// SPDX-License-Identifier: GPL-2.0+ /* Renesas R-Car CAN FD device driver * * Copyright (C) 2015 Renesas Electronics Corp. */ /* The R-Car CAN FD controller can operate in either one of the below two modes * - CAN FD only mode * - Classical CAN (CAN 2.0) only mode * * This driver puts the controller in CAN FD only mode by default. In this * mode, the controller acts as a CAN FD node that can also interoperate with * CAN 2.0 nodes. * * To switch the controller to Classical CAN (CAN 2.0) only mode, add * "renesas,no-can-fd" optional property to the device tree node. A h/w reset is * also required to switch modes. * * Note: The h/w manual register naming convention is clumsy and not acceptable * to use as it is in the driver. However, those names are added as comments * wherever it is modified to a readable name. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define RCANFD_DRV_NAME "rcar_canfd" enum rcanfd_chip_id { RENESAS_RCAR_GEN3 = 0, RENESAS_RZG2L, }; /* Global register bits */ /* RSCFDnCFDGRMCFG */ #define RCANFD_GRMCFG_RCMC BIT(0) /* RSCFDnCFDGCFG / RSCFDnGCFG */ #define RCANFD_GCFG_EEFE BIT(6) #define RCANFD_GCFG_CMPOC BIT(5) /* CAN FD only */ #define RCANFD_GCFG_DCS BIT(4) #define RCANFD_GCFG_DCE BIT(1) #define RCANFD_GCFG_TPRI BIT(0) /* RSCFDnCFDGCTR / RSCFDnGCTR */ #define RCANFD_GCTR_TSRST BIT(16) #define RCANFD_GCTR_CFMPOFIE BIT(11) /* CAN FD only */ #define RCANFD_GCTR_THLEIE BIT(10) #define RCANFD_GCTR_MEIE BIT(9) #define RCANFD_GCTR_DEIE BIT(8) #define RCANFD_GCTR_GSLPR BIT(2) #define RCANFD_GCTR_GMDC_MASK (0x3) #define RCANFD_GCTR_GMDC_GOPM (0x0) #define RCANFD_GCTR_GMDC_GRESET (0x1) #define RCANFD_GCTR_GMDC_GTEST (0x2) /* RSCFDnCFDGSTS / RSCFDnGSTS */ #define RCANFD_GSTS_GRAMINIT BIT(3) #define RCANFD_GSTS_GSLPSTS BIT(2) #define RCANFD_GSTS_GHLTSTS BIT(1) #define RCANFD_GSTS_GRSTSTS BIT(0) /* Non-operational status */ #define RCANFD_GSTS_GNOPM (BIT(0) | BIT(1) | BIT(2) | BIT(3)) /* RSCFDnCFDGERFL / RSCFDnGERFL */ #define RCANFD_GERFL_EEF1 BIT(17) #define RCANFD_GERFL_EEF0 BIT(16) #define RCANFD_GERFL_CMPOF BIT(3) /* CAN FD only */ #define RCANFD_GERFL_THLES BIT(2) #define RCANFD_GERFL_MES BIT(1) #define RCANFD_GERFL_DEF BIT(0) #define RCANFD_GERFL_ERR(gpriv, x) ((x) & (RCANFD_GERFL_EEF1 |\ RCANFD_GERFL_EEF0 | RCANFD_GERFL_MES |\ (gpriv->fdmode ?\ RCANFD_GERFL_CMPOF : 0))) /* AFL Rx rules registers */ /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */ #define RCANFD_GAFLCFG_SETRNC(n, x) (((x) & 0xff) << (24 - n * 8)) #define RCANFD_GAFLCFG_GETRNC(n, x) (((x) >> (24 - n * 8)) & 0xff) /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */ #define RCANFD_GAFLECTR_AFLDAE BIT(8) #define RCANFD_GAFLECTR_AFLPN(x) ((x) & 0x1f) /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */ #define RCANFD_GAFLID_GAFLLB BIT(29) /* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */ #define RCANFD_GAFLP1_GAFLFDP(x) (1 << (x)) /* Channel register bits */ /* RSCFDnCmCFG - Classical CAN only */ #define RCANFD_CFG_SJW(x) (((x) & 0x3) << 24) #define RCANFD_CFG_TSEG2(x) (((x) & 0x7) << 20) #define RCANFD_CFG_TSEG1(x) (((x) & 0xf) << 16) #define RCANFD_CFG_BRP(x) (((x) & 0x3ff) << 0) /* RSCFDnCFDCmNCFG - CAN FD only */ #define RCANFD_NCFG_NTSEG2(x) (((x) & 0x1f) << 24) #define RCANFD_NCFG_NTSEG1(x) (((x) & 0x7f) << 16) #define RCANFD_NCFG_NSJW(x) (((x) & 0x1f) << 11) #define RCANFD_NCFG_NBRP(x) (((x) & 0x3ff) << 0) /* RSCFDnCFDCmCTR / RSCFDnCmCTR */ #define RCANFD_CCTR_CTME BIT(24) #define RCANFD_CCTR_ERRD BIT(23) #define RCANFD_CCTR_BOM_MASK (0x3 << 21) #define RCANFD_CCTR_BOM_ISO (0x0 << 21) #define RCANFD_CCTR_BOM_BENTRY (0x1 << 21) #define RCANFD_CCTR_BOM_BEND (0x2 << 21) #define RCANFD_CCTR_TDCVFIE BIT(19) #define RCANFD_CCTR_SOCOIE BIT(18) #define RCANFD_CCTR_EOCOIE BIT(17) #define RCANFD_CCTR_TAIE BIT(16) #define RCANFD_CCTR_ALIE BIT(15) #define RCANFD_CCTR_BLIE BIT(14) #define RCANFD_CCTR_OLIE BIT(13) #define RCANFD_CCTR_BORIE BIT(12) #define RCANFD_CCTR_BOEIE BIT(11) #define RCANFD_CCTR_EPIE BIT(10) #define RCANFD_CCTR_EWIE BIT(9) #define RCANFD_CCTR_BEIE BIT(8) #define RCANFD_CCTR_CSLPR BIT(2) #define RCANFD_CCTR_CHMDC_MASK (0x3) #define RCANFD_CCTR_CHDMC_COPM (0x0) #define RCANFD_CCTR_CHDMC_CRESET (0x1) #define RCANFD_CCTR_CHDMC_CHLT (0x2) /* RSCFDnCFDCmSTS / RSCFDnCmSTS */ #define RCANFD_CSTS_COMSTS BIT(7) #define RCANFD_CSTS_RECSTS BIT(6) #define RCANFD_CSTS_TRMSTS BIT(5) #define RCANFD_CSTS_BOSTS BIT(4) #define RCANFD_CSTS_EPSTS BIT(3) #define RCANFD_CSTS_SLPSTS BIT(2) #define RCANFD_CSTS_HLTSTS BIT(1) #define RCANFD_CSTS_CRSTSTS BIT(0) #define RCANFD_CSTS_TECCNT(x) (((x) >> 24) & 0xff) #define RCANFD_CSTS_RECCNT(x) (((x) >> 16) & 0xff) /* RSCFDnCFDCmERFL / RSCFDnCmERFL */ #define RCANFD_CERFL_ADERR BIT(14) #define RCANFD_CERFL_B0ERR BIT(13) #define RCANFD_CERFL_B1ERR BIT(12) #define RCANFD_CERFL_CERR BIT(11) #define RCANFD_CERFL_AERR BIT(10) #define RCANFD_CERFL_FERR BIT(9) #define RCANFD_CERFL_SERR BIT(8) #define RCANFD_CERFL_ALF BIT(7) #define RCANFD_CERFL_BLF BIT(6) #define RCANFD_CERFL_OVLF BIT(5) #define RCANFD_CERFL_BORF BIT(4) #define RCANFD_CERFL_BOEF BIT(3) #define RCANFD_CERFL_EPF BIT(2) #define RCANFD_CERFL_EWF BIT(1) #define RCANFD_CERFL_BEF BIT(0) #define RCANFD_CERFL_ERR(x) ((x) & (0x7fff)) /* above bits 14:0 */ /* RSCFDnCFDCmDCFG */ #define RCANFD_DCFG_DSJW(x) (((x) & 0x7) << 24) #define RCANFD_DCFG_DTSEG2(x) (((x) & 0x7) << 20) #define RCANFD_DCFG_DTSEG1(x) (((x) & 0xf) << 16) #define RCANFD_DCFG_DBRP(x) (((x) & 0xff) << 0) /* RSCFDnCFDCmFDCFG */ #define RCANFD_FDCFG_TDCE BIT(9) #define RCANFD_FDCFG_TDCOC BIT(8) #define RCANFD_FDCFG_TDCO(x) (((x) & 0x7f) >> 16) /* RSCFDnCFDRFCCx */ #define RCANFD_RFCC_RFIM BIT(12) #define RCANFD_RFCC_RFDC(x) (((x) & 0x7) << 8) #define RCANFD_RFCC_RFPLS(x) (((x) & 0x7) << 4) #define RCANFD_RFCC_RFIE BIT(1) #define RCANFD_RFCC_RFE BIT(0) /* RSCFDnCFDRFSTSx */ #define RCANFD_RFSTS_RFIF BIT(3) #define RCANFD_RFSTS_RFMLT BIT(2) #define RCANFD_RFSTS_RFFLL BIT(1) #define RCANFD_RFSTS_RFEMP BIT(0) /* RSCFDnCFDRFIDx */ #define RCANFD_RFID_RFIDE BIT(31) #define RCANFD_RFID_RFRTR BIT(30) /* RSCFDnCFDRFPTRx */ #define RCANFD_RFPTR_RFDLC(x) (((x) >> 28) & 0xf) #define RCANFD_RFPTR_RFPTR(x) (((x) >> 16) & 0xfff) #define RCANFD_RFPTR_RFTS(x) (((x) >> 0) & 0xffff) /* RSCFDnCFDRFFDSTSx */ #define RCANFD_RFFDSTS_RFFDF BIT(2) #define RCANFD_RFFDSTS_RFBRS BIT(1) #define RCANFD_RFFDSTS_RFESI BIT(0) /* Common FIFO bits */ /* RSCFDnCFDCFCCk */ #define RCANFD_CFCC_CFTML(x) (((x) & 0xf) << 20) #define RCANFD_CFCC_CFM(x) (((x) & 0x3) << 16) #define RCANFD_CFCC_CFIM BIT(12) #define RCANFD_CFCC_CFDC(x) (((x) & 0x7) << 8) #define RCANFD_CFCC_CFPLS(x) (((x) & 0x7) << 4) #define RCANFD_CFCC_CFTXIE BIT(2) #define RCANFD_CFCC_CFE BIT(0) /* RSCFDnCFDCFSTSk */ #define RCANFD_CFSTS_CFMC(x) (((x) >> 8) & 0xff) #define RCANFD_CFSTS_CFTXIF BIT(4) #define RCANFD_CFSTS_CFMLT BIT(2) #define RCANFD_CFSTS_CFFLL BIT(1) #define RCANFD_CFSTS_CFEMP BIT(0) /* RSCFDnCFDCFIDk */ #define RCANFD_CFID_CFIDE BIT(31) #define RCANFD_CFID_CFRTR BIT(30) #define RCANFD_CFID_CFID_MASK(x) ((x) & 0x1fffffff) /* RSCFDnCFDCFPTRk */ #define RCANFD_CFPTR_CFDLC(x) (((x) & 0xf) << 28) #define RCANFD_CFPTR_CFPTR(x) (((x) & 0xfff) << 