// SPDX-License-Identifier: GPL-2.0 // // bxcan.c - STM32 Basic Extended CAN controller driver // // Copyright (c) 2022 Dario Binacchi // // NOTE: The ST documentation uses the terms master/slave instead of // primary/secondary. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define BXCAN_NAPI_WEIGHT 3 #define BXCAN_TIMEOUT_US 10000 #define BXCAN_RX_MB_NUM 2 #define BXCAN_TX_MB_NUM 3 /* Primary control register (MCR) bits */ #define BXCAN_MCR_RESET BIT(15) #define BXCAN_MCR_TTCM BIT(7) #define BXCAN_MCR_ABOM BIT(6) #define BXCAN_MCR_AWUM BIT(5) #define BXCAN_MCR_NART BIT(4) #define BXCAN_MCR_RFLM BIT(3) #define BXCAN_MCR_TXFP BIT(2) #define BXCAN_MCR_SLEEP BIT(1) #define BXCAN_MCR_INRQ BIT(0) /* Primary status register (MSR) bits */ #define BXCAN_MSR_ERRI BIT(2) #define BXCAN_MSR_SLAK BIT(1) #define BXCAN_MSR_INAK BIT(0) /* Transmit status register (TSR) bits */ #define BXCAN_TSR_RQCP2 BIT(16) #define BXCAN_TSR_RQCP1 BIT(8) #define BXCAN_TSR_RQCP0 BIT(0) /* Receive FIFO 0 register (RF0R) bits */ #define BXCAN_RF0R_RFOM0 BIT(5) #define BXCAN_RF0R_FMP0_MASK GENMASK(1, 0) /* Interrupt enable register (IER) bits */ #define BXCAN_IER_SLKIE BIT(17) #define BXCAN_IER_WKUIE BIT(16) #define BXCAN_IER_ERRIE BIT(15) #define BXCAN_IER_LECIE BIT(11) #define BXCAN_IER_BOFIE BIT(10) #define BXCAN_IER_EPVIE BIT(9) #define BXCAN_IER_EWGIE BIT(8) #define BXCAN_IER_FOVIE1 BIT(6) #define BXCAN_IER_FFIE1 BIT(5) #define BXCAN_IER_FMPIE1 BIT(4) #define BXCAN_IER_FOVIE0 BIT(3) #define BXCAN_IER_FFIE0 BIT(2) #define BXCAN_IER_FMPIE0 BIT(1) #define BXCAN_IER_TMEIE BIT(0) /* Error status register (ESR) bits */ #define BXCAN_ESR_REC_MASK GENMASK(31, 24) #define BXCAN_ESR_TEC_MASK GENMASK(23, 16) #define BXCAN_ESR_LEC_MASK GENMASK(6, 4) #define BXCAN_ESR_BOFF BIT(2) #define BXCAN_ESR_EPVF BIT(1) #define BXCAN_ESR_EWGF BIT(0) /* Bit timing register (BTR) bits */ #define BXCAN_BTR_SILM BIT(31) #define BXCAN_BTR_LBKM BIT(30) #define BXCAN_BTR_SJW_MASK GENMASK(25, 24) #define BXCAN_BTR_TS2_MASK GENMASK(22, 20) #define BXCAN_BTR_TS1_MASK GENMASK(19, 16) #define BXCAN_BTR_BRP_MASK GENMASK(9, 0) /* TX mailbox identifier register (TIxR, x = 0..2) bits */ #define BXCAN_TIxR_STID_MASK GENMASK(31, 21) #define BXCAN_TIxR_EXID_MASK GENMASK(31, 3) #define BXCAN_TIxR_IDE BIT(2) #define BXCAN_TIxR_RTR BIT(1) #define BXCAN_TIxR_TXRQ BIT(0) /* TX mailbox data length and time stamp register (TDTxR, x = 0..2 bits */ #define BXCAN_TDTxR_DLC_MASK GENMASK(3, 0) /* RX FIFO mailbox identifier register (RIxR, x = 0..1 */ #define BXCAN_RIxR_STID_MASK GENMASK(31, 21) #define BXCAN_RIxR_EXID_MASK GENMASK(31, 3) #define BXCAN_RIxR_IDE BIT(2) #define BXCAN_RIxR_RTR BIT(1) /* RX FIFO mailbox data length and timestamp register (RDTxR, x = 0..1) bits */ #define BXCAN_RDTxR_TIME_MASK GENMASK(31, 16) #define BXCAN_RDTxR_DLC_MASK GENMASK(3, 0) #define BXCAN_FMR_REG 0x00 #define BXCAN_FM1R_REG 0x04 #define BXCAN_FS1R_REG 0x0c #define BXCAN_FFA1R_REG 0x14 #define BXCAN_FA1R_REG 0x1c #define BXCAN_FiR1_REG(b) (0x40 + (b) * 8) #define BXCAN_FiR2_REG(b) (0x44 + (b) * 8) #define BXCAN_FILTER_ID(primary) (primary ? 