// SPDX-License-Identifier: GPL-2.0 /* * Microchip KSZ8795 switch driver * * Copyright (C) 2017 Microchip Technology Inc. * Tristram Ha */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ksz_common.h" #include "ksz8795_reg.h" #include "ksz8.h" static const u8 ksz8795_regs[] = { [REG_IND_CTRL_0] = 0x6E, [REG_IND_DATA_8] = 0x70, [REG_IND_DATA_CHECK] = 0x72, [REG_IND_DATA_HI] = 0x71, [REG_IND_DATA_LO] = 0x75, [REG_IND_MIB_CHECK] = 0x74, [REG_IND_BYTE] = 0xA0, [P_FORCE_CTRL] = 0x0C, [P_LINK_STATUS] = 0x0E, [P_LOCAL_CTRL] = 0x07, [P_NEG_RESTART_CTRL] = 0x0D, [P_REMOTE_STATUS] = 0x08, [P_SPEED_STATUS] = 0x09, [S_TAIL_TAG_CTRL] = 0x0C, }; static const u32 ksz8795_masks[] = { [PORT_802_1P_REMAPPING] = BIT(7), [SW_TAIL_TAG_ENABLE] = BIT(1), [MIB_COUNTER_OVERFLOW] = BIT(6), [MIB_COUNTER_VALID] = BIT(5), [VLAN_TABLE_FID] = GENMASK(6, 0), [VLAN_TABLE_MEMBERSHIP] = GENMASK(11, 7), [VLAN_TABLE_VALID] = BIT(12), [STATIC_MAC_TABLE_VALID] = BIT(21), [STATIC_MAC_TABLE_USE_FID] = BIT(23), [STATIC_MAC_TABLE_FID] = GENMASK(30, 24), [STATIC_MAC_TABLE_OVERRIDE] = BIT(26), [STATIC_MAC_TABLE_FWD_PORTS] = GENMASK(24, 20), [DYNAMIC_MAC_TABLE_ENTRIES_H] = GENMASK(6, 0), [DYNAMIC_MAC_TABLE_MAC_EMPTY] = BIT(8), [DYNAMIC_MAC_TABLE_NOT_READY] = BIT(7), [DYNAMIC_MAC_TABLE_ENTRIES] = GENMASK(31, 29), [DYNAMIC_MAC_TABLE_FID] = GENMASK(26, 20), [DYNAMIC_MAC_TABLE_SRC_PORT] = GENMASK(26, 24), [DYNAMIC_MAC_TABLE_TIMESTAMP] = GENMASK(28, 27), }; static const u8 ksz8795_shifts[] = { [VLAN_TABLE_MEMBERSHIP_S] = 7, [VLAN_TABLE] = 16, [STATIC_MAC_FWD_PORTS] = 16, [STATIC_MAC_FID] = 24, [DYNAMIC_MAC_ENTRIES_H] = 3, [DYNAMIC_MAC_ENTRIES] = 29, [DYNAMIC_MAC_FID] = 16, [DYNAMIC_MAC_TIMESTAMP] = 27, [DYNAMIC_MAC_SRC_PORT] = 24, }; static const u8 ksz8863_regs[] = { [REG_IND_CTRL_0] = 0x79, [REG_IND_DATA_8] = 0x7B, [REG_IND_DATA_CHECK] = 0x7B, [REG_IND_DATA_HI] = 0x7C, [REG_IND_DATA_LO] = 0x80, [REG_IND_MIB_CHECK] = 0x80, [P_FORCE_CTRL] = 0x0C, [P_LINK_STATUS] = 0x0E, [P_LOCAL_CTRL] = 0x0C, [P_NEG_RESTART_CTRL] = 0x0D, [P_REMOTE_STATUS] = 0x0E, [P_SPEED_STATUS] = 0x0F, [S_TAIL_TAG_CTRL] = 0x03, }; static const u32 ksz8863_masks[] = { [PORT_802_1P_REMAPPING] = BIT(3), [SW_TAIL_TAG_ENABLE] = BIT(6), [MIB_COUNTER_OVERFLOW] = BIT(7), [MIB_COUNTER_VALID] = BIT(6), [VLAN_TABLE_FID] = GENMASK(15, 12), [VLAN_TABLE_MEMBERSHIP] = GENMASK(18, 16), [VLAN_TABLE_VALID] = BIT(19), [STATIC_MAC_TABLE_VALID] = BIT(19), [STATIC_MAC_TABLE_USE_FID] = BIT(21), [STATIC_MAC_TABLE_FID] = GENMASK(29, 26), [STATIC_MAC_TABLE_OVERRIDE] = BIT(20), [STATIC_MAC_TABLE_FWD_PORTS] = GENMASK(18, 16), [DYNAMIC_MAC_TABLE_ENTRIES_H] = GENMASK(5, 0), [DYNAMIC_MAC_TABLE_MAC_EMPTY] = BIT(7), [DYNAMIC_MAC_TABLE_NOT_READY] = BIT(7), [DYNAMIC_MAC_TABLE_ENTRIES] = GENMASK(31, 28), [DYNAMIC_MAC_TABLE_FID] = GENMASK(19, 16), [DYNAMIC_MAC_TABLE_SRC_PORT] = GENMASK(21, 20), [DYNAMIC_MAC_TABLE_TIMESTAMP] = GENMASK(23, 22), }; static u8 ksz8863_shifts[] = { [VLAN_TABLE_MEMBERSHIP_S] = 16, [STATIC_MAC_FWD_PORTS] = 16, [STATIC_MAC_FID] = 22, [DYNAMIC_MAC_ENTRIES_H] = 3, [DYNAMIC_MAC_ENTRIES] = 24, [DYNAMIC_MAC_FID] = 16, [DYNAMIC_MAC_TIMESTAMP] = 24, [DYNAMIC_MAC_SRC_PORT] = 20, }; static bool ksz_is_ksz88x3(struct ksz_device *dev) { return dev->chip_id == 0x8830; } static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set) { regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0); } static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits, bool set) { regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset), bits, set ? bits : 0); } static int ksz8_ind_write8(struct ksz_device *dev, u8 table, u16 addr, u8 data) { struct ksz8 *ksz8 = dev->priv; const u8 *regs = ksz8->regs; u16 ctrl_addr; int ret = 0; mutex_lock(&dev->alu_mutex); ctrl_addr = IND_ACC_TABLE(table) | addr; ret = ksz_write8(dev, regs[REG_IND_BYTE], data); if (!ret) ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr); mutex_unlock(&dev->alu_mutex); return ret; } static int ksz8_reset_switch(struct ksz_device *dev) { if (ksz_is_ksz88x3(dev)) { /* reset switch */ ksz_cfg(dev, KSZ8863_REG_SW_RESET, KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, true); ksz_cfg(dev, KSZ8863_REG_SW_RESET, KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, false); } else { /* reset switch */ ksz_write8(dev, REG_POWER_MANAGEMENT_1, SW_SOFTWARE_POWER_DOWN << SW_POWER_MANAGEMENT_MODE_S); ksz_write8(dev, REG_POWER_MANAGEMENT_1, 0); } return 0; } static void ksz8795_set_prio_queue(struct ksz_device *dev, int port, int queue) { u8 hi, lo; /* Number of queues can only be 1, 2, or 4. */ switch (queue) { case 4: case 3: queue = PORT_QUEUE_SPLIT_4; break; case 2: queue = PORT_QUEUE_SPLIT_2; break; default: queue = PORT_QUEUE_SPLIT_1; } ksz_pread8(dev, port, REG_PORT_CTRL_0, &lo); ksz_pread8(dev, port, P_DROP_TAG_CTRL, &hi); lo &= ~PORT_QUEUE_SPLIT_L; if (queue & PORT_QUEUE_SPLIT_2) lo |= PORT_QUEUE_SPLIT_L; hi &= ~PORT_QUEUE_SPLIT_H; if (queue & PORT_QUEUE_SPLIT_4) hi |= PORT_QUEUE_SPLIT_H; ksz_pwrite8(dev, port, REG_PORT_CTRL_0, lo); ksz_pwrite8(dev, port, P_DROP_TAG_CTRL, hi); /* Default is port based for egress rate limit. */ if (queue != PORT_QUEUE_SPLIT_1) ksz_cfg(dev, REG_SW_CTRL_19, SW_OUT_RATE_LIMIT_QUEUE_BASED, true); } static void ksz8_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt) { struct ksz8 *ksz8 = dev->priv; const u32 *masks; const u8 *regs; u16 ctrl_addr; u32 data; u8 check; int loop; masks = ksz8->masks; regs = ksz8->regs; ctrl_addr = addr + dev->info->reg_mib_cnt * port; ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ); mutex_lock(&dev->alu_mutex); ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr); /* It is almost guaranteed to always read the valid bit because of * slow SPI speed. */ for (loop = 2; loop > 0; loop--) { ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check); if (check & masks[MIB_COUNTER_VALID]) { ksz_read32(dev, regs[REG_IND_DATA_LO], &data); if (check & masks[MIB_COUNTER_OVERFLOW]) *cnt += MIB_COUNTER_VALUE + 1; *cnt += data & MIB_COUNTER_VALUE; break; } } mutex_unlock(&dev->alu_mutex); } static void ksz8795_r_mib_pkt(struct ksz_device *dev, int port, u16 addr, u64 *dropped, u64 *cnt) { struct ksz8 *ksz8 = dev->priv; const u32 *masks; const u8 *regs; u16 ctrl_addr; u32 data; u8 check; int loop; masks = ksz8->masks; regs = ksz8->regs; addr -= dev->info->reg_mib_cnt; ctrl_addr = (KSZ8795_MIB_TOTAL_RX_1 - KSZ8795_MIB_TOTAL_RX_0) * port; ctrl_addr += addr + KSZ8795_MIB_TOTAL_RX_0; ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ); mutex_lock(&dev->alu_mutex); ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr); /* It is almost guaranteed to always read the valid bit because of * slow SPI speed. */ for (loop = 2; loop > 0; loop--) { ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check); if (check & masks[MIB_COUNTER_VALID]) { ksz_read32(dev, regs[REG_IND_DATA_LO], &data); if (addr < 2) { u64 total; total = check & MIB_TOTAL_BYTES_H; total <<= 32; *cnt += total; *cnt += data; if (check & masks[MIB_COUNTER_OVERFLOW]) { total = MIB_TOTAL_BYTES_H + 1; total <<= 32; *cnt += total; } } else { if (check & masks[MIB_COUNTER_OVERFLOW]) *cnt += MIB_PACKET_DROPPED + 1; *cnt += data & MIB_PACKET_DROPPED; } break; } } mutex_unlock(&dev->alu_mutex); } static void ksz8863_r_mib_pkt(struct ksz_device *dev, int port, u16 addr, u64 *dropped, u64 *cnt) { struct ksz8 *ksz8 = dev->priv; const u8 *regs = ksz8->regs; u32 *last = (u32 *)dropped; u16 ctrl_addr; u32 data; u32 cur; addr -= dev->info->reg_mib_cnt; ctrl_addr = addr ? KSZ8863_MIB_PACKET_DROPPED_TX_0 : KSZ8863_MIB_PACKET_DROPPED_RX_0; ctrl_addr += port; ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ); mutex_lock(&dev->alu_mutex); ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr); ksz_read32(dev, regs[REG_IND_DATA_LO], &data); mutex_unlock(&dev->alu_mutex); data &= MIB_PACKET_DROPPED; cur = last[addr]; if (data != cur) { last[addr] = data; if (data < cur) data += MIB_PACKET_DROPPED + 1; data -= cur; *cnt += data; } } static void ksz8_r_mib_pkt(struct ksz_device *dev, int port, u16 addr, u64 *dropped, u64 *cnt) { if (ksz_is_ksz88x3(dev)) ksz8863_r_mib_pkt(dev, port, addr, dropped, cnt); else ksz8795_r_mib_pkt(dev, port, addr, dropped, cnt); } static void ksz8_freeze_mib(struct ksz_device *dev, int port, bool freeze) { if (ksz_is_ksz88x3(dev)) return; /* enable the port for flush/freeze function */ if (freeze) ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true); ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FREEZE, freeze); /* disable the port after freeze is done */ if (!freeze) ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false); } static void ksz8_port_init_cnt(struct ksz_device *dev, int port) { struct ksz_port_mib *mib = &dev->ports[port].mib; u64 *dropped; if (!ksz_is_ksz88x3(dev)) { /* flush all enabled port MIB counters */ ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true); ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FLUSH, true); ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false); } mib->cnt_ptr = 0; /* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */ while (mib->cnt_ptr < dev->info->reg_mib_cnt) { dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr, &mib->counters[mib->cnt_ptr]); ++mib->cnt_ptr; } /* last one in storage */ dropped = &mib->counters[dev->info->mib_cnt]; /* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */ while (mib->cnt_ptr < dev->info->mib_cnt) { dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr, dropped, &mib->counters[mib->cnt_ptr]); ++mib->cnt_ptr; } } static void ksz8_r_table(struct ksz_device *dev, int table, u16 addr, u64 *data) { struct ksz8 *ksz8 = dev->priv; const u8 *regs = ksz8->regs; u16 ctrl_addr; ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr; mutex_lock(&dev->alu_mutex); ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr); ksz_read64(dev, regs[REG_IND_DATA_HI], data); mutex_unlock(&dev->alu_mutex); } static void ksz8_w_table(struct ksz_device *dev, int table, u16 addr, u64 data) { struct ksz8 *ksz8 = dev->priv; const u8 *regs = ksz8->regs; u16 ctrl_addr; ctrl_addr = IND_ACC_TABLE(table) | addr; mutex_lock(&dev->alu_mutex); ksz_write64(dev, regs[REG_IND_DATA_HI], data); ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr); mutex_unlock(&dev->alu_mutex); } static int ksz8_valid_dyn_entry(struct ksz_device *dev, u8 *data) { struct ksz8 *ksz8 = dev->priv; int timeout = 100; const u32 *masks; const u8 *regs; masks = ksz8->masks; regs = ksz8->regs; do { ksz_read8(dev, regs[REG_IND_DATA_CHECK], data); timeout--; } while ((*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) && timeout); /* Entry is not ready for accessing. */ if (*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) { return -EAGAIN; /* Entry is ready for accessing. */ } else { ksz_read8(dev, regs[REG_IND_DATA_8], data); /* There is no valid entry in the table. */ if (*data & masks[DYNAMIC_MAC_TABLE_MAC_EMPTY]) return -ENXIO; } return 0; } static int ksz8_r_dyn_mac_table(struct ksz_device *dev, u16 addr, u8 *mac_addr, u8 *fid, u8 *src_port, u8 *timestamp, u16 *entries) { struct ksz8 *ksz8 = dev->priv; u32 data_hi, data_lo; const u8 *shifts; const u32 *masks; const u8 *regs; u16 ctrl_addr; u8 data; int rc; shifts = ksz8->shifts; masks = ksz8->masks; regs = ksz8->regs; ctrl_addr = IND_ACC_TABLE(TABLE_DYNAMIC_MAC | TABLE_READ) | addr; mutex_lock(&dev->alu_mutex); ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr); rc = ksz8_valid_dyn_entry(dev, &data); if (rc == -EAGAIN) { if (addr == 0) *entries = 0; } else if (rc == -ENXIO) { *entries = 0; /* At least one valid entry in the table. */ } else { u64 buf = 0; int cnt; ksz_read64(dev, regs[REG_IND_DATA_HI], &buf); data_hi = (u32)(buf >> 32); data_lo = (u32)buf; /* Check out how many valid entry in the table. */ cnt = data & masks[DYNAMIC_MAC_TABLE_ENTRIES_H]; cnt <<= shifts[DYNAMIC_MAC_ENTRIES_H]; cnt |= (data_hi & masks[DYNAMIC_MAC_TABLE_ENTRIES]) >> shifts[DYNAMIC_MAC_ENTRIES]; *entries = cnt + 1; *fid = (data_hi & masks[DYNAMIC_MAC_TABLE_FID]) >> shifts[DYNAMIC_MAC_FID]; *src_port = (data_hi & masks[DYNAMIC_MAC_TABLE_SRC_PORT]) >> shifts[DYNAMIC_MAC_SRC_PORT]; *timestamp = (data_hi & masks[DYNAMIC_MAC_TABLE_TIMESTAMP]) >> shifts[DYNAMIC_MAC_TIMESTAMP]; mac_addr[5] = (u8)data_lo; mac_addr[4] = (u8)(data_lo >> 8); mac_addr[3] = (u8)(data_lo >> 16); mac_addr[2] = (u8)(data_lo >> 24); mac_addr[1] = (u8)data_hi; mac_addr[0] = (u8)(data_hi >> 8); rc = 0; } mutex_unlock(&dev->alu_mutex); return rc; } static int ksz8_r_sta_mac_table(struct ksz_device *dev, u16 addr, struct alu_struct *alu) { struct ksz8 *ksz8 = dev->priv; u32 data_hi, data_lo; const u8 *shifts; const u32 *masks; u64 data; shifts = ksz8->shifts; masks = ksz8->masks; ksz8_r_table(dev, TABLE_STATIC_MAC, addr, &data); data_hi = data >> 32; data_lo = (u32)data; if (data_hi & (masks[STATIC_MAC_TABLE_VALID] | masks[STATIC_MAC_TABLE_OVERRIDE])) { alu->mac[5] = (u8)data_lo; alu->mac[4] = (u8)(data_lo >> 8); alu->mac[3] = (u8)(data_lo >> 16); alu->mac[2] = (u8)(data_lo >> 24); alu->mac[1] = (u8)data_hi; alu->mac[0] = (u8)(data_hi >> 8); alu->port_forward = (data_hi & masks[STATIC_MAC_TABLE_FWD_PORTS]) >> shifts[STATIC_MAC_FWD_PORTS]; alu->is_override = (data_hi & masks[STATIC_MAC_TABLE_OVERRIDE]) ? 1 : 0; data_hi >>= 1; alu->is_static = true; alu->is_use_fid = (data_hi & masks[STATIC_MAC_TABLE_USE_FID]) ? 1 : 0; alu->fid = (data_hi & masks[STATIC_MAC_TABLE_FID]) >> shifts[STATIC_MAC_FID]; return 0; } return -ENXIO; } static void ksz8_w_sta_mac_table(struct ksz_device *dev, u16 addr, struct alu_struct *alu) { struct ksz8 *ksz8 = dev->priv; u32 data_hi, data_lo; const u8 *shifts; const u32 *masks; u64 data; shifts = ksz8->shifts; masks = ksz8->masks; data_lo = ((u32)alu->mac[2] << 24) | ((u32)alu->mac[3] << 16) | ((u32)alu->mac[4] << 8) | alu->mac[5]; data_hi = ((u32)alu->mac[0] << 8) | alu->mac[1]; data_hi |= (u32)alu->port_forward << shifts[STATIC_MAC_FWD_PORTS]; if (alu->is_override) data_hi |= masks[STATIC_MAC_TABLE_OVERRIDE]; if (alu->is_use_fid) { data_hi |= masks[STATIC_MAC_TABLE_USE_FID]; data_hi |= (u32)alu->fid << shifts[STATIC_MAC_FID]; } if (alu->is_static) data_hi |= masks[STATIC_MAC_TABLE_VALID]; else data_hi &= ~masks[STATIC_MAC_TABLE_OVERRIDE]; data = (u64)data_hi << 32 | data_lo; ksz8_w_table(dev, TABLE_STATIC_MAC, addr, data); } static void ksz8_from_vlan(struct ksz_device *dev, u32 vlan, u8 *fid, u8 *member, u8 *valid) { struct ksz8 *ksz8 = dev->priv; const u8 *shifts; const u32 *masks; shifts = ksz8->shifts; masks = ksz8->masks; *fid = vlan & masks[VLAN_TABLE_FID]; *member = (vlan & masks[VLAN_TABLE_MEMBERSHIP]) >> shifts[VLAN_TABLE_MEMBERSHIP_S]; *valid = !!