16) #define RCANFD_CFPTR_CFTS(x) (((x) & 0xff) << 0) /* RSCFDnCFDCFFDCSTSk */ #define RCANFD_CFFDCSTS_CFFDF BIT(2) #define RCANFD_CFFDCSTS_CFBRS BIT(1) #define RCANFD_CFFDCSTS_CFESI BIT(0) /* This controller supports either Classical CAN only mode or CAN FD only mode. * These modes are supported in two separate set of register maps & names. * However, some of the register offsets are common for both modes. Those * offsets are listed below as Common registers. * * The CAN FD only mode specific registers & Classical CAN only mode specific * registers are listed separately. Their register names starts with * RCANFD_F_xxx & RCANFD_C_xxx respectively. */ /* Common registers */ /* RSCFDnCFDCmNCFG / RSCFDnCmCFG */ #define RCANFD_CCFG(m) (0x0000 + (0x10 * (m))) /* RSCFDnCFDCmCTR / RSCFDnCmCTR */ #define RCANFD_CCTR(m) (0x0004 + (0x10 * (m))) /* RSCFDnCFDCmSTS / RSCFDnCmSTS */ #define RCANFD_CSTS(m) (0x0008 + (0x10 * (m))) /* RSCFDnCFDCmERFL / RSCFDnCmERFL */ #define RCANFD_CERFL(m) (0x000C + (0x10 * (m))) /* RSCFDnCFDGCFG / RSCFDnGCFG */ #define RCANFD_GCFG (0x0084) /* RSCFDnCFDGCTR / RSCFDnGCTR */ #define RCANFD_GCTR (0x0088) /* RSCFDnCFDGCTS / RSCFDnGCTS */ #define RCANFD_GSTS (0x008c) /* RSCFDnCFDGERFL / RSCFDnGERFL */ #define RCANFD_GERFL (0x0090) /* RSCFDnCFDGTSC / RSCFDnGTSC */ #define RCANFD_GTSC (0x0094) /* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */ #define RCANFD_GAFLECTR (0x0098) /* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */ #define RCANFD_GAFLCFG0 (0x009c) /* RSCFDnCFDGAFLCFG1 / RSCFDnGAFLCFG1 */ #define RCANFD_GAFLCFG1 (0x00a0) /* RSCFDnCFDRMNB / RSCFDnRMNB */ #define RCANFD_RMNB (0x00a4) /* RSCFDnCFDRMND / RSCFDnRMND */ #define RCANFD_RMND(y) (0x00a8 + (0x04 * (y))) /* RSCFDnCFDRFCCx / RSCFDnRFCCx */ #define RCANFD_RFCC(x) (0x00b8 + (0x04 * (x))) /* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */ #define RCANFD_RFSTS(x) (0x00d8 + (0x04 * (x))) /* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */ #define RCANFD_RFPCTR(x) (0x00f8 + (0x04 * (x))) /* Common FIFO Control registers */ /* RSCFDnCFDCFCCx / RSCFDnCFCCx */ #define RCANFD_CFCC(ch, idx) (0x0118 + (0x0c * (ch)) + \ (0x04 * (idx))) /* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */ #define RCANFD_CFSTS(ch, idx) (0x0178 + (0x0c * (ch)) + \ (0x04 * (idx))) /* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */ #define RCANFD_CFPCTR(ch, idx) (0x01d8 + (0x0c * (ch)) + \ (0x04 * (idx))) /* RSCFDnCFDFESTS / RSCFDnFESTS */ #define RCANFD_FESTS (0x0238) /* RSCFDnCFDFFSTS / RSCFDnFFSTS */ #define RCANFD_FFSTS (0x023c) /* RSCFDnCFDFMSTS / RSCFDnFMSTS */ #define RCANFD_FMSTS (0x0240) /* RSCFDnCFDRFISTS / RSCFDnRFISTS */ #define RCANFD_RFISTS (0x0244) /* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */ #define RCANFD_CFRISTS (0x0248) /* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */ #define RCANFD_CFTISTS (0x024c) /* RSCFDnCFDTMCp / RSCFDnTMCp */ #define RCANFD_TMC(p) (0x0250 + (0x01 * (p))) /* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */ #define RCANFD_TMSTS(p) (0x02d0 + (0x01 * (p))) /* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */ #define RCANFD_TMTRSTS(y) (0x0350 + (0x04 * (y))) /* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */ #define RCANFD_TMTARSTS(y) (0x0360 + (0x04 * (y))) /* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */ #define RCANFD_TMTCSTS(y) (0x0370 + (0x04 * (y))) /* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */ #define RCANFD_TMTASTS(y) (0x0380 + (0x04 * (y))) /* RSCFDnCFDTMIECy / RSCFDnTMIECy */ #define RCANFD_TMIEC(y) (0x0390 + (0x04 * (y))) /* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */ #define RCANFD_TXQCC(m) (0x03a0 + (0x04 * (m))) /* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */ #define RCANFD_TXQSTS(m) (0x03c0 + (0x04 * (m))) /* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */ #define RCANFD_TXQPCTR(m) (0x03e0 + (0x04 * (m))) /* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */ #define RCANFD_THLCC(m) (0x0400 + (0x04 * (m))) /* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */ #define RCANFD_THLSTS(m) (0x0420 + (0x04 * (m))) /* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */ #define RCANFD_THLPCTR(m) (0x0440 + (0x04 * (m))) /* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */ #define RCANFD_GTINTSTS0 (0x0460) /* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */ #define RCANFD_GTINTSTS1 (0x0464) /* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */ #define RCANFD_GTSTCFG (0x0468) /* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */ #define RCANFD_GTSTCTR (0x046c) /* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */ #define RCANFD_GLOCKK (0x047c) /* RSCFDnCFDGRMCFG */ #define RCANFD_GRMCFG (0x04fc) /* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */ #define RCANFD_GAFLID(offset, j) ((offset) + (0x10 * (j))) /* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */ #define RCANFD_GAFLM(offset, j) ((offset) + 0x04 + (0x10 * (j))) /* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */ #define RCANFD_GAFLP0(offset, j) ((offset) + 0x08 + (0x10 * (j))) /* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */ #define RCANFD_GAFLP1(offset, j) ((offset) + 0x0c + (0x10 * (j))) /* Classical CAN only mode register map */ /* RSCFDnGAFLXXXj offset */ #define RCANFD_C_GAFL_OFFSET (0x0500) /* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */ #define RCANFD_C_RMID(q) (0x0600 + (0x10 * (q))) #define RCANFD_C_RMPTR(q) (0x0604 + (0x10 * (q))) #define RCANFD_C_RMDF0(q) (0x0608 + (0x10 * (q))) #define RCANFD_C_RMDF1(q) (0x060c + (0x10 * (q))) /* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */ #define RCANFD_C_RFOFFSET (0x0e00) #define RCANFD_C_RFID(x) (RCANFD_C_RFOFFSET + (0x10 * (x))) #define RCANFD_C_RFPTR(x) (RCANFD_C_RFOFFSET + 0x04 + \ (0x10 * (x))) #define RCANFD_C_RFDF(x, df) (RCANFD_C_RFOFFSET + 0x08 + \ (0x10 * (x)) + (0x04 * (df))) /* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */ #define RCANFD_C_CFOFFSET (0x0e80) #define RCANFD_C_CFID(ch, idx) (RCANFD_C_CFOFFSET + (0x30 * (ch)) + \ (0x10 * (idx))) #define RCANFD_C_CFPTR(ch, idx) (RCANFD_C_CFOFFSET + 0x04 + \ (0x30 * (ch)) + (0x10 * (idx))) #define RCANFD_C_CFDF(ch, idx, df) (RCANFD_C_CFOFFSET + 0x08 + \ (0x30 * (ch)) + (0x10 * (idx)) + \ (0x04 * (df))) /* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */ #define RCANFD_C_TMID(p) (0x1000 + (0x10 * (p))) #define RCANFD_C_TMPTR(p) (0x1004 + (0x10 * (p))) #define RCANFD_C_TMDF0(p) (0x1008 + (0x10 * (p))) #define RCANFD_C_TMDF1(p) (0x100c + (0x10 * (p))) /* RSCFDnTHLACCm */ #define RCANFD_C_THLACC(m) (0x1800 + (0x04 * (m))) /* RSCFDnRPGACCr */ #define RCANFD_C_RPGACC(r) (0x1900 + (0x04 * (r))) /* CAN FD mode specific register map */ /* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */ #define RCANFD_F_DCFG(m) (0x0500 + (0x20 * (m))) #define RCANFD_F_CFDCFG(m) (0x0504 + (0x20 * (m))) #define RCANFD_F_CFDCTR(m) (0x0508 + (0x20 * (m))) #define RCANFD_F_CFDSTS(m) (0x050c + (0x20 * (m))) #define RCANFD_F_CFDCRC(m) (0x0510 + (0x20 * (m))) /* RSCFDnCFDGAFLXXXj offset */ #define RCANFD_F_GAFL_OFFSET (0x1000) /* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */ #define RCANFD_F_RMID(q) (0x2000 + (0x20 * (q))) #define RCANFD_F_RMPTR(q) (0x2004 + (0x20 * (q))) #define RCANFD_F_RMFDSTS(q) (0x2008 + (0x20 * (q))) #define RCANFD_F_RMDF(q, b) (0x200c + (0x04 * (b)) + (0x20 * (q))) /* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */ #define RCANFD_F_RFOFFSET (0x3000) #define RCANFD_F_RFID(x) (RCANFD_F_RFOFFSET + (0x80 * (x))) #define RCANFD_F_RFPTR(x) (RCANFD_F_RFOFFSET + 0x04 + \ (0x80 * (x))) #define RCANFD_F_RFFDSTS(x) (RCANFD_F_RFOFFSET + 0x08 + \ (0x80 * (x))) #define RCANFD_F_RFDF(x, df) (RCANFD_F_RFOFFSET + 0x0c + \ (0x80 * (x)) + (0x04 * (df))) /* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */ #define RCANFD_F_CFOFFSET (0x3400) #define RCANFD_F_CFID(ch, idx) (RCANFD_F_CFOFFSET + (0x180 * (ch)) + \ (0x80 * (idx))) #define RCANFD_F_CFPTR(ch, idx) (RCANFD_F_CFOFFSET + 0x04 + \ (0x180 * (ch)) + (0x80 * (idx))) #define RCANFD_F_CFFDCSTS(ch, idx) (RCANFD_F_CFOFFSET + 0x08 + \ (0x180 * (ch)) + (0x80 * (idx))) #define RCANFD_F_CFDF(ch, idx, df) (RCANFD_F_CFOFFSET + 0x0c + \ (0x180 * (ch)) + (0x80 * (idx)) + \ (0x04 * (df))) /* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */ #define RCANFD_F_TMID(p) (0x4000 + (0x20 * (p))) #define RCANFD_F_TMPTR(p) (0x4004 + (0x20 * (p))) #define RCANFD_F_TMFDCTR(p) (0x4008 + (0x20 * (p))) #define RCANFD_F_TMDF(p, b) (0x400c + (0x20 * (p)) + (0x04 * (b))) /* RSCFDnCFDTHLACCm */ #define RCANFD_F_THLACC(m) (0x6000 + (0x04 * (m))) /* RSCFDnCFDRPGACCr */ #define RCANFD_F_RPGACC(r) (0x6400 + (0x04 * (r))) /* Constants */ #define RCANFD_FIFO_DEPTH 8 /* Tx FIFO depth */ #define RCANFD_NAPI_WEIGHT 8 /* Rx poll quota */ #define RCANFD_NUM_CHANNELS 2 /* Two channels max */ #define RCANFD_CHANNELS_MASK BIT((RCANFD_NUM_CHANNELS) - 1) #define RCANFD_GAFL_PAGENUM(entry) ((entry) / 16) #define RCANFD_CHANNEL_NUMRULES 1 /* only one rule per channel */ /* Rx FIFO is a global resource of the controller. There are 8 such FIFOs * available. Each channel gets a dedicated Rx FIFO (i.e.) the channel * number is added to RFFIFO index. */ #define RCANFD_RFFIFO_IDX 0 /* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common * FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx. */ #define RCANFD_CFFIFO_IDX 0 /* fCAN clock select register settings */ enum rcar_canfd_fcanclk { RCANFD_CANFDCLK = 0, /* CANFD clock */ RCANFD_EXTCLK, /* Externally input clock */ }; struct rcar_canfd_global; /* Channel priv data */ struct rcar_canfd_channel { struct can_priv can; /* Must be the first member */ struct net_device *ndev; struct rcar_canfd_global *gpriv; /* Controller reference */ void __iomem *base; /* Register base address */ struct napi_struct napi; u8 tx_len[RCANFD_FIFO_DEPTH]; /* For net stats */ u32 tx_head; /* Incremented on xmit */ u32 tx_tail; /* Incremented on xmit done */ u32 channel; /* Channel number */ spinlock_t tx_lock; /* To protect tx path */ }; /* Global priv data */ struct rcar_canfd_global { struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS]; void __iomem *base; /* Register base address */ struct platform_device *pdev; /* Respective platform device */ struct clk *clkp; /* Peripheral clock */ struct clk *can_clk; /* fCAN clock */ enum rcar_canfd_fcanclk fcan; /* CANFD or Ext clock */ unsigned long channels_mask; /* Enabled channels mask */ bool fdmode; /* CAN FD or Classical CAN only mode */ struct reset_control *rstc1; struct reset_control *rstc2; enum rcanfd_chip_id chip_id; }; /* CAN FD mode nominal rate constants */ static const struct can_bittiming_const rcar_canfd_nom_bittiming_const = { .name = RCANFD_DRV_NAME, .tseg1_min = 2, .tseg1_max = 128, .tseg2_min = 2, .tseg2_max = 32, .sjw_max = 32, .brp_min = 1, .brp_max = 1024, .brp_inc = 1, }; /* CAN FD mode data rate constants */ static const struct can_bittiming_const rcar_canfd_data_bittiming_const = { .name = RCANFD_DRV_NAME, .tseg1_min = 2, .tseg1_max = 16, .tseg2_min = 2, .tseg2_max = 8, .sjw_max = 8, .brp_min = 1, .brp_max = 256, .brp_inc = 1, }; /* Classical CAN mode bitrate constants */ static const struct can_bittiming_const rcar_canfd_bittiming_const = { .name = RCANFD_DRV_NAME, .tseg1_min = 4, .tseg1_max = 16, .tseg2_min = 2, .tseg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 1024, .brp_inc = 1, }; /* Helper functions */ static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg) { u32 data = readl(reg); data &= ~mask; data |= (val & mask); writel(data, reg); } static inline u32 rcar_canfd_read(void __iomem *base, u32 offset) { return readl(base + (offset)); } static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val) { writel(val, base + (offset)); } static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val) { rcar_canfd_update(val, val, base + (reg)); } static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val) { rcar_canfd_update(val, 0, base + (reg)); } static void rcar_canfd_update_bit(void __iomem *base, u32 reg, u32 mask, u32 val) { rcar_canfd_update(mask, val, base + (reg)); } static void rcar_canfd_get_data(struct rcar_canfd_channel *priv, struct canfd_frame *cf, u32 off) { u32 i, lwords; lwords = DIV_ROUND_UP(cf->len, sizeof(u32)); for (i = 0; i < lwords; i++) *((u32 *)cf->data + i) = rcar_canfd_read(priv->base, off + (i * sizeof(u32))); } static void rcar_canfd_put_data(struct rcar_canfd_channel *priv, struct canfd_frame *cf, u32 off) { u32 i, lwords; lwords = DIV_ROUND_UP(cf->len, sizeof(u32)); for (i = 0; i < lwords; i++) rcar_canfd_write(priv->base, off + (i * sizeof(u32)), *((u32 *)cf->data + i)); } static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev) { u32 i; for (i = 0; i < RCANFD_FIFO_DEPTH; i++) can_free_echo_skb(ndev, i, NULL); } static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv) { u32 sts, ch; int err; /* Check RAMINIT flag as CAN RAM initialization takes place * after the MCU reset */ err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, !(sts & RCANFD_GSTS_GRAMINIT), 2, 500000); if (err) { dev_dbg(&gpriv->pdev->dev, "global raminit failed\n"); return err; } /* Transition to Global Reset mode */ rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR); rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET); /* Ensure Global reset mode */ err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, (sts & RCANFD_GSTS_GRSTSTS), 2, 500000); if (err) { dev_dbg(&gpriv->pdev->dev, "global reset failed\n"); return err; } /* Reset Global error flags */ rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0); /* Set the controller into appropriate mode */ if (gpriv->fdmode) rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG, RCANFD_GRMCFG_RCMC); else rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG, RCANFD_GRMCFG_RCMC); /* Transition all Channels to reset mode */ for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) { rcar_canfd_clear_bit(gpriv->base, RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR); rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch), RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET); /* Ensure Channel reset mode */ err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts, (sts & RCANFD_CSTS_CRSTSTS), 2, 500000); if (err) { dev_dbg(&gpriv->pdev->dev, "channel %u