0 : 14) /* Filter primary register (FMR) bits */ #define BXCAN_FMR_CANSB_MASK GENMASK(13, 8) #define BXCAN_FMR_FINIT BIT(0) enum bxcan_lec_code { BXCAN_LEC_NO_ERROR = 0, BXCAN_LEC_STUFF_ERROR, BXCAN_LEC_FORM_ERROR, BXCAN_LEC_ACK_ERROR, BXCAN_LEC_BIT1_ERROR, BXCAN_LEC_BIT0_ERROR, BXCAN_LEC_CRC_ERROR, BXCAN_LEC_UNUSED }; /* Structure of the message buffer */ struct bxcan_mb { u32 id; /* can identifier */ u32 dlc; /* data length control and timestamp */ u32 data[2]; /* data */ }; /* Structure of the hardware registers */ struct bxcan_regs { u32 mcr; /* 0x00 - primary control */ u32 msr; /* 0x04 - primary status */ u32 tsr; /* 0x08 - transmit status */ u32 rf0r; /* 0x0c - FIFO 0 */ u32 rf1r; /* 0x10 - FIFO 1 */ u32 ier; /* 0x14 - interrupt enable */ u32 esr; /* 0x18 - error status */ u32 btr; /* 0x1c - bit timing*/ u32 reserved0[88]; /* 0x20 */ struct bxcan_mb tx_mb[BXCAN_TX_MB_NUM]; /* 0x180 - tx mailbox */ struct bxcan_mb rx_mb[BXCAN_RX_MB_NUM]; /* 0x1b0 - rx mailbox */ }; struct bxcan_priv { struct can_priv can; struct can_rx_offload offload; struct device *dev; struct net_device *ndev; struct bxcan_regs __iomem *regs; struct regmap *gcan; int tx_irq; int sce_irq; bool primary; struct clk *clk; spinlock_t rmw_lock; /* lock for read-modify-write operations */ unsigned int tx_head; unsigned int tx_tail; u32 timestamp; }; static const struct can_bittiming_const bxcan_bittiming_const = { .name = KBUILD_MODNAME, .tseg1_min = 1, .tseg1_max = 16, .tseg2_min = 1, .tseg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 1024, .brp_inc = 1, }; static inline void bxcan_rmw(struct bxcan_priv *priv, void __iomem *addr, u32 clear, u32 set) { unsigned long flags; u32 old, val; spin_lock_irqsave(&priv->rmw_lock, flags); old = readl(addr); val = (old & ~clear) | set; if (val != old) writel(val, addr); spin_unlock_irqrestore(&priv->rmw_lock, flags); } static void bxcan_disable_filters(struct bxcan_priv *priv, bool primary) { unsigned int fid = BXCAN_FILTER_ID(primary); u32 fmask = BIT(fid); regmap_update_bits(priv->gcan, BXCAN_FA1R_REG, fmask, 0); } static void bxcan_enable_filters(struct bxcan_priv *priv, bool primary) { unsigned int fid = BXCAN_FILTER_ID(primary); u32 fmask = BIT(fid); /* Filter settings: * * Accept all messages. * Assign filter 0 to CAN1 and filter 14 to CAN2 in identifier * mask mode with 32 bits width. */ /* Enter filter initialization mode and assing filters to CAN * controllers. */ regmap_update_bits(priv->gcan, BXCAN_FMR_REG, BXCAN_FMR_CANSB_MASK | BXCAN_FMR_FINIT, FIELD_PREP(BXCAN_FMR_CANSB_MASK, 