCAP_IS2_HK_L4_FIN] = {162, 1}, [VCAP_IS2_HK_L4_SYN] = {163, 1}, [VCAP_IS2_HK_L4_RST] = {164, 1}, [VCAP_IS2_HK_L4_PSH] = {165, 1}, [VCAP_IS2_HK_L4_ACK] = {166, 1}, [VCAP_IS2_HK_L4_URG] = {167, 1}, [VCAP_IS2_HK_L4_1588_DOM] = {168, 8}, [VCAP_IS2_HK_L4_1588_VER] = {176, 4}, /* IP4_OTHER (TYPE=101) */ [VCAP_IS2_HK_IP4_L3_PROTO] = {119, 8}, [VCAP_IS2_HK_L3_PAYLOAD] = {127, 56}, /* IP6_STD (TYPE=110) */ [VCAP_IS2_HK_IP6_L3_TTL_GT0] = { 41, 1}, [VCAP_IS2_HK_L3_IP6_SIP] = { 42, 128}, [VCAP_IS2_HK_IP6_L3_PROTO] = {170, 8}, /* OAM (TYPE=111) */ [VCAP_IS2_HK_OAM_MEL_FLAGS] = {137, 7}, [VCAP_IS2_HK_OAM_VER] = {144, 5}, [VCAP_IS2_HK_OAM_OPCODE] = {149, 8}, [VCAP_IS2_HK_OAM_FLAGS] = {157, 8}, [VCAP_IS2_HK_OAM_MEPID] = {165, 16}, [VCAP_IS2_HK_OAM_CCM_CNTS_EQ0] = {181, 1}, [VCAP_IS2_HK_OAM_IS_Y1731] = {182, 1}, }; static struct vcap_field vsc9959_vcap_is2_actions[] = { [VCAP_IS2_ACT_HIT_ME_ONCE] = { 0, 1}, [VCAP_IS2_ACT_CPU_COPY_ENA] = { 1, 1}, [VCAP_IS2_ACT_CPU_QU_NUM] = { 2, 3}, [VCAP_IS2_ACT_MASK_MODE] = { 5, 2}, [VCAP_IS2_ACT_MIRROR_ENA] = { 7, 1}, [VCAP_IS2_ACT_LRN_DIS] = { 8, 1}, [VCAP_IS2_ACT_POLICE_ENA] = { 9, 1}, [VCAP_IS2_ACT_POLICE_IDX] = { 10, 9}, [VCAP_IS2_ACT_POLICE_VCAP_ONLY] = { 19, 1}, [VCAP_IS2_ACT_PORT_MASK] = { 20, 6}, [VCAP_IS2_ACT_REW_OP] = { 26, 9}, [VCAP_IS2_ACT_SMAC_REPLACE_ENA] = { 35, 1}, [VCAP_IS2_ACT_RSV] = { 36, 2}, [VCAP_IS2_ACT_ACL_ID] = { 38, 6}, [VCAP_IS2_ACT_HIT_CNT] = { 44, 32}, }; static struct vcap_props vsc9959_vcap_props[] = { [VCAP_ES0] = { .action_type_width = 0, .action_table = { [ES0_ACTION_TYPE_NORMAL] = { .width = 72, /* HIT_STICKY not included */ .count = 1, }, }, .target = S0, .keys = vsc9959_vcap_es0_keys, .actions = vsc9959_vcap_es0_actions, }, [VCAP_IS1] = { .action_type_width = 0, .action_table = { [IS1_ACTION_TYPE_NORMAL] = { .width = 78, /* HIT_STICKY not included */ .count = 4, }, }, .target = S1, .keys = vsc9959_vcap_is1_keys, .actions = vsc9959_vcap_is1_actions, }, [VCAP_IS2] = { .action_type_width = 1, .action_table = { [IS2_ACTION_TYPE_NORMAL] = { .width = 44, .count = 2 }, [IS2_ACTION_TYPE_SMAC_SIP] = { .width = 6, .count = 4 }, }, .target = S2, .keys = vsc9959_vcap_is2_keys, .actions = vsc9959_vcap_is2_actions, }, }; static const struct ptp_clock_info vsc9959_ptp_caps = { .owner = THIS_MODULE, .name = "felix ptp", .max_adj = 0x7fffffff, .n_alarm = 0, .n_ext_ts = 0, .n_per_out = OCELOT_PTP_PINS_NUM, .n_pins = OCELOT_PTP_PINS_NUM, .pps = 0, .gettime64 = ocelot_ptp_gettime64, .settime64 = ocelot_ptp_settime64, .adjtime = ocelot_ptp_adjtime, .adjfine = ocelot_ptp_adjfine, .verify = ocelot_ptp_verify, .enable = ocelot_ptp_enable, }; #define VSC9959_INIT_TIMEOUT 50000 #define VSC9959_GCB_RST_SLEEP 100 #define VSC9959_SYS_RAMINIT_SLEEP 80 static int vsc9959_gcb_soft_rst_status(struct ocelot *ocelot) { int val; ocelot_field_read(ocelot, GCB_SOFT_RST_SWC_RST, &val); return val; } static int vsc9959_sys_ram_init_status(struct ocelot *ocelot) { return ocelot_read(ocelot, SYS_RAM_INIT); } /* CORE_ENA is in SYS:SYSTEM:RESET_CFG * RAM_INIT is in SYS:RAM_CTRL:RAM_INIT */ static int vsc9959_reset(struct ocelot *ocelot) { int val, err; /* soft-reset the switch core */ ocelot_field_write(ocelot, GCB_SOFT_RST_SWC_RST, 1); err = readx_poll_timeout(vsc9959_gcb_soft_rst_status, ocelot, val, !val, VSC9959_GCB_RST_SLEEP, VSC9959_INIT_TIMEOUT); if (err) { dev_err(ocelot->dev, "timeout: switch core reset\n"); return err; } /* initialize switch mem ~40us */ ocelot_write(ocelot, SYS_RAM_INIT_RAM_INIT, SYS_RAM_INIT); err = readx_poll_timeout(vsc9959_sys_ram_init_status, ocelot, val, !val, VSC9959_SYS_RAMINIT_SLEEP, VSC9959_INIT_TIMEOUT); if (err) { dev_err(ocelot->dev, "timeout: switch sram init\n"); return err; } /* enable switch core */ ocelot_field_write(ocelot, SYS_RESET_CFG_CORE_ENA, 1); return 0; } /* Watermark encode * Bit 8: Unit; 0:1, 1:16 * Bit 7-0: Value to be multiplied with unit */ static u16 vsc9959_wm_enc(u16 value) { WARN_ON(value >= 16 * BIT(8)); if (value >= BIT(8)) return BIT(8) | (value / 16); return value; } static u16 vsc9959_wm_dec(u16 wm) { WARN_ON(wm & ~GENMASK(8, 0)); if (wm & BIT(8)) return (wm & GENMASK(7, 0)) * 16; return wm; } static void vsc9959_wm_stat(u32 val, u32 *inuse, u32 *maxuse) { *inuse = (val & GENMASK(23, 12)) >> 12; *maxuse = val & GENMASK(11, 0); } static int vsc9959_mdio_bus_alloc(struct ocelot *ocelot) { struct pci_dev *pdev = to_pci_dev(ocelot->dev); struct felix *felix = ocelot_to_felix(ocelot); struct enetc_mdio_priv *mdio_priv; struct device *dev = ocelot->dev; resource_size_t imdio_base; void __iomem *imdio_regs; struct resource res; struct enetc_hw *hw; struct mii_bus *bus; int port; int rc; felix->pcs = devm_kcalloc(dev, felix->info->num_ports, sizeof(struct phylink_pcs *), GFP_KERNEL); if (!felix->pcs) { dev_err(dev, "failed to allocate array for PCS PHYs\n"); return -ENOMEM; } imdio_base = pci_resource_start(pdev, VSC9959_IMDIO_PCI_BAR); memcpy(&res, &vsc9959_imdio_res, sizeof(res)); res.start += imdio_base; res.end += imdio_base; imdio_regs = devm_ioremap_resource(dev, &res); if (IS_ERR(imdio_regs)) return PTR_ERR(imdio_regs); hw = enetc_hw_alloc(dev, imdio_regs); if (IS_ERR(hw)) { dev_err(dev, "failed to allocate ENETC HW structure\n"); return PTR_ERR(hw); } bus = mdiobus_alloc_size(sizeof(*mdio_priv)); if (!bus) return -ENOMEM; bus->name = "VSC9959 internal MDIO bus"; bus->read = enetc_mdio_read_c22; bus->write = enetc_mdio_write_c22; bus->read_c45 = enetc_mdio_read_c45; bus->write_c45 = enetc_mdio_write_c45; bus->parent = dev; mdio_priv = bus->priv; mdio_priv->hw = hw; /* This gets added to imdio_regs, which already maps addresses * starting with the proper offset. */ mdio_priv->mdio_base = 0; snprintf(bus->id, MII_BUS_ID_SIZE, "%s-imdio", dev_name(dev)); /* Needed in order to initialize the bus mutex lock */ rc = mdiobus_register(bus); if (rc < 0) { dev_err(dev, "failed to register MDIO bus\n"); mdiobus_free(bus); return rc; } felix->imdio = bus; for (port = 0; port < felix->info->num_ports; port++) { struct ocelot_port *ocelot_port = ocelot->ports[port]; struct phylink_pcs *phylink_pcs; if (dsa_is_unused_port(felix->ds, port)) continue; if (ocelot_port->phy_mode == PHY_INTERFACE_MODE_INTERNAL) continue; phylink_pcs = lynx_pcs_create_mdiodev(felix->imdio, port); if (IS_ERR(phylink_pcs)) continue; felix->pcs[port] = phylink_pcs; dev_info(dev, "Found PCS at internal MDIO address %d\n", port); } return 0; } static void vsc9959_mdio_bus_free(struct ocelot *ocelot) { struct felix *felix = ocelot_to_felix(ocelot); int port; for (port = 0; port < ocelot->num_phys_ports; port++) { struct phylink_pcs *phylink_pcs = felix->pcs[port]; if (phylink_pcs) lynx_pcs_destroy(phylink_pcs); } mdiobus_unregister(felix->imdio); mdiobus_free(felix->imdio); } /* The switch considers any frame (regardless of size) as eligible for * transmission if the traffic class gate is open for at least 33 ns. * Overruns are prevented by cropping an interval at the end of the gate time * slot for which egress scheduling is blocked, but we need to still keep 33 ns * available for one packet to be transmitted, otherwise the port tc will hang. * This function returns the size of a gate interval that remains available for * setting the guard band, after reserving the space for one egress frame. */ static u64 vsc9959_tas_remaining_gate_len_ps(u64 gate_len_ns) { /* Gate always open */ if (gate_len_ns == U64_MAX) return U64_MAX; if (gate_len_ns < VSC9959_TAS_MIN_GATE_LEN_NS) return 0; return (gate_len_ns - VSC9959_TAS_MIN_GATE_LEN_NS) * PSEC_PER_NSEC; } /* Extract shortest continuous gate open intervals in ns for each traffic class * of a cyclic tc-taprio schedule. If a gate is always open, the duration is * considered U64_MAX. If the gate is always closed, it is considered 0. */ static void vsc9959_tas_min_gate_lengths(struct tc_taprio_qopt_offload *taprio, u64 min_gate_len[OCELOT_NUM_TC]) { struct tc_taprio_sched_entry *entry; u64 gate_len[OCELOT_NUM_TC]; u8 gates_ever_opened = 0; int tc, i, n; /* Initialize arrays */ for (tc = 0; tc < OCELOT_NUM_TC; tc++) { min_gate_len[tc] = U64_MAX; gate_len[tc] = 0; } /* If we don't have taprio, consider all gates as permanently open */ if (!taprio) return; n = taprio->num_entries; /* Walk through the gate list twice to determine the length * of consecutively open gates for a traffic class, including * open gates that wrap around. We are just interested in the * minimum window size, and this doesn't change what the * minimum is (if the gate never closes, min_gate_len will * remain U64_MAX). */ for (i = 0; i < 2 * n; i++) { entry = &taprio->entries[i % n]; for (tc = 0; tc < OCELOT_NUM_TC; tc++) { if (entry->gate_mask & BIT(tc)) { gate_len[tc] += entry->interval; gates_ever_opened |= BIT(tc); } else { /* Gate closes now, record a potential new * minimum and reinitialize length */ if (min_gate_len[tc] > gate_len[tc] && gate_len[tc]) min_gate_len[tc] = gate_len[tc]; gate_len[tc] = 0; } } } /* min_gate_len[tc] actually tracks minimum *open* gate time, so for * permanently closed gates, min_gate_len[tc] will still be U64_MAX. * Therefore they are currently indistinguishable from permanently * open gates. Overwrite the gate len with 0 when we know they're * actually permanently closed, i.e. after the loop above. */ for (tc = 0; tc < OCELOT_NUM_TC; tc++) if (!(gates_ever_opened & BIT(tc))) min_gate_len[tc] = 0; } /* ocelot_write_rix is a macro that concatenates QSYS_MAXSDU_CFG_* with _RSZ, * so we need to spell out the register access to each traffic class in helper * functions, to simplify callers */ static void vsc9959_port_qmaxsdu_set(struct ocelot *ocelot, int port, int tc, u32 max_sdu) { switch (tc) { case 0: ocelot_write_rix(ocelot, max_sdu, QSYS_QMAXSDU_CFG_0, port); break; case 1: ocelot_write_rix(ocelot, max_sdu, QSYS_QMAXSDU_CFG_1, port); break; case 2: ocelot_write_rix(ocelot, max_sdu, QSYS_QMAXSDU_CFG_2, port); break; case 3: ocelot_write_rix(ocelot, max_sdu, QSYS_QMAXSDU_CFG_3, port); break; case 4: ocelot_write_rix(ocelot, max_sdu, QSYS_QMAXSDU_CFG_4, port); break; case 5: ocelot_write_rix(ocelot, max_sdu, QSYS_QMAXSDU_CFG_5, port); break; case 6: ocelot_write_rix(ocelot, max_sdu, QSYS_QMAXSDU_CFG_6, port); break; case 7: ocelot_write_rix(ocelot, max_sdu, QSYS_QMAXSDU_CFG_7, port); break; } } static u32 vsc9959_port_qmaxsdu_get(struct ocelot *ocelot, int port, int tc) { switch (tc) { case 0: return ocelot_read_rix(ocelot, QSYS_QMAXSDU_CFG_0, port); case 1: return ocelot_read_rix(ocelot, QSYS_QMAXSDU_CFG_1, port); case 2: return ocelot_read_rix(ocelot, QSYS_QMAXSDU_CFG_2, port); case 3: return ocelot_read_rix(ocelot, QSYS_QMAXSDU_CFG_3, port); case 4: return ocelot_read_rix(ocelot, QSYS_QMAXSDU_CFG_4, port); case 5: return ocelot_read_rix(ocelot, QSYS_QMAXSDU_CFG_5, port); case 6: return ocelot_read_rix(ocelot, QSYS_QMAXSDU_CFG_6, port); case 7: return ocelot_read_rix(ocelot, QSYS_QMAXSDU_CFG_7, port); default: return 0; } } static u32 vsc9959_tas_tc_max_sdu(struct tc_taprio_qopt_offload *taprio, int tc) { if (!taprio || !taprio->max_sdu[tc]) return 0; return taprio->max_sdu[tc] + ETH_HLEN + 2 * VLAN_HLEN + ETH_FCS_LEN; } /* Update QSYS_PORT_MAX_SDU to make sure the static guard bands added by the * switch (see the ALWAYS_GUARD_BAND_SCH_Q comment) are correct at all MTU * values (the default value is 1518). Also, for traffic class windows smaller * than one MTU sized frame, update QSYS_QMAXSDU_CFG to enable oversized frame * dropping, such that these won't hang the port, as they will never be sent. */ static void vsc9959_tas_guard_bands_update(struct ocelot *ocelot, int port) { struct ocelot_port *ocelot_port = ocelot->ports[port]; struct ocelot_mm_state *mm = &ocelot->mm[port]; struct tc_taprio_qopt_offload *taprio; u64 min_gate_len[OCELOT_NUM_TC]; u32 val, maxlen, add_frag_size; u64 needed_min_frag_time_ps; int speed, picos_per_byte; u64 needed_bit_time_ps; u8 tas_speed; int tc; lockdep_assert_held(&ocelot->fwd_domain_lock); taprio = ocelot_port->taprio; val = ocelot_read_rix(ocelot, QSYS_TAG_CONFIG, port); tas_speed = QSYS_TAG_CONFIG_LINK_SPEED_X(val); switch (tas_speed) { case OCELOT_SPEED_10: speed = SPEED_10; break; case OCELOT_SPEED_100: speed = SPEED_100; break; case OCELOT_SPEED_1000: speed = SPEED_1000; break; case OCELOT_SPEED_2500: speed = SPEED_2500; break; default: return; } picos_per_byte = (USEC_PER_SEC * 8) / speed; val = ocelot_port_readl(ocelot_port, DEV_MAC_MAXLEN_CFG); /* MAXLEN_CFG