(vlan & masks[VLAN_TABLE_VALID]); } static void ksz8_to_vlan(struct ksz_device *dev, u8 fid, u8 member, u8 valid, u16 *vlan) { struct ksz8 *ksz8 = dev->priv; const u8 *shifts; const u32 *masks; shifts = ksz8->shifts; masks = ksz8->masks; *vlan = fid; *vlan |= (u16)member << shifts[VLAN_TABLE_MEMBERSHIP_S]; if (valid) *vlan |= masks[VLAN_TABLE_VALID]; } static void ksz8_r_vlan_entries(struct ksz_device *dev, u16 addr) { struct ksz8 *ksz8 = dev->priv; const u8 *shifts; u64 data; int i; shifts = ksz8->shifts; ksz8_r_table(dev, TABLE_VLAN, addr, &data); addr *= 4; for (i = 0; i < 4; i++) { dev->vlan_cache[addr + i].table[0] = (u16)data; data >>= shifts[VLAN_TABLE]; } } static void ksz8_r_vlan_table(struct ksz_device *dev, u16 vid, u16 *vlan) { int index; u16 *data; u16 addr; u64 buf; data = (u16 *)&buf; addr = vid / 4; index = vid & 3; ksz8_r_table(dev, TABLE_VLAN, addr, &buf); *vlan = data[index]; } static void ksz8_w_vlan_table(struct ksz_device *dev, u16 vid, u16 vlan) { int index; u16 *data; u16 addr; u64 buf; data = (u16 *)&buf; addr = vid / 4; index = vid & 3; ksz8_r_table(dev, TABLE_VLAN, addr, &buf); data[index] = vlan; dev->vlan_cache[vid].table[0] = vlan; ksz8_w_table(dev, TABLE_VLAN, addr, buf); } static void ksz8_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val) { struct ksz8 *ksz8 = dev->priv; u8 restart, speed, ctrl, link; const u8 *regs = ksz8->regs; int processed = true; u8 val1, val2; u16 data = 0; u8 p = phy; switch (reg) { case MII_BMCR: ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart); ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed); ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl); if (restart & PORT_PHY_LOOPBACK) data |= BMCR_LOOPBACK; if (ctrl & PORT_FORCE_100_MBIT) data |= BMCR_SPEED100; if (ksz_is_ksz88x3(dev)) { if ((ctrl & PORT_AUTO_NEG_ENABLE)) data |= BMCR_ANENABLE; } else { if (!(ctrl & PORT_AUTO_NEG_DISABLE)) data |= BMCR_ANENABLE; } if (restart & PORT_POWER_DOWN) data |= BMCR_PDOWN; if (restart & PORT_AUTO_NEG_RESTART) data |= BMCR_ANRESTART; if (ctrl & PORT_FORCE_FULL_DUPLEX) data |= BMCR_FULLDPLX; if (speed & PORT_HP_MDIX) data |= KSZ886X_BMCR_HP_MDIX; if (restart & PORT_FORCE_MDIX) data |= KSZ886X_BMCR_FORCE_MDI; if (restart & PORT_AUTO_MDIX_DISABLE) data |= KSZ886X_BMCR_DISABLE_AUTO_MDIX; if (restart & PORT_TX_DISABLE) data |= KSZ886X_BMCR_DISABLE_TRANSMIT; if (restart & PORT_LED_OFF) data |= KSZ886X_BMCR_DISABLE_LED; break; case MII_BMSR: ksz_pread8(dev, p, regs[P_LINK_STATUS], &link); data = BMSR_100FULL | BMSR_100HALF | BMSR_10FULL | BMSR_10HALF | BMSR_ANEGCAPABLE; if (link & PORT_AUTO_NEG_COMPLETE) data |= BMSR_ANEGCOMPLETE; if (link & PORT_STAT_LINK_GOOD) data |= BMSR_LSTATUS; break; case MII_PHYSID1: data = KSZ8795_ID_HI; break; case MII_PHYSID2: if (ksz_is_ksz88x3(dev)) data = KSZ8863_ID_LO; else data = KSZ8795_ID_LO; break; case MII_ADVERTISE: ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl); data = ADVERTISE_CSMA; if (ctrl & PORT_AUTO_NEG_SYM_PAUSE) data |= ADVERTISE_PAUSE_CAP; if (ctrl & PORT_AUTO_NEG_100BTX_FD) data |= ADVERTISE_100FULL; if (ctrl & PORT_AUTO_NEG_100BTX) data |= ADVERTISE_100HALF; if (ctrl & PORT_AUTO_NEG_10BT_FD) data |= ADVERTISE_10FULL; if (ctrl & PORT_AUTO_NEG_10BT) data |= ADVERTISE_10HALF; break; case MII_LPA: ksz_pread8(dev, p, regs[P_REMOTE_STATUS], &link); data = LPA_SLCT; if (link & PORT_REMOTE_SYM_PAUSE) data |= LPA_PAUSE_CAP; if (link & PORT_REMOTE_100BTX_FD) data |= LPA_100FULL; if (link & PORT_REMOTE_100BTX) data |= LPA_100HALF; if (link & PORT_REMOTE_10BT_FD) data |= LPA_10FULL; if (link & PORT_REMOTE_10BT) data |= LPA_10HALF; if (data & ~LPA_SLCT) data |= LPA_LPACK; break; case PHY_REG_LINK_MD: ksz_pread8(dev, p, REG_PORT_LINK_MD_CTRL, &val1); ksz_pread8(dev, p, REG_PORT_LINK_MD_RESULT, &val2); if (val1 & PORT_START_CABLE_DIAG) data |= PHY_START_CABLE_DIAG; if (val1 & PORT_CABLE_10M_SHORT) data |= PHY_CABLE_10M_SHORT; data |= FIELD_PREP(PHY_CABLE_DIAG_RESULT_M, FIELD_GET(PORT_CABLE_DIAG_RESULT_M, val1)); data |= FIELD_PREP(PHY_CABLE_FAULT_COUNTER_M, (FIELD_GET(PORT_CABLE_FAULT_COUNTER_H, val1) << 