reset failed\n", ch); return err; } } return 0; } static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv) { u32 cfg, ch; /* Global configuration settings */ /* ECC Error flag Enable */ cfg = RCANFD_GCFG_EEFE; if (gpriv->fdmode) /* Truncate payload to configured message size RFPLS */ cfg |= RCANFD_GCFG_CMPOC; /* Set External Clock if selected */ if (gpriv->fcan != RCANFD_CANFDCLK) cfg |= RCANFD_GCFG_DCS; rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg); /* Channel configuration settings */ for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) { rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch), RCANFD_CCTR_ERRD); rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch), RCANFD_CCTR_BOM_MASK, RCANFD_CCTR_BOM_BENTRY); } } static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv, u32 ch) { u32 cfg; int offset, start, page, num_rules = RCANFD_CHANNEL_NUMRULES; u32 ridx = ch + RCANFD_RFFIFO_IDX; if (ch == 0) { start = 0; /* Channel 0 always starts from 0th rule */ } else { /* Get number of Channel 0 rules and adjust */ cfg = rcar_canfd_read(gpriv->base, RCANFD_GAFLCFG0); start = RCANFD_GAFLCFG_GETRNC(0, cfg); } /* Enable write access to entry */ page = RCANFD_GAFL_PAGENUM(start); rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR, (RCANFD_GAFLECTR_AFLPN(page) | RCANFD_GAFLECTR_AFLDAE)); /* Write number of rules for channel */ rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG0, RCANFD_GAFLCFG_SETRNC(ch, num_rules)); if (gpriv->fdmode) offset = RCANFD_F_GAFL_OFFSET; else offset = RCANFD_C_GAFL_OFFSET; /* Accept all IDs */ rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, start), 0); /* IDE or RTR is not considered for matching */ rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, start), 0); /* Any data length accepted */ rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, start), 0); /* Place the msg in corresponding Rx FIFO entry */ rcar_canfd_write(gpriv->base, RCANFD_GAFLP1(offset, start), RCANFD_GAFLP1_GAFLFDP(ridx)); /* Disable write access to page */ rcar_canfd_clear_bit(gpriv->base, RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE); } static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch) { /* Rx FIFO is used for reception */ u32 cfg; u16 rfdc, rfpls; /* Select Rx FIFO based on channel */ u32 ridx = ch + RCANFD_RFFIFO_IDX; rfdc = 2; /* b010 - 8 messages Rx FIFO depth */ if (gpriv->fdmode) rfpls = 7; /* b111 - Max 64 bytes payload */ else rfpls = 0; /* b000 - Max 8 bytes payload */ cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) | RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE); rcar_canfd_write(gpriv->base, RCANFD_RFCC(ridx), cfg); } static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch) { /* Tx/Rx(Common) FIFO configured in Tx mode is * used for transmission * * Each channel has 3 Common FIFO dedicated to them. * Use the 1st (index 0) out of 3 */ u32 cfg; u16 cftml, cfm, cfdc, cfpls; cftml = 0; /* 0th buffer */ cfm = 1; /* b01 - Transmit mode */ cfdc = 2; /* b010 - 8 messages Tx FIFO depth */ if (gpriv->fdmode) cfpls = 7; /* b111 - Max 64 bytes payload */ else cfpls = 0; /* b000 - Max 8 bytes payload */ cfg = (RCANFD_CFCC_CFTML(cftml) | RCANFD_CFCC_CFM(cfm) | RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(cfdc) | RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE); rcar_canfd_write(gpriv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX), cfg); if (gpriv->fdmode) /* Clear FD mode specific control/status register */ rcar_canfd_write(gpriv->base, RCANFD_F_CFFDCSTS(ch, RCANFD_CFFIFO_IDX), 0); } static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv) { u32 ctr; /* Clear any stray error interrupt flags */ rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0); /* Global interrupts setup */ ctr = RCANFD_GCTR_MEIE; if (gpriv->fdmode) ctr |= RCANFD_GCTR_CFMPOFIE; rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr); } static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global *gpriv) { /* Disable all interrupts */ rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0); /* Clear any stray error interrupt flags */ rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0); } static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel *priv) { u32 ctr, ch = priv->channel; /* Clear any stray error flags */ rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0); /* Channel interrupts setup */ ctr = (RCANFD_CCTR_TAIE | RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE | RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE | RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE | RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE); rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr); } static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel *priv) { u32 ctr, ch = priv->channel; ctr = (RCANFD_CCTR_TAIE | RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE | RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE | RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE | RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE); rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr); /* Clear any stray error flags */ rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0); } static void rcar_canfd_global_error(struct net_device *ndev) { struct rcar_canfd_channel *priv = netdev_priv(ndev); struct rcar_canfd_global *gpriv = priv->gpriv; struct net_device_stats *stats = &ndev->stats; u32 ch = priv->channel; u32 gerfl, sts; u32 ridx = ch + RCANFD_RFFIFO_IDX; gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL); if ((gerfl & RCANFD_GERFL_EEF0) && (ch == 0)) { netdev_dbg(ndev, "Ch0: ECC Error flag\n"); stats->tx_dropped++; } if ((gerfl & RCANFD_GERFL_EEF1) && (ch == 1)) { netdev_dbg(ndev, "Ch1: ECC Error flag\n"); stats->tx_dropped++; } if (gerfl & RCANFD_GERFL_MES) { sts = rcar_canfd_read(priv->base, RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX)); if (sts & RCANFD_CFSTS_CFMLT) { netdev_dbg(ndev, "Tx Message Lost flag\n"); stats->tx_dropped++; rcar_canfd_write(priv->base, RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX), sts & ~RCANFD_CFSTS_CFMLT); } sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx)); if (sts & RCANFD_RFSTS_RFMLT) { netdev_dbg(ndev, "Rx Message Lost flag\n"); stats->rx_dropped++; rcar_canfd_write(priv->base, RCANFD_RFSTS(ridx), sts & ~RCANFD_RFSTS_RFMLT); } } if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) { /* Message Lost flag will be set for respective channel * when this condition happens with counters and flags * already updated. */ netdev_dbg(ndev, "global payload overflow interrupt\n"); } /* Clear all global error interrupts. Only affected channels bits * get cleared */ rcar_canfd_write(priv->base, RCANFD_GERFL, 0); } static void rcar_canfd_error(struct net_device *ndev, u32 cerfl, u16 txerr, u16 rxerr) { struct rcar_canfd_channel *priv = netdev_priv(ndev); struct net_device_stats *stats = &ndev->stats; struct can_frame *cf; struct sk_buff *skb; u32 ch = priv->channel; netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr); /* Propagate the error condition to the CAN stack */ skb = alloc_can_err_skb(ndev, &cf); if (!skb) { stats->rx_dropped++; return; } /* Channel error interrupts */ if (cerfl & RCANFD_CERFL_BEF) { netdev_dbg(ndev, "Bus error\n"); cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT; cf->data[2] = CAN_ERR_PROT_UNSPEC; priv->can.can_stats.bus_error++; } if (cerfl & RCANFD_CERFL_ADERR) { netdev_dbg(ndev, "ACK Delimiter Error\n"); stats->tx_errors++; cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL; } if (cerfl & RCANFD_CERFL_B0ERR) { netdev_dbg(ndev, "Bit Error (dominant)\n"); stats->tx_errors++; cf->data[2] |= CAN_ERR_PROT_BIT0; } if (cerfl & RCANFD_CERFL_B1ERR) { netdev_dbg(ndev, "Bit Error (recessive)\n"); stats->tx_errors++; cf->data[2] |= CAN_ERR_PROT_BIT1; } if (cerfl & RCANFD_CERFL_CERR) { netdev_dbg(ndev, "CRC Error\n"); stats->rx_errors++; cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ; } if (cerfl & RCANFD_CERFL_AERR) { netdev_dbg(ndev, "ACK Error\n"); stats->tx_errors++; cf->can_id |= CAN_ERR_ACK; cf->data[3] |= CAN_ERR_PROT_LOC_ACK; } if (cerfl & RCANFD_CERFL_FERR) { netdev_dbg(ndev, "Form Error\n"); stats->rx_errors++; cf->data[2] |= CAN_ERR_PROT_FORM; } if (cerfl & RCANFD_CERFL_SERR) { netdev_dbg(ndev, "Stuff Error\n"); stats->rx_errors++; cf->data[2] |= CAN_ERR_PROT_STUFF; } if (cerfl & RCANFD_CERFL_ALF) { netdev_dbg(ndev, "Arbitration lost Error\n"); priv->can.can_stats.arbitration_lost++; cf->can_id |= CAN_ERR_LOSTARB; cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC; } if (cerfl & RCANFD_CERFL_BLF) { netdev_dbg(ndev, "Bus Lock Error\n"); stats->rx_errors++; cf->can_id |= CAN_ERR_BUSERROR; } if (cerfl & RCANFD_CERFL_EWF) { netdev_dbg(ndev, "Error warning interrupt\n"); priv->can.state = CAN_STATE_ERROR_WARNING; priv->can.can_stats.error_warning++; cf->can_id |= CAN_ERR_CRTL; cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING : CAN_ERR_CRTL_RX_WARNING; cf->data[6] = txerr; cf->data[7] = rxerr; } if (cerfl & RCANFD_CERFL_EPF) { netdev_dbg(ndev, "Error passive interrupt\n"); priv->can.state = CAN_STATE_ERROR_PASSIVE; priv->can.can_stats.error_passive++; cf->can_id |= CAN_ERR_CRTL; cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE : CAN_ERR_CRTL_RX_PASSIVE; cf->data[6] = txerr; cf->data[7] = rxerr; } if (cerfl & RCANFD_CERFL_BOEF) { netdev_dbg(ndev, "Bus-off entry interrupt\n"); rcar_canfd_tx_failure_cleanup(ndev); priv->can.state = CAN_STATE_BUS_OFF; priv->can.can_stats.bus_off++; can_bus_off(ndev); cf->can_id |= CAN_ERR_BUSOFF; } if (cerfl & RCANFD_CERFL_OVLF) { netdev_dbg(ndev, "Overload Frame Transmission error interrupt\n"); stats->tx_errors++; cf->can_id |= CAN_ERR_PROT; cf->data[2] |= CAN_ERR_PROT_OVERLOAD; } /* Clear channel error interrupts that are handled */ rcar_canfd_write(priv->base, RCANFD_CERFL(ch), RCANFD_CERFL_ERR(~cerfl)); stats->rx_packets++; stats->rx_bytes += cf->len; netif_rx(skb); } static void rcar_canfd_tx_done(struct net_device *ndev) { struct rcar_canfd_channel *priv = netdev_priv(ndev); struct net_device_stats *stats = &ndev->stats; u32 sts; unsigned long flags; u32 ch = priv->channel; do { u8 unsent, sent; sent = priv->tx_tail % RCANFD_FIFO_DEPTH; stats->tx_packets++; stats->tx_bytes += priv->tx_len[sent]; priv->tx_len[sent] = 0; can_get_echo_skb(ndev, sent, NULL); spin_lock_irqsave(&priv->tx_lock, flags); priv->tx_tail++; sts = rcar_canfd_read(priv->base, RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX)); unsent = RCANFD_CFSTS_CFMC(sts); /* Wake producer only when there is room */ if (unsent != RCANFD_FIFO_DEPTH) netif_wake_queue(ndev); if (priv->tx_head - priv->tx_tail <= unsent) { spin_unlock_irqrestore(&priv->tx_lock, flags); break; } spin_unlock_irqrestore(&priv->tx_lock, flags); } while (1); /* Clear interrupt */ rcar_canfd_write(priv->base, RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX), sts & ~RCANFD_CFSTS_CFTXIF); can_led_event(ndev, CAN_LED_EVENT_TX); } static void rcar_canfd_handle_global_err(struct rcar_canfd_global *gpriv, u32 ch) { struct rcar_canfd_channel *priv = gpriv->ch[ch]; struct net_device *ndev = priv->ndev; u32 gerfl; /* Handle global error interrupts */ gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL); if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl))) rcar_canfd_global_error(ndev); } static irqreturn_t rcar_canfd_global_err_interrupt(int irq, void *dev_id) { struct rcar_canfd_global *gpriv = dev_id; u32 ch; for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) rcar_canfd_handle_global_err(gpriv, ch); return IRQ_HANDLED; } static void rcar_canfd_handle_global_receive(struct rcar_canfd_global *gpriv, u32 ch) { struct rcar_canfd_channel *priv = gpriv->ch[ch]; u32 ridx = ch + RCANFD_RFFIFO_IDX; u32 sts; /* Handle Rx interrupts */ sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx)); if (likely(sts & RCANFD_RFSTS_RFIF)) { if (napi_schedule_prep(&priv->napi)) { /* Disable Rx FIFO interrupts */ rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(ridx), RCANFD_RFCC_RFIE); __napi_schedule(&priv->napi); } } } static irqreturn_t rcar_canfd_global_receive_fifo_interrupt(int irq, void *dev_id) { struct rcar_canfd_global *gpriv = dev_id; u32 ch; for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) rcar_canfd_handle_global_receive(gpriv, ch); return IRQ_HANDLED; } static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id) { struct rcar_canfd_global *gpriv = dev_id; u32 ch; /* Global error interrupts still indicate a condition specific * to a channel. RxFIFO interrupt is a global interrupt. */ for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) { rcar_canfd_handle_global_err(gpriv, ch); rcar_canfd_handle_global_receive(gpriv, ch); } return IRQ_HANDLED; } static void rcar_canfd_state_change(struct net_device *ndev, u16 txerr, u16 rxerr) { struct rcar_canfd_channel *priv = netdev_priv(ndev); struct net_device_stats *stats = &ndev->stats; enum can_state rx_state, tx_state, state = priv->can.state; struct can_frame *cf; struct sk_buff *skb; /* Handle transition from error to normal states */ if (txerr < 96 && rxerr < 96) state = CAN_STATE_ERROR_ACTIVE; else if (txerr < 128 && rxerr < 128) state = CAN_STATE_ERROR_WARNING; if (state != priv->can.state) { netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n", state, priv->can.state, txerr, rxerr); skb = alloc_can_err_skb(ndev, &cf); if (!skb) { stats->rx_dropped++; return; } tx_state = txerr >= rxerr ? state : 0; rx_state = txerr <= rxerr ? state : 0; can_change_state(ndev, cf, tx_state, rx_state); stats->rx_packets++; stats->rx_bytes += cf->len; netif_rx(skb); } } static void rcar_canfd_handle_channel_tx(struct rcar_canfd_global *gpriv, u32 ch) { struct rcar_canfd_channel *priv = gpriv->ch[ch]; struct net_device *ndev = priv->ndev; u32 sts; /* Handle Tx interrupts */ sts = rcar_canfd_read(priv->base, RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX)); if (likely(sts & RCANFD_CFSTS_CFTXIF)) rcar_canfd_tx_done(ndev); } static irqreturn_t rcar_canfd_channel_tx_interrupt(int irq, void *dev_id) { struct rcar_canfd_global *gpriv = dev_id; u32 ch; for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) rcar_canfd_handle_channel_tx(gpriv, ch); return IRQ_HANDLED; } static void rcar_canfd_handle_channel_err(struct rcar_canfd_global *gpriv, u32 ch) { struct rcar_canfd_channel *priv = gpriv->ch[ch]; struct net_device *ndev = priv->ndev; u16 txerr, rxerr; u32 sts, cerfl; /* Handle channel error interrupts */ cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch)); sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch)); txerr = RCANFD_CSTS_TECCNT(sts); rxerr = RCANFD_CSTS_RECCNT(sts); if (unlikely(RCANFD_CERFL_ERR(cerfl))) rcar_canfd_error(ndev, cerfl, txerr, rxerr); /* Handle state change to lower states */ if (unlikely(priv->can.state != CAN_STATE_ERROR_ACTIVE && priv->can.state != CAN_STATE_BUS_OFF)) rcar_canfd_state_change(ndev, txerr, rxerr); } static irqreturn_t rcar_canfd_channel_err_interrupt(int irq, void *dev_id) { struct rcar_canfd_global *gpriv = dev_id; u32 ch; for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) rcar_canfd_handle_channel_err(gpriv, ch); return IRQ_HANDLED; } static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id) { struct rcar_canfd_global *gpriv = dev_id; u32 ch; /* Common FIFO is a per channel resource */ for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) { rcar_canfd_handle_channel_err(gpriv, ch); rcar_canfd_handle_channel_tx(gpriv, ch); } return IRQ_HANDLED; } static void rcar_canfd_set_bittiming(struct net_device *dev) { struct rcar_canfd_channel *priv = netdev_priv(dev); const struct can_bittiming *bt = &priv->can.bittiming; const struct can_bittiming *dbt = &priv->can.data_bittiming; u16 brp, sjw, tseg1, tseg2; u32 cfg; u32 ch = priv->channel; /* Nominal bit timing settings */ brp = bt->brp - 1; sjw = bt->sjw - 1; tseg1 = bt->prop_seg + bt->phase_seg1 - 1; tseg2 = bt->phase_seg2 - 1; if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { /* CAN FD only mode */ cfg = (RCANFD_NCFG_NTSEG1(tseg1) | RCANFD_NCFG_NBRP(brp) | RCANFD_NCFG_NSJW(sjw) | RCANFD_NCFG_NTSEG2(tseg2)); rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg); netdev_dbg(priv->ndev, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n", brp, sjw, tseg1, tseg2); /* Data bit timing settings */ brp = dbt->brp - 1; sjw = dbt->sjw - 1; tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; tseg2 = dbt->phase_seg2 - 1; cfg = (RCANFD_DCFG_DTSEG1(tseg1) | RCANFD_DCFG_DBRP(brp) | RCANFD_DCFG_DSJW(sjw) | RCANFD_DCFG_DTSEG2(tseg2)); rcar_canfd_write(priv->base, RCANFD_F_DCFG(ch), cfg); netdev_dbg(priv->ndev, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n", brp, sjw, tseg1, tseg2); } else { /* Classical CAN only mode */ cfg = (RCANFD_CFG_TSEG1(tseg1) | RCANFD_CFG_BRP(brp) | RCANFD_CFG_SJW(sjw) | RCANFD_CFG_TSEG2(tseg2)); rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg); netdev_dbg(priv->ndev, "rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n", brp, sjw, tseg1, tseg2); } } static int rcar_canfd_start(struct net_device *ndev) { struct rcar_canfd_channel *priv = netdev_priv(ndev); int err = -EOPNOTSUPP; u32 sts, ch = priv->channel; u32 ridx = ch + RCANFD_RFFIFO_IDX; rcar_canfd_set_bittiming(ndev); rcar_canfd_enable_channel_interrupts(priv); /* Set channel to Operational mode */ rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch), RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM); /* Verify channel mode change */ err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts, (sts & RCANFD_CSTS_COMSTS), 2, 500000); if (err) { netdev_err(ndev, "channel %u communication state failed\n", ch); goto fail_mode_change; } /* Enable Common & Rx FIFO */ rcar_canfd_set_bit(priv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX), RCANFD_CFCC_CFE); rcar_canfd_set_bit(priv->base, RCANFD_RFCC(ridx), RCANFD_RFCC_RFE); priv->can.state = CAN_STATE_ERROR_ACTIVE; return 0; fail_mode_change: rcar_canfd_disable_channel_interrupts(priv); return err; } static int rcar_canfd_open(struct net_device *ndev) { struct rcar_canfd_channel *priv = netdev_priv(ndev); struct rcar_canfd_global *gpriv = priv->gpriv; int err; /* Peripheral clock is already enabled in probe */ err = clk_prepare_enable(gpriv->can_clk); if (err) { netdev_err(ndev, "failed to enable CAN clock, error %d\n", err); goto out_clock; } err = open_candev(ndev); if (err) { netdev_err(ndev, "open_candev() failed, error %d\n", err); goto out_can_clock; } napi_enable(&priv->napi); err = rcar_canfd_start(ndev); if (err) goto out_close; netif_start_queue(ndev); can_led_event(ndev, CAN_LED_EVENT_OPEN); return 0; out_close: napi_disable(&priv->napi); close_candev(ndev); out_can_clock: clk_disable_unprepare(gpriv->can_clk); out_clock: return err; } static void rcar_canfd_stop(struct net_device *ndev) { struct rcar_canfd_channel *priv = netdev_priv(ndev); int err; u32 sts, ch = priv->channel; u32 ridx = ch + RCANFD_RFFIFO_IDX; /* Transition to channel reset mode */ rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch), RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET); /* Check Channel reset mode */ err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts, (sts & RCANFD_CSTS_CRSTSTS), 2, 500000); if (err) netdev_err(ndev, "channel %u reset failed\n", ch); rcar_canfd_disable_channel_interrupts(priv); /* Disable Common & Rx FIFO */ rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX), RCANFD_CFCC_CFE); rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(ridx), RCANFD_RFCC_RFE); /* Set the state as STOPPED */ priv->can.state = CAN_STATE_STOPPED; } static int rcar_canfd_close(struct net_device *ndev) { struct rcar_canfd_channel *priv = netdev_priv(ndev); struct rcar_canfd_global *gpriv = priv->gpriv; netif_stop_queue(ndev); rcar_canfd_stop(ndev); napi_disable(&priv->napi); clk_disable_unprepare(gpriv->can_clk); close_candev(ndev); can_led_event(ndev, CAN_LED_EVENT_STOP); return 0; } static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb, struct net_device *ndev) { struct rcar_canfd_channel *priv = netdev_priv(ndev); struct canfd_frame *cf = (struct canfd_frame *)skb->data; u32 sts = 0, id, dlc; unsigned long flags; u32 ch = priv->channel; if (can_dropped_invalid_skb(ndev, skb)) return NETDEV_TX_OK; if (cf->can_id & CAN_EFF_FLAG) { id = cf->can_id & CAN_EFF_MASK; id |= RCANFD_CFID_CFIDE; } else { id = cf->can_id & CAN_SFF_MASK; } if (cf->can_id & CAN_RTR_FLAG) id |= RCANFD_CFID_CFRTR; dlc = RCANFD_CFPTR_CFDLC(can_fd_len2dlc(cf->len)); if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { rcar_canfd_write(priv->base, RCANFD_F_CFID(ch, RCANFD_CFFIFO_IDX), id); rcar_canfd_write(priv->base, RCANFD_F_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc); if (can_is_canfd_skb(skb)) { /* CAN FD frame format */ sts |= RCANFD_CFFDCSTS_CFFDF; if (cf->flags & CANFD_BRS) sts |= RCANFD_CFFDCSTS_CFBRS; if (priv->can.state == CAN_STATE_ERROR_PASSIVE) sts |= RCANFD_CFFDCSTS_CFESI; } rcar_canfd_write(priv->base, RCANFD_F_CFFDCSTS(ch, RCANFD_CFFIFO_IDX), sts); rcar_canfd_put_data(priv, cf, RCANFD_F_CFDF(ch, RCANFD_CFFIFO_IDX, 0)); } else { rcar_canfd_write(priv->base, RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id); rcar_canfd_write(priv->base, RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc); rcar_canfd_put_data(priv, cf, RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0)); } priv->tx_len[priv->tx_head % RCANFD_FIFO_DEPTH] = cf->len; can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH, 