accounts automatically for VLAN. We need to include it * manually in the bit time calculation, plus the preamble and SFD. */ maxlen = val + 2 * VLAN_HLEN; /* Consider the standard Ethernet overhead of 8 octets preamble+SFD, * 4 octets FCS, 12 octets IFG. */ needed_bit_time_ps = (u64)(maxlen + 24) * picos_per_byte; /* Preemptible TCs don't need to pass a full MTU, the port will * automatically emit a HOLD request when a preemptible TC gate closes */ val = ocelot_read_rix(ocelot, QSYS_PREEMPTION_CFG, port); add_frag_size = QSYS_PREEMPTION_CFG_MM_ADD_FRAG_SIZE_X(val); needed_min_frag_time_ps = picos_per_byte * (u64)(24 + 2 * ethtool_mm_frag_size_add_to_min(add_frag_size)); dev_dbg(ocelot->dev, "port %d: max frame size %d needs %llu ps, %llu ps for mPackets at speed %d\n", port, maxlen, needed_bit_time_ps, needed_min_frag_time_ps, speed); vsc9959_tas_min_gate_lengths(taprio, min_gate_len); for (tc = 0; tc < OCELOT_NUM_TC; tc++) { u32 requested_max_sdu = vsc9959_tas_tc_max_sdu(taprio, tc); u64 remaining_gate_len_ps; u32 max_sdu; remaining_gate_len_ps = vsc9959_tas_remaining_gate_len_ps(min_gate_len[tc]); if ((mm->active_preemptible_tcs & BIT(tc)) ? remaining_gate_len_ps > needed_min_frag_time_ps : remaining_gate_len_ps > needed_bit_time_ps) { /* Setting QMAXSDU_CFG to 0 disables oversized frame * dropping. */ max_sdu = requested_max_sdu; dev_dbg(ocelot->dev, "port %d tc %d min gate len %llu" ", sending all frames\n", port, tc, min_gate_len[tc]); } else { /* If traffic class doesn't support a full MTU sized * frame, make sure to enable oversize frame dropping * for frames larger than the smallest that would fit. * * However, the exact same register, QSYS_QMAXSDU_CFG_*, * controls not only oversized frame dropping, but also * per-tc static guard band lengths, so it reduces the * useful gate interval length. Therefore, be careful * to calculate a guard band (and therefore max_sdu) * that still leaves 33 ns available in the time slot. */ max_sdu = div_u64(remaining_gate_len_ps, picos_per_byte); /* A TC gate may be completely closed, which is a * special case where all packets are oversized. * Any limit smaller than 64 octets accomplishes this */ if (!max_sdu) max_sdu = 1; /* Take L1 overhead into account, but just don't allow * max_sdu to go negative or to 0. Here we use 20 * because QSYS_MAXSDU_CFG_* already counts the 4 FCS * octets as part of packet size. */ if (max_sdu > 20) max_sdu -= 20; if (requested_max_sdu && requested_max_sdu < max_sdu) max_sdu = requested_max_sdu; dev_info(ocelot->dev, "port %d tc %d min gate length %llu" " ns not enough for max frame size %d at %d" " Mbps, dropping frames over %d" " octets including FCS\n", port, tc, min_gate_len[tc], maxlen, speed, max_sdu); } vsc9959_port_qmaxsdu_set(ocelot, port, tc, max_sdu); } ocelot_write_rix(ocelot, maxlen, QSYS_PORT_MAX_SDU, port); ocelot->ops->cut_through_fwd(ocelot); } static void vsc9959_sched_speed_set(struct ocelot *ocelot, int port, u32 speed) { struct ocelot_port *ocelot_port = ocelot->ports[port]; u8 tas_speed; switch (speed) { case SPEED_10: tas_speed = OCELOT_SPEED_10; break; case SPEED_100: tas_speed = OCELOT_SPEED_100; break; case SPEED_1000: tas_speed = OCELOT_SPEED_1000; break; case SPEED_2500: tas_speed = OCELOT_SPEED_2500; break; default: tas_speed = OCELOT_SPEED_1000; break; } mutex_lock(&ocelot->fwd_domain_lock); ocelot_rmw_rix(ocelot, QSYS_TAG_CONFIG_LINK_SPEED(tas_speed), QSYS_TAG_CONFIG_LINK_SPEED_M, QSYS_TAG_CONFIG, port); if (ocelot_port->taprio) vsc9959_tas_guard_bands_update(ocelot, port); mutex_unlock(&ocelot->fwd_domain_lock); } static void vsc9959_new_base_time(struct ocelot *ocelot, ktime_t base_time, u64 cycle_time, struct timespec64 *new_base_ts) { struct timespec64 ts; ktime_t new_base_time; ktime_t current_time; ocelot_ptp_gettime64(&ocelot->ptp_info, &ts); current_time = timespec64_to_ktime(ts); new_base_time = base_time; if (base_time < current_time) { u64 nr_of_cycles = current_time - base_time; do_div(nr_of_cycles, cycle_time); new_base_time += cycle_time * (nr_of_cycles + 1); } *new_base_ts = ktime_to_timespec64(new_base_time); } static u32 vsc9959_tas_read_cfg_status(struct ocelot *ocelot) { return ocelot_read(ocelot, QSYS_TAS_PARAM_CFG_CTRL); } static void vsc9959_tas_gcl_set(struct ocelot *ocelot, const u32 gcl_ix, struct tc_taprio_sched_entry *entry) { ocelot_write(ocelot, QSYS_GCL_CFG_REG_1_GCL_ENTRY_NUM(gcl_ix) | QSYS_GCL_CFG_REG_1_GATE_STATE(entry->gate_mask), QSYS_GCL_CFG_REG_1); ocelot_write(ocelot, entry->interval, QSYS_GCL_CFG_REG_2); } static int vsc9959_qos_port_tas_set(struct ocelot *ocelot, int port, struct tc_taprio_qopt_offload *taprio) { struct ocelot_port *ocelot_port = ocelot->ports[port]; struct timespec64 base_ts; int ret, i; u32 val; mutex_lock(&ocelot->fwd_domain_lock); if (taprio->cmd == TAPRIO_CMD_DESTROY) { ocelot_port_mqprio(ocelot, port, &taprio->mqprio); ocelot_rmw_rix(ocelot, 0, QSYS_TAG_CONFIG_ENABLE, QSYS_TAG_CONFIG, port); taprio_offload_free(ocelot_port->taprio); ocelot_port->taprio = NULL; vsc9959_tas_guard_bands_update(ocelot, port); mutex_unlock(&ocelot->fwd_domain_lock); return 0; } else if (taprio->cmd != TAPRIO_CMD_REPLACE) { ret = -EOPNOTSUPP; goto err_unlock; } ret = ocelot_port_mqprio(ocelot, port, &taprio->mqprio); if (ret) goto err_unlock; if (taprio->cycle_time > NSEC_PER_SEC || taprio->cycle_time_extension >= NSEC_PER_SEC) { ret = -EINVAL; goto err_reset_tc; } if (taprio->num_entries > VSC9959_TAS_GCL_ENTRY_MAX) { ret = -ERANGE; goto err_reset_tc; } /* Enable guard band. The switch will schedule frames without taking * their length into account. Thus we'll always need to enable the * guard band which reserves the time of a maximum sized frame at the * end of the time window. * * Although the ALWAYS_GUARD_BAND_SCH_Q bit is global for all ports, we * need to set PORT_NUM, because subsequent writes to PARAM_CFG_REG_n * operate on the port number. */ ocelot_rmw(ocelot, QSYS_TAS_PARAM_CFG_CTRL_PORT_NUM(port) | QSYS_TAS_PARAM_CFG_CTRL_ALWAYS_GUARD_BAND_SCH_Q, QSYS_TAS_PARAM_CFG_CTRL_PORT_NUM_M | QSYS_TAS_PARAM_CFG_CTRL_ALWAYS_GUARD_BAND_SCH_Q, QSYS_TAS_PARAM_CFG_CTRL); /* Hardware errata - Admin config