// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2014 Protonic Holland, * David Jander * Copyright (C) 2014-2021 Pengutronix, * Marc Kleine-Budde */ #include #include struct can_rx_offload_cb { u32 timestamp; }; static inline struct can_rx_offload_cb * can_rx_offload_get_cb(struct sk_buff *skb) { BUILD_BUG_ON(sizeof(struct can_rx_offload_cb) > sizeof(skb->cb)); return (struct can_rx_offload_cb *)skb->cb; } static inline bool can_rx_offload_le(struct can_rx_offload *offload, unsigned int a, unsigned int b) { if (offload->inc) return a <= b; else return a >= b; } static inline unsigned int can_rx_offload_inc(struct can_rx_offload *offload, unsigned int *val) { if (offload->inc) return (*val)++; else return (*val)--; } static int can_rx_offload_napi_poll(struct napi_struct *napi, int quota) { struct can_rx_offload *offload = container_of(napi, struct can_rx_offload, napi); struct net_device *dev = offload->dev; struct net_device_stats *stats = &dev->stats; struct sk_buff *skb; int work_done = 0; while ((work_done < quota) && (skb = skb_dequeue(&offload->skb_queue))) { struct can_frame *cf = (struct can_frame *)skb->data; work_done++; if (!(cf->can_id & CAN_ERR_FLAG)) { stats->rx_packets++; if (!(cf->can_id & CAN_RTR_FLAG)) stats->rx_bytes += cf->len; } netif_receive_skb(skb); } if (work_done < quota) { napi_complete_done(napi, work_done); /* Check if there was another interrupt */ if (!skb_queue_empty(&offload->skb_queue)) napi_reschedule(&offload->napi); } can_led_event(offload->dev, CAN_LED_EVENT_RX); return work_done; } static inline void __skb_queue_add_sort(struct sk_buff_head *head, struct sk_buff *new, int (*compare)(struct sk_buff *a, struct sk_buff *b)) { struct sk_buff *pos, *insert = NULL; skb_queue_reverse_walk(head, pos) { const struct can_rx_offload_cb *cb_pos, *cb_new; cb_pos = can_rx_offload_get_cb(pos); cb_new = can_rx_offload_get_cb(new); netdev_dbg(new->dev, "%s: pos=0x%08x, new=0x%08x, diff=%10d, queue_len=%d\n", __func__, cb_pos->timestamp, cb_new->timestamp, cb_new->timestamp - cb_pos->timestamp, skb_queue_len(head)); if (compare(pos, new) < 0) continue; insert = pos; break; } if (!insert) __skb_queue_head(head, new); else __skb_queue_after(head, insert, new); } static int can_rx_offload_compare(struct sk_buff *a, struct sk_buff *b) { const struct can_rx_offload_cb *cb_a, *cb_b; cb_a = can_rx_offload_get_cb(a); cb_b = can_rx_offload_get_cb(b); /* Subtract two u32 and return result as int, to keep * difference steady around the u32 overflow. */ return cb_b->timestamp - cb_a->timestamp; } /** * can_rx_offload_offload_one() - Read one CAN frame from HW * @offload: pointer to rx_offload context * @n: number of mailbox to read * * The task of this function is to read a CAN frame from mailbox @n * from the device and return the mailbox's content as a struct * sk_buff. * * If the struct can_rx_offload::skb_queue exceeds the maximal queue * length (struct can_rx_offload::skb_queue_len_max) or no skb can be * allocated, the mailbox contents is discarded by reading it into an * overflow buffer. This way the mailbox is marked as free by the * driver. * * Return: A pointer to skb containing the CAN frame on success. * * NULL if the mailbox @n is empty. * * ERR_PTR() in case of an error */ static struct sk_buff * can_rx_offload_offload_one(struct can_rx_offload *offload, unsigned int n) { struct sk_buff *skb; struct can_rx_offload_cb *cb; bool drop = false; u32 timestamp; /* If queue is full drop frame */ if (unlikely(skb_queue_len(&offload->skb_queue) > offload->skb_queue_len_max)) drop = true; skb = offload->mailbox_read(offload, n, ×tamp, drop); /* Mailbox was empty. */ if (unlikely(!skb)) return NULL; /* There was a problem reading the mailbox, propagate * error value. */ if (IS_ERR(skb)) { offload->dev->stats.rx_dropped++; offload->dev->stats.rx_fifo_errors++; return skb; } /* Mailbox was read. */ cb = can_rx_offload_get_cb(skb); cb->timestamp = timestamp; return skb; } int can_rx_offload_irq_offload_timestamp(struct can_rx_offload *offload, u64 pending) { unsigned int i; int received = 0; for (i = offload->mb_first; can_rx_offload_le(offload, i, offload->mb_last); can_rx_offload_inc(offload, &i)) { struct sk_buff *skb; if (!