0); spin_lock_irqsave(&priv->tx_lock, flags); priv->tx_head++; /* Stop the queue if we've filled all FIFO entries */ if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH) netif_stop_queue(ndev); /* Start Tx: Write 0xff to CFPC to increment the CPU-side * pointer for the Common FIFO */ rcar_canfd_write(priv->base, RCANFD_CFPCTR(ch, RCANFD_CFFIFO_IDX), 0xff); spin_unlock_irqrestore(&priv->tx_lock, flags); return NETDEV_TX_OK; } static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv) { struct net_device_stats *stats = &priv->ndev->stats; struct canfd_frame *cf; struct sk_buff *skb; u32 sts = 0, id, dlc; u32 ch = priv->channel; u32 ridx = ch + RCANFD_RFFIFO_IDX; if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { id = rcar_canfd_read(priv->base, RCANFD_F_RFID(ridx)); dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(ridx)); sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(ridx)); if (sts & RCANFD_RFFDSTS_RFFDF) skb = alloc_canfd_skb(priv->ndev, &cf); else skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf); } else { id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx)); dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx)); skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf); } if (!skb) { stats->rx_dropped++; return; } if (id & RCANFD_RFID_RFIDE) cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG; else cf->can_id = id & CAN_SFF_MASK; if (priv->can.ctrlmode & CAN_CTRLMODE_FD) { if (sts & RCANFD_RFFDSTS_RFFDF) cf->len = can_fd_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); else cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); if (sts & RCANFD_RFFDSTS_RFESI) { cf->flags |= CANFD_ESI; netdev_dbg(priv->ndev, "ESI Error\n"); } if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) { cf->can_id |= CAN_RTR_FLAG; } else { if (sts & RCANFD_RFFDSTS_RFBRS) cf->flags |= CANFD_BRS; rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(ridx, 0)); } } else { cf->len = can_cc_dlc2len(RCANFD_RFPTR_RFDLC(dlc)); if (id & RCANFD_RFID_RFRTR) cf->can_id |= CAN_RTR_FLAG; else rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0)); } /* Write 0xff to RFPC to increment the CPU-side * pointer of the Rx FIFO */ rcar_canfd_write(priv->base, RCANFD_RFPCTR(ridx), 0xff); can_led_event(priv->ndev, CAN_LED_EVENT_RX); stats->rx_bytes += cf->len; stats->rx_packets++; netif_receive_skb(skb); } static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota) { struct rcar_canfd_channel *priv = container_of(napi, struct rcar_canfd_channel, napi); int num_pkts; u32 sts; u32 ch = priv->channel; u32 ridx = ch + RCANFD_RFFIFO_IDX; for (num_pkts = 0; num_pkts < quota; num_pkts++) { sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx)); /* Check FIFO empty condition */ if (sts & RCANFD_RFSTS_RFEMP) break; rcar_canfd_rx_pkt(priv); /* Clear interrupt bit */ if (sts & RCANFD_RFSTS_RFIF) rcar_canfd_write(priv->base, RCANFD_RFSTS(ridx), sts & ~RCANFD_RFSTS_RFIF); } /* All packets processed */ if (num_pkts < quota) { if (napi_complete_done(napi, num_pkts)) { /* Enable Rx FIFO interrupts */ rcar_canfd_set_bit(priv->base, RCANFD_RFCC(ridx), RCANFD_RFCC_RFIE); } } return num_pkts; } static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode) { int err; switch (mode) { case CAN_MODE_START: err = rcar_canfd_start(ndev); if (err) return err; netif_wake_queue(ndev); return 0; default: return -EOPNOTSUPP; } } static int rcar_canfd_get_berr_counter(const struct net_device *dev, struct can_berr_counter *bec) { struct rcar_canfd_channel *priv = netdev_priv(dev); u32 val, ch = priv->channel; /* Peripheral clock is already enabled in probe */ val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch)); bec->txerr = RCANFD_CSTS_TECCNT(val); bec->rxerr = RCANFD_CSTS_RECCNT(val); return 0; } static const struct net_device_ops rcar_canfd_netdev_ops = { .ndo_open = rcar_canfd_open, .ndo_stop = rcar_canfd_close, .ndo_start_xmit = rcar_canfd_start_xmit, .ndo_change_mtu = can_change_mtu, }; static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch, u32 fcan_freq) { struct platform_device *pdev = gpriv->pdev; struct rcar_canfd_channel *priv; struct net_device *ndev; int err = -ENODEV; ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH); if (!ndev) { dev_err(&pdev->dev, "alloc_candev() failed\n"); err = -ENOMEM; goto fail; } priv = netdev_priv(ndev); ndev->netdev_ops = &rcar_canfd_netdev_ops; ndev->flags |= IFF_ECHO; priv->ndev = ndev; priv->base = gpriv->base; priv->channel = ch; priv->can.clock.freq = fcan_freq; dev_info(&pdev->dev, "can_clk rate is %u\n", priv->can.clock.freq); if (gpriv->chip_id == RENESAS_RZG2L) { char *irq_name; int err_irq; int tx_irq; err_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_err" : "ch1_err"); if (err_irq < 0) { err = err_irq; goto fail; } tx_irq = platform_get_irq_byname(pdev, ch == 0 ? "ch0_trx" : "ch1_trx"); if (tx_irq < 0) { err = tx_irq; goto fail; } irq_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "canfd.ch%d_err", ch); if (!irq_name) { err = -ENOMEM; goto fail; } err = devm_request_irq(&pdev->dev, err_irq, rcar_canfd_channel_err_interrupt, 0, irq_name, gpriv); if (err) { dev_err(&pdev->dev, "devm_request_irq CH Err(%d) failed, error %d\n", err_irq, err); goto fail; } irq_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "canfd.ch%d_trx", ch); if (!irq_name) { err = -ENOMEM; goto fail; } err = devm_request_irq(&pdev->dev, tx_irq, rcar_canfd_channel_tx_interrupt, 0, irq_name, gpriv); if (err) { dev_err(&pdev->dev, "devm_request_irq Tx (%d) failed, error %d\n", tx_irq, err); goto fail; } } if (gpriv->fdmode) { priv->can.bittiming_const = &rcar_canfd_nom_bittiming_const; priv->can.data_bittiming_const = &rcar_canfd_data_bittiming_const; /* Controller starts in CAN FD only mode */ can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD); priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING; } else { /* Controller starts in Classical CAN only mode */ priv->can.bittiming_const = &rcar_canfd_bittiming_const; priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING; } priv->can.do_set_mode = rcar_canfd_do_set_mode; priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter; priv->gpriv = gpriv; SET_NETDEV_DEV(ndev, &pdev->dev); netif_napi_add(ndev, &priv->napi, rcar_canfd_rx_poll, RCANFD_NAPI_WEIGHT); err = register_candev(ndev); if (err) { dev_err(&pdev->dev, "register_candev() failed, error %d\n", err); goto fail_candev; } spin_lock_init(&priv->tx_lock); devm_can_led_init(ndev); gpriv->ch[priv->channel] = priv; dev_info(&pdev->dev, "device registered (channel %u)\n", priv->channel); return 0; fail_candev: netif_napi_del(&priv->napi); free_candev(ndev); fail: return err; } static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch) { struct rcar_canfd_channel *priv = gpriv->ch[ch]; if (priv) { unregister_candev(priv->ndev); netif_napi_del(&priv->napi); free_candev(priv->ndev); } } static int rcar_canfd_probe(struct platform_device *pdev) { void __iomem *addr; u32 sts, ch, fcan_freq; struct rcar_canfd_global *gpriv; struct device_node *of_child; unsigned long channels_mask = 0; int err, ch_irq, g_irq; int