14) | BXCAN_FMR_FINIT); /* Deactivate filter */ regmap_update_bits(priv->gcan, BXCAN_FA1R_REG, fmask, 0); /* Two 32-bit registers in identifier mask mode */ regmap_update_bits(priv->gcan, BXCAN_FM1R_REG, fmask, 0); /* Single 32-bit scale configuration */ regmap_update_bits(priv->gcan, BXCAN_FS1R_REG, fmask, fmask); /* Assign filter to FIFO 0 */ regmap_update_bits(priv->gcan, BXCAN_FFA1R_REG, fmask, 0); /* Accept all messages */ regmap_write(priv->gcan, BXCAN_FiR1_REG(fid), 0); regmap_write(priv->gcan, BXCAN_FiR2_REG(fid), 0); /* Activate filter */ regmap_update_bits(priv->gcan, BXCAN_FA1R_REG, fmask, fmask); /* Exit filter initialization mode */ regmap_update_bits(priv->gcan, BXCAN_FMR_REG, BXCAN_FMR_FINIT, 0); } static inline u8 bxcan_get_tx_head(const struct bxcan_priv *priv) { return priv->tx_head % BXCAN_TX_MB_NUM; } static inline u8 bxcan_get_tx_tail(const struct bxcan_priv *priv) { return priv->tx_tail % BXCAN_TX_MB_NUM; } static inline u8 bxcan_get_tx_free(const struct bxcan_priv *priv) { return BXCAN_TX_MB_NUM - (priv->tx_head - priv->tx_tail); } static bool bxcan_tx_busy(const struct bxcan_priv *priv) { if (bxcan_get_tx_free(priv) > 0) return false; netif_stop_queue(priv->ndev); /* Memory barrier before checking tx_free (head and tail) */ smp_mb(); if (bxcan_get_tx_free(priv) == 0) { netdev_dbg(priv->ndev, "Stopping tx-queue (tx_head=0x%08x, tx_tail=0x%08x, len=%d).\n", priv->tx_head, priv->tx_tail, priv->tx_head - priv->tx_tail); return true; } netif_start_queue(priv->ndev); return false; } static int bxcan_chip_softreset(struct bxcan_priv *priv) { struct bxcan_regs __iomem *regs = priv->regs; u32 value; bxcan_rmw(priv, ®s->mcr, 0, BXCAN_MCR_RESET); return readx_poll_timeout(readl, ®s->msr, value, value & BXCAN_MSR_SLAK, BXCAN_TIMEOUT_US, USEC_PER_SEC); } static int bxcan_enter_init_mode(struct bxcan_priv *priv) { struct bxcan_regs __iomem *regs = priv->regs; u32 value; bxcan_rmw(priv, ®s->mcr, 0, BXCAN_MCR_INRQ); return readx_poll_timeout(readl, ®s->msr, value, value & BXCAN_MSR_INAK, BXCAN_TIMEOUT_US, USEC_PER_SEC); } static int bxcan_leave_init_mode(struct bxcan_priv *priv) { struct bxcan_regs __iomem *regs = priv->regs; u32 value; bxcan_rmw(priv, ®s->mcr, BXCAN_MCR_INRQ, 0); return readx_poll_timeout(readl, ®s->msr, value, !(value & BXCAN_MSR_INAK), BXCAN_TIMEOUT_US, USEC_PER_SEC); } static int bxcan_enter_sleep_mode(struct bxcan_priv *priv) { struct bxcan_regs __iomem *regs = priv->regs; u32 value; bxcan_rmw(priv, ®s->mcr, 0, BXCAN_MCR_SLEEP); return readx_poll_timeout(readl, ®s->msr, value, value & BXCAN_MSR_SLAK, BXCAN_TIMEOUT_US, USEC_PER_SEC); } static int bxcan_leave_sleep_mode(struct bxcan_priv *priv) { struct bxcan_regs __iomem *regs = priv->regs; u32 value; bxcan_rmw(priv, ®s->mcr, BXCAN_MCR_SLEEP, 0); return readx_poll_timeout(readl, ®s->msr, value, !