8) | FIELD_GET(PORT_CABLE_FAULT_COUNTER_L, val2)); break; case PHY_REG_PHY_CTRL: ksz_pread8(dev, p, regs[P_LINK_STATUS], &link); if (link & PORT_MDIX_STATUS) data |= KSZ886X_CTRL_MDIX_STAT; break; default: processed = false; break; } if (processed) *val = data; } static void ksz8_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val) { struct ksz8 *ksz8 = dev->priv; u8 restart, speed, ctrl, data; const u8 *regs = ksz8->regs; u8 p = phy; switch (reg) { case MII_BMCR: /* Do not support PHY reset function. */ if (val & BMCR_RESET) break; ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed); data = speed; if (val & KSZ886X_BMCR_HP_MDIX) data |= PORT_HP_MDIX; else data &= ~PORT_HP_MDIX; if (data != speed) ksz_pwrite8(dev, p, regs[P_SPEED_STATUS], data); ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl); data = ctrl; if (ksz_is_ksz88x3(dev)) { if ((val & BMCR_ANENABLE)) data |= PORT_AUTO_NEG_ENABLE; else data &= ~PORT_AUTO_NEG_ENABLE; } else { if (!(val & BMCR_ANENABLE)) data |= PORT_AUTO_NEG_DISABLE; else data &= ~PORT_AUTO_NEG_DISABLE; /* Fiber port does not support auto-negotiation. */ if (dev->ports[p].fiber) data |= PORT_AUTO_NEG_DISABLE; } if (val & BMCR_SPEED100) data |= PORT_FORCE_100_MBIT; else data &= ~PORT_FORCE_100_MBIT; if (val & BMCR_FULLDPLX) data |= PORT_FORCE_FULL_DUPLEX; else data &= ~PORT_FORCE_FULL_DUPLEX; if (data != ctrl) ksz_pwrite8(dev, p, regs[P_FORCE_CTRL], data); ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart); data = restart; if (val & KSZ886X_BMCR_DISABLE_LED) data |= PORT_LED_OFF; else data &= ~PORT_LED_OFF; if (val & KSZ886X_BMCR_DISABLE_TRANSMIT) data |= PORT_TX_DISABLE; else data &= ~PORT_TX_DISABLE; if (val & BMCR_ANRESTART) data |= PORT_AUTO_NEG_RESTART; else data &= ~(PORT_AUTO_NEG_RESTART); if (val & BMCR_PDOWN) data |= PORT_POWER_DOWN; else data &= ~PORT_POWER_DOWN; if (val & KSZ886X_BMCR_DISABLE_AUTO_MDIX) data |= PORT_AUTO_MDIX_DISABLE; else data &= ~PORT_AUTO_MDIX_DISABLE; if (val & KSZ886X_BMCR_FORCE_MDI) data |= PORT_FORCE_MDIX; else data &= ~PORT_FORCE_MDIX; if (val & BMCR_LOOPBACK) data |= PORT_PHY_LOOPBACK; else data &= ~PORT_PHY_LOOPBACK; if (data != restart) ksz_pwrite8(dev, p, regs[P_NEG_RESTART_CTRL], data); break; case MII_ADVERTISE: ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl); data = ctrl; data &= ~(PORT_AUTO_NEG_SYM_PAUSE | PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX | PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT); if (val & ADVERTISE_PAUSE_CAP) data |= PORT_AUTO_NEG_SYM_PAUSE; if (val & ADVERTISE_100FULL) data |= PORT_AUTO_NEG_100BTX_FD; if (val & ADVERTISE_100HALF) data |= PORT_AUTO_NEG_100BTX; if (val & ADVERTISE_10FULL) data |= PORT_AUTO_NEG_10BT_FD; if (val & ADVERTISE_10HALF) data |= PORT_AUTO_NEG_10BT; if (data != ctrl) ksz_pwrite8(dev, p, regs[P_LOCAL_CTRL], data); break; case PHY_REG_LINK_MD: if (val & PHY_START_CABLE_DIAG) ksz_port_cfg(dev, p, REG_PORT_LINK_MD_CTRL, PORT_START_CABLE_DIAG, true); break; default: break; } } static enum dsa_tag_protocol ksz8_get_tag_protocol(struct dsa_switch *ds, int port, enum dsa_tag_protocol mp) { struct ksz_device *dev = ds->priv; /* ksz88x3 uses the same tag schema as KSZ9893 */ return ksz_is_ksz88x3(dev) ? DSA_TAG_PROTO_KSZ9893 : DSA_TAG_PROTO_KSZ8795; } static u32 ksz8_sw_get_phy_flags(struct dsa_switch *ds, int port) { /* Silicon Errata Sheet (DS80000830A): * Port 1 does not work with LinkMD Cable-Testing. * Port 1 does not respond to received PAUSE control frames. */ if (!port) return MICREL_KSZ8_P1_ERRATA; return 0; } static void ksz8_cfg_port_member(struct ksz_device *dev, int port, u8 member) { u8 data; ksz_pread8(dev, port, P_MIRROR_CTRL, &data); data &= ~PORT_VLAN_MEMBERSHIP; data |= (member & dev->port_mask); ksz_pwrite8(dev, port, P_MIRROR_CTRL, data); } static void ksz8_port_stp_state_set(struct dsa_switch *ds, int port, u8 state) { ksz_port_stp_state_set(ds, port, state, P_STP_CTRL); } static void ksz8_flush_dyn_mac_table(struct ksz_device *dev, int port) { u8 learn[DSA_MAX_PORTS]; int first, index, cnt; struct ksz_port *p; if ((uint)port < dev->info->port_cnt) { first = port; cnt = port + 1; } else { /* Flush all ports. */ first = 0; cnt = dev->info->port_cnt; } for (index = first; index < cnt; index++) { p = &dev->ports[index]; if (!p->on) continue; ksz_pread8(dev, index, P_STP_CTRL, &learn[index]); if (!(learn[index] & PORT_LEARN_DISABLE)) ksz_pwrite8(dev, index, P_STP_CTRL, learn[index] | PORT_LEARN_DISABLE); } ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true); for (index = first; index < cnt; index++) { p = &dev->ports[index]; if (!p->on) continue; if (!