could not be overwritten if * config is pending, need reset the TAS module */ val = ocelot_read_rix(ocelot, QSYS_TAG_CONFIG, port); if (val & QSYS_TAG_CONFIG_ENABLE) { val = ocelot_read(ocelot, QSYS_PARAM_STATUS_REG_8); if (val & QSYS_PARAM_STATUS_REG_8_CONFIG_PENDING) { ret = -EBUSY; goto err_reset_tc; } } ocelot_rmw_rix(ocelot, QSYS_TAG_CONFIG_ENABLE | QSYS_TAG_CONFIG_INIT_GATE_STATE(0xFF) | QSYS_TAG_CONFIG_SCH_TRAFFIC_QUEUES(0xFF), QSYS_TAG_CONFIG_ENABLE | QSYS_TAG_CONFIG_INIT_GATE_STATE_M | QSYS_TAG_CONFIG_SCH_TRAFFIC_QUEUES_M, QSYS_TAG_CONFIG, port); vsc9959_new_base_time(ocelot, taprio->base_time, taprio->cycle_time, &base_ts); ocelot_write(ocelot, base_ts.tv_nsec, QSYS_PARAM_CFG_REG_1); ocelot_write(ocelot, lower_32_bits(base_ts.tv_sec), QSYS_PARAM_CFG_REG_2); val = upper_32_bits(base_ts.tv_sec); ocelot_write(ocelot, QSYS_PARAM_CFG_REG_3_BASE_TIME_SEC_MSB(val) | QSYS_PARAM_CFG_REG_3_LIST_LENGTH(taprio->num_entries), QSYS_PARAM_CFG_REG_3); ocelot_write(ocelot, taprio->cycle_time, QSYS_PARAM_CFG_REG_4); ocelot_write(ocelot, taprio->cycle_time_extension, QSYS_PARAM_CFG_REG_5); for (i = 0; i < taprio->num_entries; i++) vsc9959_tas_gcl_set(ocelot, i, &taprio->entries[i]); ocelot_rmw(ocelot, QSYS_TAS_PARAM_CFG_CTRL_CONFIG_CHANGE, QSYS_TAS_PARAM_CFG_CTRL_CONFIG_CHANGE, QSYS_TAS_PARAM_CFG_CTRL); ret = readx_poll_timeout(vsc9959_tas_read_cfg_status, ocelot, val, !(val & QSYS_TAS_PARAM_CFG_CTRL_CONFIG_CHANGE), 10, 100000); if (ret) goto err_reset_tc; ocelot_port->taprio = taprio_offload_get(taprio); vsc9959_tas_guard_bands_update(ocelot, port); mutex_unlock(&ocelot->fwd_domain_lock); return 0; err_reset_tc: taprio->mqprio.qopt.num_tc = 0; ocelot_port_mqprio(ocelot, port, &taprio->mqprio); err_unlock: mutex_unlock(&ocelot->fwd_domain_lock); return ret; } static void vsc9959_tas_clock_adjust(struct ocelot *ocelot) { struct tc_taprio_qopt_offload *taprio; struct ocelot_port *ocelot_port; struct timespec64 base_ts; int port; u32 val; mutex_lock(&ocelot->fwd_domain_lock); for (port = 0; port < ocelot->num_phys_ports; port++) { ocelot_port = ocelot->ports[port]; taprio = ocelot_port->taprio; if (!taprio) continue; ocelot_rmw(ocelot, QSYS_TAS_PARAM_CFG_CTRL_PORT_NUM(port), QSYS_TAS_PARAM_CFG_CTRL_PORT_NUM_M, QSYS_TAS_PARAM_CFG_CTRL); /* Disable time-aware shaper */ ocelot_rmw_rix(ocelot, 0, QSYS_TAG_CONFIG_ENABLE, QSYS_TAG_CONFIG, port); vsc9959_new_base_time(ocelot, taprio->base_time, taprio->cycle_time, &base_ts); ocelot_write(ocelot, base_ts.tv_nsec, QSYS_PARAM_CFG_REG_1); ocelot_write(ocelot, lower_32_bits(base_ts.tv_sec), QSYS_PARAM_CFG_REG_2); val = upper_32_bits(base_ts.tv_sec); ocelot_rmw(ocelot, QSYS_PARAM_CFG_REG_3_BASE_TIME_SEC_MSB(val), QSYS_PARAM_CFG_REG_3_BASE_TIME_SEC_MSB_M, QSYS_PARAM_CFG_REG_3); ocelot_rmw(ocelot, QSYS_TAS_PARAM_CFG_CTRL_CONFIG_CHANGE, QSYS_TAS_PARAM_CFG_CTRL_CONFIG_CHANGE, QSYS_TAS_PARAM_CFG_CTRL); /* Re-enable time-aware shaper */ ocelot_rmw_rix(ocelot, QSYS_TAG_CONFIG_ENABLE, QSYS_TAG_CONFIG_ENABLE, QSYS_TAG_CONFIG, port); } mutex_unlock(&ocelot->fwd_domain_lock); } static int vsc9959_qos_port_cbs_set(struct dsa_switch *ds, int port, struct tc_cbs_qopt_offload *cbs_qopt) { struct ocelot *ocelot = ds->priv; int port_ix = port * 8 + cbs_qopt->queue; u32 rate, burst; if (cbs_qopt->queue >= ds->num_tx_queues) return -EINVAL; if (!cbs_qopt->enable) { ocelot_write_gix(ocelot, QSYS_CIR_CFG_CIR_RATE(0) | QSYS_CIR_CFG_CIR_BURST(0), QSYS_CIR_CFG, port_ix); ocelot_rmw_gix(ocelot, 0, QSYS_SE_CFG_SE_AVB_ENA, QSYS_SE_CFG, port_ix); return 0; } /* Rate unit is 100 kbps */ rate = DIV_ROUND_UP(cbs_qopt->idleslope, 100); /* Avoid using zero rate */ rate = clamp_t(u32, rate, 1, GENMASK(14, 0)); /* Burst unit is 4kB */ burst = DIV_ROUND_UP(cbs_qopt->hicredit, 4096); /* Avoid using zero burst size */ burst = clamp_t(u32, burst, 1, GENMASK(5, 0)); ocelot_write_gix(ocelot, QSYS_CIR_CFG_CIR_RATE(rate) | QSYS_CIR_CFG_CIR_BURST(burst), QSYS_CIR_CFG, port_ix); ocelot_rmw_gix(ocelot, QSYS_SE_CFG_SE_FRM_MODE(0) | QSYS_SE_CFG_SE_AVB_ENA, QSYS_SE_CFG_SE_AVB_ENA | QSYS_SE_CFG_SE_FRM_MODE_M, QSYS_SE_CFG, port_ix); return 0; } static int vsc9959_qos_query_caps(struct tc_query_caps_base *base) { switch (base->type) { case TC_SETUP_QDISC_MQPRIO: { struct tc_mqprio_caps *caps = base->caps; caps->validate_queue_counts = true; return 0; } case TC_SETUP_QDISC_TAPRIO: { struct tc_taprio_caps *caps = base->caps; caps->supports_queue_max_sdu = true; return 0; } default: return -EOPNOTSUPP; } } static int vsc9959_qos_port_mqprio(struct ocelot *ocelot, int port, struct tc_mqprio_qopt_offload *mqprio) { int ret; mutex_lock(&ocelot->fwd_domain_lock); ret = ocelot_port_mqprio(ocelot, port, mqprio); mutex_unlock(&ocelot->fwd_domain_lock); return ret; } static int vsc9959_port_setup_tc(struct dsa_switch *ds, int port, enum tc_setup_type type, void *type_data) { struct ocelot *ocelot = ds->priv; switch (type) { case TC_QUERY_CAPS: return vsc9959_qos_query_caps(type_data); case TC_SETUP_QDISC_TAPRIO: return vsc9959_qos_port_tas_set(ocelot, port, type_data); case TC_SETUP_QDISC_MQPRIO: return vsc9959_qos_port_mqprio(ocelot, port, type_data); case TC_SETUP_QDISC_CBS: return vsc9959_qos_port_cbs_set(ds, port, type_data); default: return -EOPNOTSUPP; } } #define VSC9959_PSFP_SFID_MAX 175 #define VSC9959_PSFP_GATE_ID_MAX 183 #define VSC9959_PSFP_POLICER_BASE 63 #define VSC9959_PSFP_POLICER_MAX 383 #define VSC9959_PSFP_GATE_LIST_NUM 4 #define VSC9959_PSFP_GATE_CYCLETIME_MIN 5000 struct felix_stream { struct list_head list; unsigned long id; bool dummy; int ports; int port; u8 dmac[ETH_ALEN]; u16 vid; s8 prio; u8 sfid_valid; u8 ssid_valid; u32 sfid; u32 ssid; }; struct felix_stream_filter_counters { u64 match; u64 not_pass_gate; u64 not_pass_sdu; u64 red; }; struct felix_stream_filter { struct felix_stream_filter_counters stats; struct list_head list; refcount_t refcount; u32 index; u8 enable; int portmask; u8 sg_valid; u32 sgid; u8 fm_valid; u32 fmid; u8 prio_valid; u8 prio; u32 maxsdu; }; struct felix_stream_gate { u32 index; u8 enable; u8 ipv_valid; u8 init_ipv; u64 basetime; u64 cycletime; u64 cycletime_ext; u32 num_entries; struct action_gate_entry entries[]; }; struct felix_stream_gate_entry { struct