(value & BXCAN_MSR_SLAK), BXCAN_TIMEOUT_US, USEC_PER_SEC); } static inline struct bxcan_priv *rx_offload_to_priv(struct can_rx_offload *offload) { return container_of(offload, struct bxcan_priv, offload); } static struct sk_buff *bxcan_mailbox_read(struct can_rx_offload *offload, unsigned int mbxno, u32 *timestamp, bool drop) { struct bxcan_priv *priv = rx_offload_to_priv(offload); struct bxcan_regs __iomem *regs = priv->regs; struct bxcan_mb __iomem *mb_regs = ®s->rx_mb[0]; struct sk_buff *skb = NULL; struct can_frame *cf; u32 rf0r, id, dlc; rf0r = readl(®s->rf0r); if (unlikely(drop)) { skb = ERR_PTR(-ENOBUFS); goto mark_as_read; } if (!(rf0r & BXCAN_RF0R_FMP0_MASK)) goto mark_as_read; skb = alloc_can_skb(offload->dev, &cf); if (unlikely(!skb)) { skb = ERR_PTR(-ENOMEM); goto mark_as_read; } id = readl(&mb_regs->id); if (id & BXCAN_RIxR_IDE) cf->can_id = FIELD_GET(BXCAN_RIxR_EXID_MASK, id) | CAN_EFF_FLAG; else cf->can_id = FIELD_GET(BXCAN_RIxR_STID_MASK, id) & CAN_SFF_MASK; dlc = readl(&mb_regs->dlc); priv->timestamp = FIELD_GET(BXCAN_RDTxR_TIME_MASK, dlc); cf->len = can_cc_dlc2len(FIELD_GET(BXCAN_RDTxR_DLC_MASK, dlc)); if (id & BXCAN_RIxR_RTR) { cf->can_id |= CAN_RTR_FLAG; } else { int i, j; for (i = 0, j = 0; i < cf->len; i += 4, j++) *(u32 *)(cf->data + i) = readl(&mb_regs->data[j]); } mark_as_read: rf0r |= BXCAN_RF0R_RFOM0; writel(rf0r, ®s->rf0r); return skb; } static irqreturn_t bxcan_rx_isr(int irq, void *dev_id) { struct net_device *ndev = dev_id; struct bxcan_priv *priv = netdev_priv(ndev); struct bxcan_regs __iomem *regs = priv->regs; u32 rf0r; rf0r = readl(®s->rf0r); if (!(rf0r & BXCAN_RF0R_FMP0_MASK)) return IRQ_NONE; can_rx_offload_irq_offload_fifo(&priv->offload); can_rx_offload_irq_finish(&priv->offload); return IRQ_HANDLED; } static irqreturn_t bxcan_tx_isr(int irq, void *dev_id) { struct net_device *ndev = dev_id; struct bxcan_priv *priv = netdev_priv(ndev); struct bxcan_regs __iomem *regs = priv->regs; struct net_device_stats *stats = &ndev->stats; u32 tsr, rqcp_bit; int idx; tsr = readl(®s->tsr); if (!(tsr & (BXCAN_TSR_RQCP0 | BXCAN_TSR_RQCP1 | BXCAN_TSR_RQCP2))) return IRQ_NONE; while (priv->tx_head - priv->tx_tail > 0) { idx = bxcan_get_tx_tail(priv); rqcp_bit = BXCAN_TSR_RQCP0 << (idx << 3); if (!(tsr & rqcp_bit)) break; stats->tx_packets++; stats->tx_bytes += can_get_echo_skb(ndev, idx, NULL); priv->tx_tail++; } writel(tsr, ®s->tsr); if (bxcan_get_tx_free(priv)) { /* Make sure that anybody stopping the queue after * this sees the new tx_ring->tail. */ smp_mb(); netif_wake_queue(ndev); } return IRQ_HANDLED; } static void bxcan_handle_state_change(struct net_device *ndev, u32 esr) { struct bxcan_priv *priv = netdev_priv(ndev); enum can_state new_state = priv->can.state; struct can_berr_counter bec; enum can_state rx_state, tx_state; struct sk_buff *skb; struct can_frame *cf; /* Early exit if no error flag is set */ if (!