(learn[index] & PORT_LEARN_DISABLE)) ksz_pwrite8(dev, index, P_STP_CTRL, learn[index]); } } static int ksz8_port_vlan_filtering(struct dsa_switch *ds, int port, bool flag, struct netlink_ext_ack *extack) { struct ksz_device *dev = ds->priv; if (ksz_is_ksz88x3(dev)) return -ENOTSUPP; /* Discard packets with VID not enabled on the switch */ ksz_cfg(dev, S_MIRROR_CTRL, SW_VLAN_ENABLE, flag); /* Discard packets with VID not enabled on the ingress port */ for (port = 0; port < dev->phy_port_cnt; ++port) ksz_port_cfg(dev, port, REG_PORT_CTRL_2, PORT_INGRESS_FILTER, flag); return 0; } static void ksz8_port_enable_pvid(struct ksz_device *dev, int port, bool state) { if (ksz_is_ksz88x3(dev)) { ksz_cfg(dev, REG_SW_INSERT_SRC_PVID, 0x03 << (4 - 2 * port), state); } else { ksz_pwrite8(dev, port, REG_PORT_CTRL_12, state ? 0x0f : 0x00); } } static int ksz8_port_vlan_add(struct dsa_switch *ds, int port, const struct switchdev_obj_port_vlan *vlan, struct netlink_ext_ack *extack) { bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED; struct ksz_device *dev = ds->priv; struct ksz_port *p = &dev->ports[port]; u16 data, new_pvid = 0; u8 fid, member, valid; if (ksz_is_ksz88x3(dev)) return -ENOTSUPP; /* If a VLAN is added with untagged flag different from the * port's Remove Tag flag, we need to change the latter. * Ignore VID 0, which is always untagged. * Ignore CPU port, which will always be tagged. */ if (untagged != p->remove_tag && vlan->vid != 0 && port != dev->cpu_port) { unsigned int vid; /* Reject attempts to add a VLAN that requires the * Remove Tag flag to be changed, unless there are no * other VLANs currently configured. */ for (vid = 1; vid < dev->info->num_vlans; ++vid) { /* Skip the VID we are going to add or reconfigure */ if (vid == vlan->vid) continue; ksz8_from_vlan(dev, dev->vlan_cache[vid].table[0], &fid, &member, &valid); if (valid && (member & BIT(port))) return -EINVAL; } ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged); p->remove_tag = untagged; } ksz8_r_vlan_table(dev, vlan->vid, &data); ksz8_from_vlan(dev, data, &fid, &member, &valid); /* First time to setup the VLAN entry. */ if (!valid) { /* Need to find a way to map VID to FID. */ fid = 1; valid = 1; } member |= BIT(port); ksz8_to_vlan(dev, fid, member, valid, &data); ksz8_w_vlan_table(dev, vlan->vid, data); /* change PVID */ if (vlan->flags & BRIDGE_VLAN_INFO_PVID) new_pvid = vlan->vid; if (new_pvid) { u16 vid; ksz_pread16(dev, port, REG_PORT_CTRL_VID, &vid); vid &= ~VLAN_VID_MASK; vid |= new_pvid; ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, vid); ksz8_port_enable_pvid(dev, port, true); } return 0; } static int ksz8_port_vlan_del(struct dsa_switch *ds, int port, const struct switchdev_obj_port_vlan *vlan) { struct ksz_device *dev = ds->priv; u16 data, pvid; u8 fid, member, valid; if (ksz_is_ksz88x3(dev)) return -ENOTSUPP; ksz_pread16(dev, port, REG_PORT_CTRL_VID, &pvid); pvid = pvid & 0xFFF; ksz8_r_vlan_table(dev, vlan->vid, &data); ksz8_from_vlan(dev, data, &fid, &member, &valid); member &= ~BIT(port); /* Invalidate the entry if no more member. */ if (!member) { fid = 0; valid = 0; } ksz8_to_vlan(dev, fid, member, valid, &data); ksz8_w_vlan_table(dev, vlan->vid, data); if (pvid == vlan->vid) ksz8_port_enable_pvid(dev, port, false); return 0; } static int ksz8_port_mirror_add(struct dsa_switch *ds, int port, struct dsa_mall_mirror_tc_entry *mirror, bool ingress, struct netlink_ext_ack *extack) { struct ksz_device *dev = ds->priv; if (ingress) { ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true); dev->mirror_rx |= BIT(port); } else { ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true); dev->mirror_tx |= BIT(port); } ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false); /* configure mirror port */ if (dev->mirror_rx || dev->mirror_tx) ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, true); return 0; } static void ksz8_port_mirror_del(struct dsa_switch *ds, int port, struct dsa_mall_mirror_tc_entry *mirror) { struct ksz_device *dev = ds->priv; u8 data; if (mirror->ingress) { ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false); dev->mirror_rx &= ~BIT(port); } else { ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false); dev->mirror_tx &= ~BIT(port); } ksz_pread8(dev, port, P_MIRROR_CTRL, &data); if (!dev->mirror_rx && !dev->mirror_tx) ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false); } static void ksz8795_cpu_interface_select(struct ksz_device *dev, int port) { struct ksz_port *p = &dev->ports[port]; u8 data8; if (!p->interface && dev->compat_interface) { dev_warn(dev->dev, "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. " "Please update your device tree.