list_head list; refcount_t refcount; u32 index; }; static int vsc9959_stream_identify(struct flow_cls_offload *f, struct felix_stream *stream) { struct flow_rule *rule = flow_cls_offload_flow_rule(f); struct flow_dissector *dissector = rule->match.dissector; if (dissector->used_keys & ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) | BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) | BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) | BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS))) return -EOPNOTSUPP; if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { struct flow_match_eth_addrs match; flow_rule_match_eth_addrs(rule, &match); ether_addr_copy(stream->dmac, match.key->dst); if (!is_zero_ether_addr(match.mask->src)) return -EOPNOTSUPP; } else { return -EOPNOTSUPP; } if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { struct flow_match_vlan match; flow_rule_match_vlan(rule, &match); if (match.mask->vlan_priority) stream->prio = match.key->vlan_priority; else stream->prio = -1; if (!match.mask->vlan_id) return -EOPNOTSUPP; stream->vid = match.key->vlan_id; } else { return -EOPNOTSUPP; } stream->id = f->cookie; return 0; } static int vsc9959_mact_stream_set(struct ocelot *ocelot, struct felix_stream *stream, struct netlink_ext_ack *extack) { enum macaccess_entry_type type; int ret, sfid, ssid; u32 vid, dst_idx; u8 mac[ETH_ALEN]; ether_addr_copy(mac, stream->dmac); vid = stream->vid; /* Stream identification desn't support to add a stream with non * existent MAC (The MAC entry has not been learned in MAC table). */ ret = ocelot_mact_lookup(ocelot, &dst_idx, mac, vid, &type); if (ret) { if (extack) NL_SET_ERR_MSG_MOD(extack, "Stream is not learned in MAC table"); return -EOPNOTSUPP; } if ((stream->sfid_valid || stream->ssid_valid) && type == ENTRYTYPE_NORMAL) type = ENTRYTYPE_LOCKED; sfid = stream->sfid_valid ? stream->sfid : -1; ssid = stream->ssid_valid ? stream->ssid : -1; ret = ocelot_mact_learn_streamdata(ocelot, dst_idx, mac, vid, type, sfid, ssid); return ret; } static struct felix_stream * vsc9959_stream_table_lookup(struct list_head *stream_list, struct felix_stream *stream) { struct felix_stream *tmp; list_for_each_entry(tmp, stream_list, list) if (ether_addr_equal(tmp->dmac, stream->dmac) && tmp->vid == stream->vid) return tmp; return NULL; } static int vsc9959_stream_table_add(struct ocelot *ocelot, struct list_head *stream_list, struct felix_stream *stream, struct netlink_ext_ack *extack) { struct felix_stream *stream_entry; int ret; stream_entry = kmemdup(stream, sizeof(*stream_entry), GFP_KERNEL); if (!stream_entry) return -ENOMEM; if (!stream->dummy) { ret = vsc9959_mact_stream_set(ocelot, stream_entry, extack); if (ret) { kfree(stream_entry); return ret; } } list_add_tail(&stream_entry->list, stream_list); return 0; } static struct felix_stream * vsc9959_stream_table_get(struct list_head *stream_list, unsigned long id) { struct felix_stream *tmp; list_for_each_entry(tmp, stream_list, list) if (tmp->id == id) return tmp; return NULL; } static void vsc9959_stream_table_del(struct ocelot *ocelot, struct felix_stream *stream) { if (!stream->dummy) vsc9959_mact_stream_set(ocelot, stream, NULL); list_del(&stream->list); kfree(stream); } static u32 vsc9959_sfi_access_status(struct ocelot *ocelot) { return ocelot_read(ocelot, ANA_TABLES_SFIDACCESS); } static int vsc9959_psfp_sfi_set(struct ocelot *ocelot, struct felix_stream_filter *sfi) { u32 val; if (sfi->index > VSC9959_PSFP_SFID_MAX) return -EINVAL; if (!sfi->enable) { ocelot_write(ocelot, ANA_TABLES_SFIDTIDX_SFID_INDEX(sfi->index), ANA_TABLES_SFIDTIDX); val = ANA_TABLES_SFIDACCESS_SFID_TBL_CMD(SFIDACCESS_CMD_WRITE); ocelot_write(ocelot, val, ANA_TABLES_SFIDACCESS); return readx_poll_timeout(vsc9959_sfi_access_status, ocelot, val, (!ANA_TABLES_SFIDACCESS_SFID_TBL_CMD(val)), 10, 100000); } if (sfi->sgid > VSC9959_PSFP_GATE_ID_MAX || sfi->fmid > VSC9959_PSFP_POLICER_MAX) return -EINVAL; ocelot_write(ocelot, (sfi->sg_valid ? ANA_TABLES_SFIDTIDX_SGID_VALID : 0) | ANA_TABLES_SFIDTIDX_SGID(sfi->sgid) | (sfi->fm_valid ? ANA_TABLES_SFIDTIDX_POL_ENA : 0) | ANA_TABLES_SFIDTIDX_POL_IDX(sfi->fmid) | ANA_TABLES_SFIDTIDX_SFID_INDEX(sfi->index), ANA_TABLES_SFIDTIDX); ocelot_write(ocelot, (sfi->prio_valid ? ANA_TABLES_SFIDACCESS_IGR_PRIO_MATCH_ENA : 0) | ANA_TABLES_SFIDACCESS_IGR_PRIO(sfi->prio) | ANA_TABLES_SFIDACCESS_MAX_SDU_LEN(sfi->maxsdu) | ANA_TABLES_SFIDACCESS_SFID_TBL_CMD(SFIDACCESS_CMD_WRITE), ANA_TABLES_SFIDACCESS); return readx_poll_timeout(vsc9959_sfi_access_status, ocelot, val, (!ANA_TABLES_SFIDACCESS_SFID_TBL_CMD(val)), 10, 100000); } static int vsc9959_psfp_sfidmask_set(struct ocelot *ocelot, u32 sfid, int ports) { u32 val; ocelot_rmw(ocelot, ANA_TABLES_SFIDTIDX_SFID_INDEX(sfid), ANA_TABLES_SFIDTIDX_SFID_INDEX_M, ANA_TABLES_SFIDTIDX); ocelot_write(ocelot, ANA_TABLES_SFID_MASK_IGR_PORT_MASK(ports) | ANA_TABLES_SFID_MASK_IGR_SRCPORT_MATCH_ENA, ANA_TABLES_SFID_MASK); ocelot_rmw(ocelot, ANA_TABLES_SFIDACCESS_SFID_TBL_CMD(SFIDACCESS_CMD_WRITE), ANA_TABLES_SFIDACCESS_SFID_TBL_CMD_M, ANA_TABLES_SFIDACCESS); return readx_poll_timeout(vsc9959_sfi_access_status, ocelot, val, (!ANA_TABLES_SFIDACCESS_SFID_TBL_CMD(val)), 10, 100000); } static int vsc9959_psfp_sfi_list_add(struct ocelot *ocelot, struct felix_stream_filter *sfi, struct list_head *pos) { struct felix_stream_filter *sfi_entry; int ret; sfi_entry = kmemdup(sfi, sizeof(*sfi_entry), GFP_KERNEL); if (!sfi_entry) return -ENOMEM; refcount_set(&sfi_entry->refcount, 1); ret = vsc9959_psfp_sfi_set(ocelot, sfi_entry); if (ret) { kfree(sfi_entry); return ret; } vsc9959_psfp_sfidmask_set(ocelot, sfi->index, sfi->portmask); list_add(&sfi_entry->list, pos); return 0; } static int vsc9959_psfp_sfi_table_add(struct ocelot *ocelot, struct felix_stream_filter *sfi) { struct list_head *pos, *q, *last; struct felix_stream_filter *tmp; struct ocelot_psfp_list *psfp; u32 insert = 0; psfp = &ocelot->psfp; last = &psfp->sfi_list; list_for_each_safe(pos, q, &psfp->sfi_list) { tmp = list_entry(pos, struct felix_stream_filter, list); if (sfi->sg_valid == tmp->sg_valid && sfi->fm_valid == tmp->fm_valid && sfi->portmask == tmp->portmask && tmp->sgid == sfi->sgid && tmp->fmid == sfi->fmid) { sfi->index = tmp->index; refcount_inc(&tmp->refcount); return 0; } /* Make sure that the index is increasing in order. */ if (tmp->index == insert) { last = pos; insert++; } } sfi->index = insert; return vsc9959_psfp_sfi_list_add(ocelot, sfi, last); } static int vsc9959_psfp_sfi_table_add2(struct ocelot *ocelot, struct felix_stream_filter *sfi, struct felix_stream_filter *sfi2) { struct felix_stream_filter *tmp; struct list_head *pos, *q, *last; struct ocelot_psfp_list *psfp; u32 insert = 0; int ret; psfp = &ocelot->psfp; last = &psfp->sfi_list; list_for_each_safe(pos, q, &psfp->sfi_list) { tmp = list_entry(pos, struct felix_stream_filter, list); /* Make sure that the index is increasing in order. */ if (tmp->index >= insert + 2) break; insert = tmp->index + 1; last = pos; } sfi->index = insert; ret = vsc9959_psfp_sfi_list_add(ocelot, sfi, last); if (ret) return ret; sfi2->index = insert + 1; return vsc9959_psfp_sfi_list_add(ocelot, sfi2, last->next); } static struct felix_stream_filter * vsc9959_psfp_sfi_table_get(struct list_head *sfi_list, u32 index) { struct felix_stream_filter *tmp; list_for_each_entry(tmp, sfi_list, list) if (tmp->index == index) return tmp; return NULL; } static void vsc9959_psfp_sfi_table_del(struct ocelot *ocelot, u32 index) { struct felix_stream_filter *tmp, *n; struct ocelot_psfp_list *psfp; u8 z; psfp = &ocelot->psfp; list_for_each_entry_safe(tmp, n, &psfp->sfi_list, list) if (tmp->index == index) { z = refcount_dec_and_test(&tmp->refcount); if (z) { tmp->enable = 0; vsc9959_psfp_sfi_set(ocelot, tmp); list_del(&tmp->list); kfree(tmp); } break; } } static void vsc9959_psfp_parse_gate(const struct flow_action_entry *entry, struct felix_stream_gate *sgi) { sgi->index = entry->hw_index; sgi->ipv_valid = (entry->gate.prio < 0) ? 0 : 1; sgi->init_ipv = (sgi->ipv_valid) ? entry->gate.prio : 0; sgi->basetime = entry->gate.basetime; sgi->cycletime = entry->gate.cycletime; sgi->num_entries = entry->gate.num_entries; sgi->enable = 1; memcpy(sgi->entries, entry->gate.entries, entry->gate.num_entries * sizeof(struct action_gate_entry)); } static u32 vsc9959_sgi_cfg_status(struct ocelot *ocelot) { return ocelot_read(ocelot, ANA_SG_ACCESS_CTRL); } static int vsc9959_psfp_sgi_set(struct ocelot *ocelot, struct felix_stream_gate *sgi) { struct action_gate_entry *e; struct timespec64 base_ts; u32 interval_sum = 0; u32 val; int i; if (sgi->index > VSC9959_PSFP_GATE_ID_MAX) return -EINVAL; ocelot_write(ocelot, ANA_SG_ACCESS_CTRL_SGID(sgi->index), ANA_SG_ACCESS_CTRL); if (!sgi->enable) { ocelot_rmw(ocelot, ANA_SG_CONFIG_REG_3_INIT_GATE_STATE, ANA_SG_CONFIG_REG_3_INIT_GATE_STATE | ANA_SG_CONFIG_REG_3_GATE_ENABLE, ANA_SG_CONFIG_REG_3); return 0; } if (sgi->cycletime < VSC9959_PSFP_GATE_CYCLETIME_MIN || sgi->cycletime > NSEC_PER_SEC) return -EINVAL; if (sgi->num_entries > VSC9959_PSFP_GATE_LIST_NUM) return -EINVAL; vsc9959_new_base_time(ocelot, sgi->basetime, sgi->cycletime, &base_ts); ocelot_write(ocelot, base_ts.tv_nsec, ANA_SG_CONFIG_REG_1); val = lower_32_bits(base_ts.tv_sec); ocelot_write(ocelot, val, ANA_SG_CONFIG_REG_2); val = upper_32_bits(base_ts.tv_sec); ocelot_write(ocelot, (sgi->ipv_valid ? ANA_SG_CONFIG_REG_3_IPV_VALID : 0) | ANA_SG_CONFIG_REG_3_INIT_IPV(sgi->init_ipv) | ANA_SG_CONFIG_REG_3_GATE_ENABLE | ANA_SG_CONFIG_REG_3_LIST_LENGTH(sgi->num_entries) | ANA_SG_CONFIG_REG_3_INIT_GATE_STATE | ANA_SG_CONFIG_REG_3_BASE_TIME_SEC_MSB(val), ANA_SG_CONFIG_REG_3); ocelot_write(ocelot, sgi->cycletime, ANA_SG_CONFIG_REG_4); e = sgi->entries; for (i = 0; i < sgi->num_entries; i++) { u32 ips = (e[i].ipv < 0) ? 0 : (e[i].ipv + 8); ocelot_write_rix(ocelot, ANA_SG_GCL_GS_CONFIG_IPS(ips) | (e[i].gate_state ? ANA_SG_GCL_GS_CONFIG_GATE_STATE : 0), ANA_SG_GCL_GS_CONFIG, i); interval_sum += e[i].interval; ocelot_write_rix(ocelot, interval_sum, ANA_SG_GCL_TI_CONFIG, i); } ocelot_rmw(ocelot, ANA_SG_ACCESS_CTRL_CONFIG_CHANGE, ANA_SG_ACCESS_CTRL_CONFIG_CHANGE, ANA_SG_ACCESS_CTRL); return readx_poll_timeout(vsc9959_sgi_cfg_status, ocelot, val, (!(ANA_SG_ACCESS_CTRL_CONFIG_CHANGE & val)), 10, 100000); } static int vsc9959_psfp_sgi_table_add(struct ocelot *ocelot, struct felix_stream_gate *sgi) { struct felix_stream_gate_entry *tmp; struct ocelot_psfp_list *psfp; int ret; psfp = &ocelot->psfp; list_for_each_entry(tmp, &psfp->sgi_list, list) if (tmp->index == sgi->index) { refcount_inc(&tmp->refcount); return 0; } tmp = kzalloc(sizeof(*tmp), GFP_KERNEL); if (!tmp) return -ENOMEM; ret = vsc9959_psfp_sgi_set(ocelot, sgi); if (ret) { kfree(tmp); return ret; } tmp->index = sgi->index; refcount_set(&tmp->refcount, 1); list_add_tail(&tmp->list, &psfp->sgi_list); return 0; } static void vsc9959_psfp_sgi_table_del(struct ocelot *ocelot, u32 index) { struct felix_stream_gate_entry *tmp, *n; struct felix_stream_gate sgi = {0}; struct ocelot_psfp_list *psfp; u8 z; psfp = &ocelot->psfp; list_for_each_entry_safe(tmp, n, &psfp->sgi_list, list) if (tmp->index == index) { z = refcount_dec_and_test(&tmp->refcount); if (z) { sgi.index = index; sgi.enable = 0; vsc9959_psfp_sgi_set(ocelot, &sgi); list_del(&tmp->list); kfree(tmp); } break; } } static int vsc9959_psfp_filter_add(struct ocelot *ocelot, int port, struct flow_cls_offload *f) { struct netlink_ext_ack *extack = f->common.extack; struct felix_stream_filter old_sfi, *sfi_entry; struct felix_stream_filter sfi = {0}; const struct flow_action_entry *a; struct felix_stream *stream_entry; struct felix_stream stream = {0}; struct felix_stream_gate *sgi; struct ocelot_psfp_list *psfp; struct ocelot_policer pol; int ret, i, size; u64 rate, burst; u32 index; psfp = &ocelot->psfp; ret = vsc9959_stream_identify(f, &stream); if (ret) { NL_SET_ERR_MSG_MOD(extack, "Only can match on VID, PCP, and dest MAC"); return ret; } mutex_lock(&psfp->lock); flow_action_for_each(i, a, &f->rule->action) { switch (a->id) { case FLOW_ACTION_GATE: size = struct_size(sgi, entries, a->gate.num_entries); sgi = kzalloc(size, GFP_KERNEL); if (!sgi) { ret = -ENOMEM; goto err; } vsc9959_psfp_parse_gate(a, sgi); ret = vsc9959_psfp_sgi_table_add(ocelot, sgi); if (ret) { kfree(sgi); goto err; } sfi.sg_valid = 1; sfi.sgid = sgi->index; kfree(sgi); break; case FLOW_ACTION_POLICE: index = a->hw_index + VSC9959_PSFP_POLICER_BASE; if (index > VSC9959_PSFP_POLICER_MAX) { ret = -EINVAL; goto err; } rate = a->police.rate_bytes_ps; burst = rate * PSCHED_NS2TICKS(a->police.burst); pol = (struct ocelot_policer) { .burst = div_u64(burst, PSCHED_TICKS_PER_SEC), .rate = div_u64(rate, 1000) * 8, }; ret = ocelot_vcap_policer_add(ocelot, index, &pol); if (ret) goto err; sfi.fm_valid = 1; sfi.fmid = index; sfi.maxsdu = a->police.mtu; break; default: mutex_unlock(&psfp->lock); return -EOPNOTSUPP; } } stream.ports = BIT(port); stream.port = port; sfi.portmask = stream.ports; sfi.prio_valid = (stream.prio < 0 ? 