(esr & (BXCAN_ESR_EWGF | BXCAN_ESR_EPVF | BXCAN_ESR_BOFF))) return; bec.txerr = FIELD_GET(BXCAN_ESR_TEC_MASK, esr); bec.rxerr = FIELD_GET(BXCAN_ESR_REC_MASK, esr); if (esr & BXCAN_ESR_BOFF) new_state = CAN_STATE_BUS_OFF; else if (esr & BXCAN_ESR_EPVF) new_state = CAN_STATE_ERROR_PASSIVE; else if (esr & BXCAN_ESR_EWGF) new_state = CAN_STATE_ERROR_WARNING; /* state hasn't changed */ if (unlikely(new_state == priv->can.state)) return; skb = alloc_can_err_skb(ndev, &cf); tx_state = bec.txerr >= bec.rxerr ? new_state : 0; rx_state = bec.txerr <= bec.rxerr ? new_state : 0; can_change_state(ndev, cf, tx_state, rx_state); if (new_state == CAN_STATE_BUS_OFF) { can_bus_off(ndev); } else if (skb) { cf->can_id |= CAN_ERR_CNT; cf->data[6] = bec.txerr; cf->data[7] = bec.rxerr; } if (skb) { int err; err = can_rx_offload_queue_timestamp(&priv->offload, skb, priv->timestamp); if (err) ndev->stats.rx_fifo_errors++; } } static void bxcan_handle_bus_err(struct net_device *ndev, u32 esr) { struct bxcan_priv *priv = netdev_priv(ndev); enum bxcan_lec_code lec_code; struct can_frame *cf; struct sk_buff *skb; lec_code = FIELD_GET(BXCAN_ESR_LEC_MASK, esr); /* Early exit if no lec update or no error. * No lec update means that no CAN bus event has been detected * since CPU wrote BXCAN_LEC_UNUSED value to status reg. */ if (lec_code == BXCAN_LEC_UNUSED || lec_code == BXCAN_LEC_NO_ERROR) return; /* Common for all type of bus errors */ priv->can.can_stats.bus_error++; /* Propagate the error condition to the CAN stack */ skb = alloc_can_err_skb(ndev, &cf); if (skb) cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; switch (lec_code) { case BXCAN_LEC_STUFF_ERROR: netdev_dbg(ndev, "Stuff error\n"); ndev->stats.rx_errors++; if (skb) cf->data[2] |= CAN_ERR_PROT_STUFF; break; case BXCAN_LEC_FORM_ERROR: netdev_dbg(ndev, "Form error\n"); ndev->stats.rx_errors++; if (skb) cf->data[2] |= CAN_ERR_PROT_FORM; break; case BXCAN_LEC_ACK_ERROR: netdev_dbg(ndev, "Ack error\n"); ndev->stats.tx_errors++; if (skb) { cf->can_id |= CAN_ERR_ACK; cf->data[3] = CAN_ERR_PROT_LOC_ACK; } break; case BXCAN_LEC_BIT1_ERROR: netdev_dbg(ndev, "Bit error (recessive)\n"); ndev->stats.tx_errors++; if (skb) cf->data[2] |= CAN_ERR_PROT_BIT1; break; case BXCAN_LEC_BIT0_ERROR: netdev_dbg(ndev, "Bit error (dominant)\n"); ndev->stats.tx_errors++; if (skb) cf->data[2] |= CAN_ERR_PROT_BIT0; break; case BXCAN_LEC_CRC_ERROR: netdev_dbg(ndev, "CRC error\n"); ndev->stats.rx_errors++; if (skb) { cf->data[2] |= CAN_ERR_PROT_BIT; cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ; } break; default: break; } if (skb) { int err; err = can_rx_offload_queue_timestamp(&priv->offload, skb, priv->timestamp); if (err) ndev->stats.rx_fifo_errors++; } } static irqreturn_t bxcan_state_change_isr(int irq, void *dev_id) { struct net_device *ndev = dev_id; struct bxcan_priv *priv = netdev_priv(ndev); struct bxcan_regs __iomem *regs = priv->regs; u32 msr, esr; msr = readl(®s->msr); if (!