\n", port); p->interface = dev->compat_interface; } /* Configure MII interface for proper network communication. */ ksz_read8(dev, REG_PORT_5_CTRL_6, &data8); data8 &= ~PORT_INTERFACE_TYPE; data8 &= ~PORT_GMII_1GPS_MODE; switch (p->interface) { case PHY_INTERFACE_MODE_MII: p->phydev.speed = SPEED_100; break; case PHY_INTERFACE_MODE_RMII: data8 |= PORT_INTERFACE_RMII; p->phydev.speed = SPEED_100; break; case PHY_INTERFACE_MODE_GMII: data8 |= PORT_GMII_1GPS_MODE; data8 |= PORT_INTERFACE_GMII; p->phydev.speed = SPEED_1000; break; default: data8 &= ~PORT_RGMII_ID_IN_ENABLE; data8 &= ~PORT_RGMII_ID_OUT_ENABLE; if (p->interface == PHY_INTERFACE_MODE_RGMII_ID || p->interface == PHY_INTERFACE_MODE_RGMII_RXID) data8 |= PORT_RGMII_ID_IN_ENABLE; if (p->interface == PHY_INTERFACE_MODE_RGMII_ID || p->interface == PHY_INTERFACE_MODE_RGMII_TXID) data8 |= PORT_RGMII_ID_OUT_ENABLE; data8 |= PORT_GMII_1GPS_MODE; data8 |= PORT_INTERFACE_RGMII; p->phydev.speed = SPEED_1000; break; } ksz_write8(dev, REG_PORT_5_CTRL_6, data8); p->phydev.duplex = 1; } static void ksz8_port_setup(struct ksz_device *dev, int port, bool cpu_port) { struct dsa_switch *ds = dev->ds; struct ksz8 *ksz8 = dev->priv; const u32 *masks; u8 member; masks = ksz8->masks; /* enable broadcast storm limit */ ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true); if (!ksz_is_ksz88x3(dev)) ksz8795_set_prio_queue(dev, port, 4); /* disable DiffServ priority */ ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_ENABLE, false); /* replace priority */ ksz_port_cfg(dev, port, P_802_1P_CTRL, masks[PORT_802_1P_REMAPPING], false); /* enable 802.1p priority */ ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_ENABLE, true); if (cpu_port) { if (!ksz_is_ksz88x3(dev)) ksz8795_cpu_interface_select(dev, port); member = dsa_user_ports(ds); } else { member = BIT(dsa_upstream_port(ds, port)); } ksz8_cfg_port_member(dev, port, member); } static void ksz8_config_cpu_port(struct dsa_switch *ds) { struct ksz_device *dev = ds->priv; struct ksz8 *ksz8 = dev->priv; const u8 *regs = ksz8->regs; struct ksz_port *p; const u32 *masks; u8 remote; int i; masks = ksz8->masks; /* Switch marks the maximum frame with extra byte as oversize. */ ksz_cfg(dev, REG_SW_CTRL_2, SW_LEGAL_PACKET_DISABLE, true); ksz_cfg(dev, regs[S_TAIL_TAG_CTRL], masks[SW_TAIL_TAG_ENABLE], true); p = &dev->ports[dev->cpu_port]; p->on = 1; ksz8_port_setup(dev, dev->cpu_port, true); for (i = 0; i < dev->phy_port_cnt; i++) { p = &dev->ports[i]; ksz8_port_stp_state_set(ds, i, BR_STATE_DISABLED); /* Last port may be disabled. */ if (i == dev->phy_port_cnt) break; p->on = 1; p->phy = 1; } for (i = 0; i < dev->phy_port_cnt; i++) { p = &dev->ports[i]; if (!p->on) continue; if (!ksz_is_ksz88x3(dev)) { ksz_pread8(dev, i, regs[P_REMOTE_STATUS], &remote); if (remote & PORT_FIBER_MODE) p->fiber = 1; } if (p->fiber) ksz_port_cfg(dev, i, P_STP_CTRL, PORT_FORCE_FLOW_CTRL, true); else ksz_port_cfg(dev, i, P_STP_CTRL, PORT_FORCE_FLOW_CTRL, false); } } static int ksz8_handle_global_errata(struct dsa_switch *ds) { struct ksz_device *dev = ds->priv; int ret = 0; /* KSZ87xx Errata DS80000687C. * Module 2: Link drops with some EEE link partners. * An issue with the EEE next page exchange between the * KSZ879x/KSZ877x/KSZ876x and some EEE link partners may result in * the link dropping. */ if (dev->info->ksz87xx_eee_link_erratum) ret = ksz8_ind_write8(dev, TABLE_EEE, REG_IND_EEE_GLOB2_HI, 0); return ret; } static int ksz8_setup(struct dsa_switch *ds) { struct ksz_device *dev = ds->priv; struct alu_struct alu; int i, ret = 0; dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table), dev->info->num_vlans, GFP_KERNEL); if (!dev->vlan_cache) return -ENOMEM; ret = ksz8_reset_switch(dev); if (ret) { dev_err(ds->dev, "failed to reset switch\n"); return ret; } ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_FLOW_CTRL, true); /* Enable automatic fast aging when link changed detected. */ ksz_cfg(dev, S_LINK_AGING_CTRL, SW_LINK_AUTO_AGING, true); /* Enable aggressive back off algorithm in half duplex mode. */ regmap_update_bits(dev->regmap[0], REG_SW_CTRL_1, SW_AGGR_BACKOFF, SW_AGGR_BACKOFF); /* * Make sure unicast VLAN boundary is set as default and * enable no excessive collision drop. */ regmap_update_bits(dev->regmap[0], REG_SW_CTRL_2, UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP, UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP); ksz8_config_cpu_port(ds); ksz_cfg(dev, REG_SW_CTRL_2, MULTICAST_STORM_DISABLE, true); ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_REPLACE_VID, false); ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false); if (!ksz_is_ksz88x3(dev)) ksz_cfg(dev, REG_SW_CTRL_19, SW_INS_TAG_ENABLE, true); /* set