0 : 1); sfi.prio = (sfi.prio_valid ? stream.prio : 0); sfi.enable = 1; /* Check if stream is set. */ stream_entry = vsc9959_stream_table_lookup(&psfp->stream_list, &stream); if (stream_entry) { if (stream_entry->ports & BIT(port)) { NL_SET_ERR_MSG_MOD(extack, "The stream is added on this port"); ret = -EEXIST; goto err; } if (stream_entry->ports != BIT(stream_entry->port)) { NL_SET_ERR_MSG_MOD(extack, "The stream is added on two ports"); ret = -EEXIST; goto err; } stream_entry->ports |= BIT(port); stream.ports = stream_entry->ports; sfi_entry = vsc9959_psfp_sfi_table_get(&psfp->sfi_list, stream_entry->sfid); memcpy(&old_sfi, sfi_entry, sizeof(old_sfi)); vsc9959_psfp_sfi_table_del(ocelot, stream_entry->sfid); old_sfi.portmask = stream_entry->ports; sfi.portmask = stream.ports; if (stream_entry->port > port) { ret = vsc9959_psfp_sfi_table_add2(ocelot, &sfi, &old_sfi); stream_entry->dummy = true; } else { ret = vsc9959_psfp_sfi_table_add2(ocelot, &old_sfi, &sfi); stream.dummy = true; } if (ret) goto err; stream_entry->sfid = old_sfi.index; } else { ret = vsc9959_psfp_sfi_table_add(ocelot, &sfi); if (ret) goto err; } stream.sfid = sfi.index; stream.sfid_valid = 1; ret = vsc9959_stream_table_add(ocelot, &psfp->stream_list, &stream, extack); if (ret) { vsc9959_psfp_sfi_table_del(ocelot, stream.sfid); goto err; } mutex_unlock(&psfp->lock); return 0; err: if (sfi.sg_valid) vsc9959_psfp_sgi_table_del(ocelot, sfi.sgid); if (sfi.fm_valid) ocelot_vcap_policer_del(ocelot, sfi.fmid); mutex_unlock(&psfp->lock); return ret; } static int vsc9959_psfp_filter_del(struct ocelot *ocelot, struct flow_cls_offload *f) { struct felix_stream *stream, tmp, *stream_entry; struct ocelot_psfp_list *psfp = &ocelot->psfp; static struct felix_stream_filter *sfi; mutex_lock(&psfp->lock); stream = vsc9959_stream_table_get(&psfp->stream_list, f->cookie); if (!stream) { mutex_unlock(&psfp->lock); return -ENOMEM; } sfi = vsc9959_psfp_sfi_table_get(&psfp->sfi_list, stream->sfid); if (!sfi) { mutex_unlock(&psfp->lock); return -ENOMEM; } if (sfi->sg_valid) vsc9959_psfp_sgi_table_del(ocelot, sfi->sgid); if (sfi->fm_valid) ocelot_vcap_policer_del(ocelot, sfi->fmid); vsc9959_psfp_sfi_table_del(ocelot, stream->sfid); memcpy(&tmp, stream, sizeof(tmp)); stream->sfid_valid = 0; vsc9959_stream_table_del(ocelot, stream); stream_entry = vsc9959_stream_table_lookup(&psfp->stream_list, &tmp); if (stream_entry) { stream_entry->ports = BIT(stream_entry->port); if (stream_entry->dummy) { stream_entry->dummy = false; vsc9959_mact_stream_set(ocelot, stream_entry, NULL); } vsc9959_psfp_sfidmask_set(ocelot, stream_entry->sfid, stream_entry->ports); } mutex_unlock(&psfp->lock); return 0; } static void vsc9959_update_sfid_stats(struct ocelot *ocelot, struct felix_stream_filter *sfi) { struct felix_stream_filter_counters *s = &sfi->stats; u32 match, not_pass_gate, not_pass_sdu, red; u32 sfid = sfi->index; lockdep_assert_held(&ocelot->stat_view_lock); ocelot_rmw(ocelot, SYS_STAT_CFG_STAT_VIEW(sfid), SYS_STAT_CFG_STAT_VIEW_M, SYS_STAT_CFG); match = ocelot_read(ocelot, SYS_COUNT_SF_MATCHING_FRAMES); not_pass_gate = ocelot_read(ocelot, SYS_COUNT_SF_NOT_PASSING_FRAMES); not_pass_sdu = ocelot_read(ocelot, SYS_COUNT_SF_NOT_PASSING_SDU); red = ocelot_read(ocelot, SYS_COUNT_SF_RED_FRAMES); /* Clear the PSFP counter. */ ocelot_write(ocelot, SYS_STAT_CFG_STAT_VIEW(sfid) | SYS_STAT_CFG_STAT_CLEAR_SHOT(0x10), SYS_STAT_CFG); s->match += match; s->not_pass_gate += not_pass_gate; s->not_pass_sdu += not_pass_sdu; s->red += red; } /* Caller must hold &ocelot->stat_view_lock */ static void vsc9959_update_stats(struct ocelot *ocelot) { struct ocelot_psfp_list *psfp = &ocelot->psfp; struct felix_stream_filter *sfi; mutex_lock(&psfp->lock); list_for_each_entry(sfi, &psfp->sfi_list, list) vsc9959_update_sfid_stats(ocelot, sfi); mutex_unlock(&psfp->lock); } static int vsc9959_psfp_stats_get(struct ocelot *ocelot, struct flow_cls_offload *f, struct flow_stats *stats) { struct ocelot_psfp_list *psfp = &ocelot->psfp; struct felix_stream_filter_counters *s; static struct felix_stream_filter *sfi; struct felix_stream *stream; stream = vsc9959_stream_table_get(&psfp->stream_list, f->cookie); if (!stream) return -ENOMEM; sfi = vsc9959_psfp_sfi_table_get(&psfp->sfi_list, stream->sfid); if (!sfi) return -EINVAL; mutex_lock(&ocelot->stat_view_lock); vsc9959_update_sfid_stats(ocelot, sfi); s = &sfi->stats; stats->pkts = s->match; stats->drops = s->not_pass_gate + s->not_pass_sdu + s->red; memset(s, 0, sizeof(*s)); mutex_unlock(&ocelot->stat_view_lock); return 0; } static void vsc9959_psfp_init(struct ocelot *ocelot) { struct ocelot_psfp_list *psfp = &ocelot->psfp; INIT_LIST_HEAD(&psfp->stream_list); INIT_LIST_HEAD(&psfp->sfi_list); INIT_LIST_HEAD(&psfp->sgi_list); mutex_init(&psfp->lock); } /* When using cut-through forwarding and the egress port runs at a higher data * rate than the ingress port, the packet currently under transmission would * suffer an underrun since it would be transmitted faster than it is received. * The Felix switch implementation of cut-through forwarding does not check in * hardware whether this condition is satisfied or not, so we must restrict the * list of ports that have cut-through forwarding enabled on egress to only be * the ports operating at the lowest link speed within their respective * forwarding domain. */ static void vsc9959_cut_through_fwd(struct ocelot *ocelot) { struct felix *felix = ocelot_to_felix(ocelot); struct dsa_switch *ds = felix->ds; int tc, port, other_port; lockdep_assert_held(&ocelot->fwd_domain_lock); for (port = 0; port < ocelot->num_phys_ports; port++) { struct ocelot_port *ocelot_port = ocelot->ports[port]; struct ocelot_mm_state *mm = &ocelot->mm[port]; int min_speed = ocelot_port->speed; unsigned long mask = 0; u32 tmp, val = 0; /* Disable cut-through on ports that are down */ if (ocelot_port->speed <= 0) goto set; if (dsa_is_cpu_port(ds, port)) { /* Ocelot switches forward from the NPI port towards * any port, regardless of it being in the NPI port's * forwarding domain or not. */ mask = dsa_user_ports(ds); } else { mask = ocelot_get_bridge_fwd_mask(ocelot, port); mask &= ~BIT(port); if (ocelot->npi >= 0) mask |= BIT(ocelot->npi); else mask |= ocelot_port_assigned_dsa_8021q_cpu_mask(ocelot, port); } /* Calculate the minimum link speed, among the ports that are * up, of this source port's forwarding domain. */ for_each_set_bit(other_port, &mask, ocelot->num_phys_ports) { struct ocelot_port *other_ocelot_port; other_ocelot_port = ocelot->ports[other_port]; if (other_ocelot_port->speed <= 0) continue; if (min_speed > other_ocelot_port->speed) min_speed = other_ocelot_port->speed; } /* Enable cut-through forwarding for all traffic classes that * don't have oversized dropping enabled, since this check is * bypassed in cut-through mode. Also exclude preemptible * traffic classes, since these would hang the port for some * reason, if sent as cut-through. */ if (ocelot_port->speed == min_speed) { val = GENMASK(7, 0) & ~mm->active_preemptible_tcs; for (tc = 0; tc < OCELOT_NUM_TC; tc++) if (vsc9959_port_qmaxsdu_get(ocelot, port, tc)) val &= ~BIT(tc); } set: tmp = ocelot_read_rix(ocelot, ANA_CUT_THRU_CFG, port); if (tmp == val) continue; dev_dbg(ocelot->dev, "port %d fwd mask 0x%lx speed %d min_speed %d, %s cut-through forwarding on TC mask 0x%x\n", port, mask, ocelot_port->speed, min_speed, val ? "enabling" : "disabling", val); ocelot_write_rix(ocelot, val, ANA_CUT_THRU_CFG, port); } } static const struct ocelot_ops vsc9959_ops = { .reset = vsc9959_reset, .wm_enc = vsc9959_wm_enc, .wm_dec = vsc9959_wm_dec, .wm_stat = vsc9959_wm_stat, .port_to_netdev = felix_port_to_netdev, .netdev_to_port = felix_netdev_to_port, .psfp_init = vsc9959_psfp_init, .psfp_filter_add = vsc9959_psfp_filter_add, .psfp_filter_del = vsc9959_psfp_filter_del, .psfp_stats_get = vsc9959_psfp_stats_get, .cut_through_fwd = vsc9959_cut_through_fwd, .tas_clock_adjust = vsc9959_tas_clock_adjust, .update_stats = vsc9959_update_stats, .tas_guard_bands_update = vsc9959_tas_guard_bands_update, }; static const struct felix_info felix_info_vsc9959 = { .resources = vsc9959_resources, .num_resources = ARRAY_SIZE(vsc9959_resources), .resource_names = vsc9959_resource_names, .regfields = vsc9959_regfields, .map = vsc9959_regmap, .ops = &vsc9959_ops, .vcap = vsc9959_vcap_props, .vcap_pol_base = VSC9959_VCAP_POLICER_BASE, .vcap_pol_max = VSC9959_VCAP_POLICER_MAX, .vcap_pol_base2 = 0, .vcap_pol_max2 = 0, .num_mact_rows = 2048, .num_ports = VSC9959_NUM_PORTS, .num_tx_queues = OCELOT_NUM_TC, .quirks = FELIX_MAC_QUIRKS, .quirk_no_xtr_irq = true, .ptp_caps = &vsc9959_ptp_caps, .mdio_bus_alloc = vsc9959_mdio_bus_alloc, .mdio_bus_free = vsc9959_mdio_bus_free, .port_modes = vsc9959_port_modes, .port_setup_tc = vsc9959_port_setup_tc, .port_sched_speed_set = vsc9959_sched_speed_set, }; /* The INTB interrupt is shared between for PTP TX timestamp availability * notification and MAC Merge status change on each port. */ static irqreturn_t felix_irq_handler(int irq, void *data) { struct ocelot *ocelot = (struct ocelot *)data; ocelot_get_txtstamp(ocelot); ocelot_mm_irq(ocelot); return IRQ_HANDLED; } static int felix_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct dsa_switch *ds; struct ocelot *ocelot; struct felix *felix; int err; if (pdev->dev.of_node && !of_device_is_available(pdev->dev.of_node)) { dev_info(&pdev->dev, "device is disabled, skipping\n"); return -ENODEV; } err = pci_enable_device(pdev); if (err) { dev_err(&pdev->dev, "device enable failed\n"); goto err_pci_enable; } felix = kzalloc(sizeof(struct felix), GFP_KERNEL); if (!felix) { err = -ENOMEM; dev_err(&pdev->dev, "Failed to allocate driver memory\n"); goto err_alloc_felix; } pci_set_drvdata(pdev, felix); ocelot = &felix->ocelot; ocelot->dev = &pdev->dev; ocelot->num_flooding_pgids = OCELOT_NUM_TC; felix->info = &felix_info_vsc9959; felix->switch_base = pci_resource_start(pdev, VSC9959_SWITCH_PCI_BAR); pci_set_master(pdev); err = devm_request_threaded_irq(&pdev->dev, pdev->irq, NULL, &felix_irq_handler, IRQF_ONESHOT, "felix-intb", ocelot); if (err) { dev_err(&pdev->dev, "Failed to request irq\n"); goto err_alloc_irq; } ocelot->ptp = 1; ocelot->mm_supported = true; ds = kzalloc(sizeof(struct dsa_switch), GFP_KERNEL); if (!ds) { err = -ENOMEM; dev_err(&pdev->dev, "Failed to allocate DSA switch\n"); goto err_alloc_ds; } ds->dev = &pdev->dev; ds->num_ports = felix->info->num_ports; ds->num_tx_queues = felix->info->num_tx_queues; ds->ops = &felix_switch_ops; ds->priv = ocelot; felix->ds = ds; felix->tag_proto = DSA_TAG_PROTO_OCELOT; err = dsa_register_switch(ds); if (err) { dev_err_probe(&pdev->dev, err, "Failed to register DSA switch\n"); goto err_register_ds; } return 0; err_register_ds: kfree(ds); err_alloc_ds: err_alloc_irq: kfree(felix); err_alloc_felix: pci_disable_device(pdev); err_pci_enable: return err; } static void felix_pci_remove(struct pci_dev *pdev) { struct felix *felix = pci_get_drvdata(pdev); if (!felix) return; dsa_unregister_switch(felix->ds); kfree(felix->ds); kfree(felix); pci_disable_device(pdev); } static void felix_pci_shutdown(struct pci_dev *pdev) { struct felix *felix = pci_get_drvdata(pdev); if (!felix) return; dsa_switch_shutdown(felix->ds); pci_set_drvdata(pdev, NULL); } static struct pci_device_id felix_ids[] = { { /* NXP LS1028A */ PCI_DEVICE(PCI_VENDOR_ID_FREESCALE, 0xEEF0), }, { 0, } }; MODULE_DEVICE_TABLE(pci, felix_ids); static struct pci_driver felix_vsc9959_pci_driver = { .name = "mscc_felix", .id_table = felix_ids, .probe = felix_pci_probe, .remove = felix_pci_remove, .shutdown = felix_pci_shutdown, }; module_pci_driver(felix_vsc9959_pci_driver); MODULE_DESCRIPTION("Felix Switch driver"); MODULE_LICENSE("GPL v2");