(pending & BIT_ULL(i))) continue; skb = can_rx_offload_offload_one(offload, i); if (IS_ERR_OR_NULL(skb)) continue; __skb_queue_add_sort(&offload->skb_irq_queue, skb, can_rx_offload_compare); received++; } return received; } EXPORT_SYMBOL_GPL(can_rx_offload_irq_offload_timestamp); int can_rx_offload_irq_offload_fifo(struct can_rx_offload *offload) { struct sk_buff *skb; int received = 0; while (1) { skb = can_rx_offload_offload_one(offload, 0); if (IS_ERR(skb)) continue; if (!skb) break; __skb_queue_tail(&offload->skb_irq_queue, skb); received++; } return received; } EXPORT_SYMBOL_GPL(can_rx_offload_irq_offload_fifo); int can_rx_offload_queue_timestamp(struct can_rx_offload *offload, struct sk_buff *skb, u32 timestamp) { struct can_rx_offload_cb *cb; if (skb_queue_len(&offload->skb_queue) > offload->skb_queue_len_max) { dev_kfree_skb_any(skb); return -ENOBUFS; } cb = can_rx_offload_get_cb(skb); cb->timestamp = timestamp; __skb_queue_add_sort(&offload->skb_irq_queue, skb, can_rx_offload_compare); return 0; } EXPORT_SYMBOL_GPL(can_rx_offload_queue_timestamp); unsigned int can_rx_offload_get_echo_skb(struct can_rx_offload *offload, unsigned int idx, u32 timestamp, unsigned int *frame_len_ptr) { struct net_device *dev = offload->dev; struct net_device_stats *stats = &dev->stats; struct sk_buff *skb; u8 len; int err; skb = __can_get_echo_skb(dev, idx, &len, frame_len_ptr); if (!skb) return 0; err = can_rx_offload_queue_timestamp(offload, skb, timestamp); if (err) { stats->rx_errors++; stats->tx_fifo_errors++; } return len; } EXPORT_SYMBOL_GPL(can_rx_offload_get_echo_skb); int can_rx_offload_queue_tail(struct can_rx_offload *offload, struct sk_buff *skb) { if (skb_queue_len(&offload->skb_queue) > offload->skb_queue_len_max) { dev_kfree_skb_any(skb); return -ENOBUFS; } __skb_queue_tail(&offload->skb_irq_queue, skb); return 0; } EXPORT_SYMBOL_GPL(can_rx_offload_queue_tail); void can_rx_offload_irq_finish(struct can_rx_offload *offload) { unsigned long flags; int queue_len; if (skb_queue_empty_lockless(&offload->skb_irq_queue)) return; spin_lock_irqsave(&offload->skb_queue.lock, flags); skb_queue_splice_tail_init(&offload->skb_irq_queue, &offload->skb_queue); spin_unlock_irqrestore(&offload->skb_queue.lock, flags); queue_len = skb_queue_len(&offload->skb_queue); if (queue_len > offload->skb_queue_len_max / 8) netdev_dbg(offload->dev, "%s: queue_len=%d\n", __func__, queue_len); napi_schedule(&offload->napi); } EXPORT_SYMBOL_GPL(can_rx_offload_irq_finish); void can_rx_offload_threaded_irq_finish(struct can_rx_offload *offload) { unsigned long flags; int queue_len; if (skb_queue_empty_lockless(&offload->skb_irq_queue)) return; spin_lock_irqsave(&offload->skb_queue.lock, flags); skb_queue_splice_tail_init(&offload->skb_irq_queue, &offload->skb_queue); spin_unlock_irqrestore(&offload->skb_queue.lock, flags); queue_len = skb_queue_len(&offload->skb_queue); if (queue_len > offload->skb_queue_len_max / 8) netdev_dbg(offload->dev, "%s: queue_len=%d\n", __func__, queue_len); local_bh_disable(); napi_schedule(&offload->napi); local_bh_enable(); } EXPORT_SYMBOL_GPL(can_rx_offload_threaded_irq_finish); static int can_rx_offload_init_queue(struct net_device *dev, struct can_rx_offload *offload, unsigned int weight) { offload->dev = dev; /* Limit queue len to 4x the weight (rounted to next power of two) */ offload->skb_queue_len_max = 2 << fls(weight); offload->skb_queue_len_max *= 4; skb_queue_head_init(&offload->skb_queue); __skb_queue_head_init(&offload->skb_irq_queue); netif_napi_add(dev, &offload->napi, can_rx_offload_napi_poll, weight); dev_dbg(dev->dev.parent, "%s: skb_queue_len_max=%d\n", __func__, offload->skb_queue_len_max); return 0; } int can_rx_offload_add_timestamp(struct net_device *dev, struct can_rx_offload *offload) { unsigned int weight; if (offload->mb_first > BITS_PER_LONG_LONG || offload->mb_last > BITS_PER_LONG_LONG || !offload->mailbox_read) return -EINVAL; if (offload->mb_first < offload->mb_last) { offload->inc = true; weight = offload->mb_last - offload->mb_first; } else { offload->inc = false; weight = offload->mb_first - offload->mb_last; } return can_rx_offload_init_queue(dev, offload, weight); } EXPORT_SYMBOL_GPL(can_rx_offload_add_timestamp); int can_rx_offload_add_fifo(struct net_device *dev, struct can_rx_offload *offload, unsigned int weight) { if (!offload->mailbox_read) return -EINVAL; return can_rx_offload_init_queue(dev, offload, weight); } EXPORT_SYMBOL_GPL(can_rx_offload_add_fifo); int can_rx_offload_add_manual(struct net_device *dev, struct can_rx_offload *offload, unsigned int weight) { if (offload->mailbox_read) return -EINVAL; return can_rx_offload_init_queue(dev, offload, weight); } EXPORT_SYMBOL_GPL(can_rx_offload_add_manual); void can_rx_offload_enable(struct can_rx_offload *offload) { napi_enable(&offload->napi); } EXPORT_SYMBOL_GPL(can_rx_offload_enable); void can_rx_offload_del(struct can_rx_offload *offload) { netif_napi_del(&offload->napi); skb_queue_purge(&offload->skb_queue); __skb_queue_purge(&offload->skb_irq_queue); } EXPORT_SYMBOL_GPL(can_rx_offload_del);