g_err_irq, g_recc_irq; bool fdmode = true; /* CAN FD only mode - default */ enum rcanfd_chip_id chip_id; chip_id = (uintptr_t)of_device_get_match_data(&pdev->dev); if (of_property_read_bool(pdev->dev.of_node, "renesas,no-can-fd")) fdmode = false; /* Classical CAN only mode */ of_child = of_get_child_by_name(pdev->dev.of_node, "channel0"); if (of_child && of_device_is_available(of_child)) channels_mask |= BIT(0); /* Channel 0 */ of_child = of_get_child_by_name(pdev->dev.of_node, "channel1"); if (of_child && of_device_is_available(of_child)) channels_mask |= BIT(1); /* Channel 1 */ if (chip_id == RENESAS_RCAR_GEN3) { ch_irq = platform_get_irq_byname_optional(pdev, "ch_int"); if (ch_irq < 0) { /* For backward compatibility get irq by index */ ch_irq = platform_get_irq(pdev, 0); if (ch_irq < 0) return ch_irq; } g_irq = platform_get_irq_byname_optional(pdev, "g_int"); if (g_irq < 0) { /* For backward compatibility get irq by index */ g_irq = platform_get_irq(pdev, 1); if (g_irq < 0) return g_irq; } } else { g_err_irq = platform_get_irq_byname(pdev, "g_err"); if (g_err_irq < 0) return g_err_irq; g_recc_irq = platform_get_irq_byname(pdev, "g_recc"); if (g_recc_irq < 0) return g_recc_irq; } /* Global controller context */ gpriv = devm_kzalloc(&pdev->dev, sizeof(*gpriv), GFP_KERNEL); if (!gpriv) { err = -ENOMEM; goto fail_dev; } gpriv->pdev = pdev; gpriv->channels_mask = channels_mask; gpriv->fdmode = fdmode; gpriv->chip_id = chip_id; if (gpriv->chip_id == RENESAS_RZG2L) { gpriv->rstc1 = devm_reset_control_get_exclusive(&pdev->dev, "rstp_n"); if (IS_ERR(gpriv->rstc1)) return dev_err_probe(&pdev->dev, PTR_ERR(gpriv->rstc1), "failed to get rstp_n\n"); gpriv->rstc2 = devm_reset_control_get_exclusive(&pdev->dev, "rstc_n"); if (IS_ERR(gpriv->rstc2)) return dev_err_probe(&pdev->dev, PTR_ERR(gpriv->rstc2), "failed to get rstc_n\n"); } /* Peripheral clock */ gpriv->clkp = devm_clk_get(&pdev->dev, "fck"); if (IS_ERR(gpriv->clkp)) { err = PTR_ERR(gpriv->clkp); dev_err(&pdev->dev, "cannot get peripheral clock, error %d\n", err); goto fail_dev; } /* fCAN clock: Pick External clock. If not available fallback to * CANFD clock */ gpriv->can_clk = devm_clk_get(&pdev->dev, "can_clk"); if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) { gpriv->can_clk = devm_clk_get(&pdev->dev, "canfd"); if (IS_ERR(gpriv->can_clk)) { err = PTR_ERR(gpriv->can_clk); dev_err(&pdev->dev, "cannot get canfd clock, error %d\n", err); goto fail_dev; } gpriv->fcan = RCANFD_CANFDCLK; } else { gpriv->fcan = RCANFD_EXTCLK; } fcan_freq = clk_get_rate(gpriv->can_clk); if (gpriv->fcan == RCANFD_CANFDCLK && gpriv->chip_id == RENESAS_RCAR_GEN3) /* CANFD clock is further divided by (1/2) within the IP */ fcan_freq /= 2; addr = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(addr)) { err = PTR_ERR(addr); goto fail_dev; } gpriv->base = addr; /* Request IRQ that's common for both channels */ if (gpriv->chip_id == RENESAS_RCAR_GEN3) { err = devm_request_irq(&pdev->dev, ch_irq, rcar_canfd_channel_interrupt, 0, "canfd.ch_int", gpriv); if (err) { dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n", ch_irq, err); goto fail_dev; } err = devm_request_irq(&pdev->dev, g_irq, rcar_canfd_global_interrupt, 0, "canfd.g_int", gpriv); if (err) { dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n", g_irq, err); goto fail_dev; } } else { err = devm_request_irq(&pdev->dev, g_recc_irq, rcar_canfd_global_receive_fifo_interrupt, 0, "canfd.g_recc", gpriv); if (err) { dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n", g_recc_irq, err); goto fail_dev; } err = devm_request_irq(&pdev->dev, g_err_irq, rcar_canfd_global_err_interrupt, 0, "canfd.g_err", gpriv); if (err) { dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n", g_err_irq, err); goto fail_dev; } } err = reset_control_reset(gpriv->rstc1); if (err) goto fail_dev; err = reset_control_reset(gpriv->rstc2); if (err) { reset_control_assert(gpriv->rstc1); goto fail_dev; } /* Enable peripheral clock for register access */ err = clk_prepare_enable(gpriv->clkp); if (err) { dev_err(&pdev->dev, "failed to enable peripheral clock, error %d\n", err); goto fail_reset; } err = rcar_canfd_reset_controller(gpriv); if (err) { dev_err(&pdev->dev, "reset controller failed\n"); goto fail_clk; } /* Controller in Global reset & Channel reset mode */ rcar_canfd_configure_controller(gpriv); /* Configure per channel attributes */ for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) { /* Configure Channel's Rx fifo */ rcar_canfd_configure_rx(gpriv, ch); /* Configure Channel's Tx (Common) fifo */ rcar_canfd_configure_tx(gpriv, ch); /* Configure receive rules */ rcar_canfd_configure_afl_rules(gpriv, ch); } /* Configure common interrupts */ rcar_canfd_enable_global_interrupts(gpriv); /* Start Global operation mode */ rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GOPM); /* Verify mode change */ err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts, !(sts & RCANFD_GSTS_GNOPM), 2, 500000); if (err) { dev_err(&pdev->dev, "global operational mode failed\n"); goto fail_mode; } for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) { err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq); if (err) goto fail_channel; } platform_set_drvdata(pdev, gpriv); dev_info(&pdev->dev, "global operational state (clk %d, fdmode %d)\n", gpriv->fcan, gpriv->fdmode); return 0; fail_channel: for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) rcar_canfd_channel_remove(gpriv, ch); fail_mode: rcar_canfd_disable_global_interrupts(gpriv); fail_clk: clk_disable_unprepare(gpriv->clkp); fail_reset: reset_control_assert(gpriv->rstc1); reset_control_assert(gpriv->rstc2); fail_dev: return err; } static int rcar_canfd_remove(struct platform_device *pdev) { struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev); u32 ch; rcar_canfd_reset_controller(gpriv); rcar_canfd_disable_global_interrupts(gpriv); for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) { rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]); rcar_canfd_channel_remove(gpriv, ch); } /* Enter global sleep mode */ rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR); clk_disable_unprepare(gpriv->clkp); reset_control_assert(gpriv->rstc1); reset_control_assert(gpriv->rstc2); return 0; } static int __maybe_unused rcar_canfd_suspend(struct device *dev) { return 0; } static int __maybe_unused rcar_canfd_resume(struct device *dev) { return 0; } static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend, rcar_canfd_resume); static const struct of_device_id rcar_canfd_of_table[] = { { .compatible = "renesas,rcar-gen3-canfd", .data = (void *)RENESAS_RCAR_GEN3 }, { .compatible = "renesas,rzg2l-canfd", .data = (void *)RENESAS_RZG2L }, { } }; MODULE_DEVICE_TABLE(of, rcar_canfd_of_table); static struct platform_driver rcar_canfd_driver = { .driver = { .name = RCANFD_DRV_NAME, .of_match_table = of_match_ptr(rcar_canfd_of_table), .pm = &rcar_canfd_pm_ops, }, .probe = rcar_canfd_probe, .remove = rcar_canfd_remove, }; module_platform_driver(rcar_canfd_driver); MODULE_AUTHOR("Ramesh Shanmugasundaram "); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC"); MODULE_ALIAS("platform:" RCANFD_DRV_NAME);