broadcast storm protection 10% rate */ regmap_update_bits(dev->regmap[1], S_REPLACE_VID_CTRL, BROADCAST_STORM_RATE, (BROADCAST_STORM_VALUE * BROADCAST_STORM_PROT_RATE) / 100); for (i = 0; i < (dev->info->num_vlans / 4); i++) ksz8_r_vlan_entries(dev, i); /* Setup STP address for STP operation. */ memset(&alu, 0, sizeof(alu)); ether_addr_copy(alu.mac, eth_stp_addr); alu.is_static = true; alu.is_override = true; alu.port_forward = dev->info->cpu_ports; ksz8_w_sta_mac_table(dev, 0, &alu); ksz_init_mib_timer(dev); ds->configure_vlan_while_not_filtering = false; return ksz8_handle_global_errata(ds); } static void ksz8_get_caps(struct dsa_switch *ds, int port, struct phylink_config *config) { struct ksz_device *dev = ds->priv; ksz_phylink_get_caps(ds, port, config); config->mac_capabilities = MAC_10 | MAC_100; /* Silicon Errata Sheet (DS80000830A): * "Port 1 does not respond to received flow control PAUSE frames" * So, disable Pause support on "Port 1" (port == 0) for all ksz88x3 * switches. */ if (!ksz_is_ksz88x3(dev) || port) config->mac_capabilities |= MAC_SYM_PAUSE; /* Asym pause is not supported on KSZ8863 and KSZ8873 */ if (!ksz_is_ksz88x3(dev)) config->mac_capabilities |= MAC_ASYM_PAUSE; } static const struct dsa_switch_ops ksz8_switch_ops = { .get_tag_protocol = ksz8_get_tag_protocol, .get_phy_flags = ksz8_sw_get_phy_flags, .setup = ksz8_setup, .phy_read = ksz_phy_read16, .phy_write = ksz_phy_write16, .phylink_get_caps = ksz8_get_caps, .phylink_mac_link_down = ksz_mac_link_down, .port_enable = ksz_enable_port, .get_strings = ksz_get_strings, .get_ethtool_stats = ksz_get_ethtool_stats, .get_sset_count = ksz_sset_count, .port_bridge_join = ksz_port_bridge_join, .port_bridge_leave = ksz_port_bridge_leave, .port_stp_state_set = ksz8_port_stp_state_set, .port_fast_age = ksz_port_fast_age, .port_vlan_filtering = ksz8_port_vlan_filtering, .port_vlan_add = ksz8_port_vlan_add, .port_vlan_del = ksz8_port_vlan_del, .port_fdb_dump = ksz_port_fdb_dump, .port_mdb_add = ksz_port_mdb_add, .port_mdb_del = ksz_port_mdb_del, .port_mirror_add = ksz8_port_mirror_add, .port_mirror_del = ksz8_port_mirror_del, }; static u32 ksz8_get_port_addr(int port, int offset) { return PORT_CTRL_ADDR(port, offset); } static int ksz8_switch_detect(struct ksz_device *dev) { u8 id1, id2; u16 id16; int ret; /* read chip id */ ret = ksz_read16(dev, REG_CHIP_ID0, &id16); if (ret) return ret; id1 = id16 >> 8; id2 = id16 & SW_CHIP_ID_M; switch (id1) { case KSZ87_FAMILY_ID: if ((id2 != CHIP_ID_94 && id2 != CHIP_ID_95)) return -ENODEV; if (id2 == CHIP_ID_95) { u8 val; id2 = 0x95; ksz_read8(dev, REG_PORT_STATUS_0, &val); if (val & PORT_FIBER_MODE) id2 = 0x65; } else if (id2 == CHIP_ID_94) { id2 = 0x94; } break; case KSZ88_FAMILY_ID: if (id2 != CHIP_ID_63) return -ENODEV; break; default: dev_err(dev->dev, "invalid family id: %d\n", id1); return -ENODEV; } id16 &= ~0xff; id16 |= id2; dev->chip_id = id16; return 0; } static int ksz8_switch_init(struct ksz_device *dev) { struct ksz8 *ksz8 = dev->priv; dev->ds->ops = &ksz8_switch_ops; dev->cpu_port = fls(dev->info->cpu_ports) - 1; dev->phy_port_cnt = dev->info->port_cnt - 1; dev->port_mask = (BIT(dev->phy_port_cnt) - 1) | dev->info->cpu_ports; if (ksz_is_ksz88x3(dev)) { ksz8->regs = ksz8863_regs; ksz8->masks = ksz8863_masks; ksz8->shifts = ksz8863_shifts; } else { ksz8->regs = ksz8795_regs; ksz8->masks = ksz8795_masks; ksz8->shifts = ksz8795_shifts; } /* We rely on software untagging on the CPU port, so that we * can support both tagged and untagged VLANs */ dev->ds->untag_bridge_pvid = true; /* VLAN filtering is partly controlled by the global VLAN * Enable flag */ dev->ds->vlan_filtering_is_global = true; return 0; } static void ksz8_switch_exit(struct ksz_device *dev) { ksz8_reset_switch(dev); } static const struct ksz_dev_ops ksz8_dev_ops = { .get_port_addr = ksz8_get_port_addr, .cfg_port_member = ksz8_cfg_port_member, .flush_dyn_mac_table = ksz8_flush_dyn_mac_table, .port_setup = ksz8_port_setup, .r_phy = ksz8_r_phy, .w_phy = ksz8_w_phy, .r_dyn_mac_table = ksz8_r_dyn_mac_table, .r_sta_mac_table = ksz8_r_sta_mac_table, .w_sta_mac_table = ksz8_w_sta_mac_table, .r_mib_cnt = ksz8_r_mib_cnt, .r_mib_pkt = ksz8_r_mib_pkt, .freeze_mib = ksz8_freeze_mib, .port_init_cnt = ksz8_port_init_cnt, .shutdown = ksz8_reset_switch, .detect = ksz8_switch_detect, .init = ksz8_switch_init, .exit = ksz8_switch_exit, }; int ksz8_switch_register(struct ksz_device *dev) { return ksz_switch_register(dev, &ksz8_dev_ops); } EXPORT_SYMBOL(ksz8_switch_register); MODULE_AUTHOR("Tristram Ha "); MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch DSA Driver"); MODULE_LICENSE("GPL");