(msr & BXCAN_MSR_ERRI)) return IRQ_NONE; esr = readl(®s->esr); bxcan_handle_state_change(ndev, esr); if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) bxcan_handle_bus_err(ndev, esr); msr |= BXCAN_MSR_ERRI; writel(msr, ®s->msr); can_rx_offload_irq_finish(&priv->offload); return IRQ_HANDLED; } static int bxcan_chip_start(struct net_device *ndev) { struct bxcan_priv *priv = netdev_priv(ndev); struct bxcan_regs __iomem *regs = priv->regs; struct can_bittiming *bt = &priv->can.bittiming; u32 clr, set; int err; err = bxcan_chip_softreset(priv); if (err) { netdev_err(ndev, "failed to reset chip, error %pe\n", ERR_PTR(err)); return err; } err = bxcan_leave_sleep_mode(priv); if (err) { netdev_err(ndev, "failed to leave sleep mode, error %pe\n", ERR_PTR(err)); goto failed_leave_sleep; } err = bxcan_enter_init_mode(priv); if (err) { netdev_err(ndev, "failed to enter init mode, error %pe\n", ERR_PTR(err)); goto failed_enter_init; } /* MCR * * select request order priority * enable time triggered mode * bus-off state left on sw request * sleep mode left on sw request * retransmit automatically on error * do not lock RX FIFO on overrun */ bxcan_rmw(priv, ®s->mcr, BXCAN_MCR_ABOM | BXCAN_MCR_AWUM | BXCAN_MCR_NART | BXCAN_MCR_RFLM, BXCAN_MCR_TTCM | BXCAN_MCR_TXFP); /* Bit timing register settings */ set = FIELD_PREP(BXCAN_BTR_BRP_MASK, bt->brp - 1) | FIELD_PREP(BXCAN_BTR_TS1_MASK, bt->phase_seg1 + bt->prop_seg - 1) | FIELD_PREP(BXCAN_BTR_TS2_MASK, bt->phase_seg2 - 1) | FIELD_PREP(BXCAN_BTR_SJW_MASK, bt->sjw - 1); /* loopback + silent mode put the controller in test mode, * useful for hot self-test */ if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) set |= BXCAN_BTR_LBKM; if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) set |= BXCAN_BTR_SILM; bxcan_rmw(priv, ®s->btr, BXCAN_BTR_SILM | BXCAN_BTR_LBKM | BXCAN_BTR_BRP_MASK | BXCAN_BTR_TS1_MASK | BXCAN_BTR_TS2_MASK | BXCAN_BTR_SJW_MASK, set); bxcan_enable_filters(priv, priv->primary); /* Clear all internal status */ priv->tx_head = 0; priv->tx_tail = 0; err = bxcan_leave_init_mode(priv); if (err) { netdev_err(ndev, "failed to leave init mode, error %pe\n", ERR_PTR(err)); goto failed_leave_init; } /* Set a `lec` value so that we can check for updates later */ bxcan_rmw(priv, ®s->esr, BXCAN_ESR_LEC_MASK, FIELD_PREP(BXCAN_ESR_LEC_MASK, BXCAN_LEC_UNUSED)); /* IER * * Enable interrupt for: * bus-off * passive error * warning error * last error code * RX FIFO pending message * TX mailbox empty */ clr = BXCAN_IER_WKUIE | BXCAN_IER_SLKIE | BXCAN_IER_FOVIE1 | BXCAN_IER_FFIE1 | BXCAN_IER_FMPIE1 | BXCAN_IER_FOVIE0 | BXCAN_IER_FFIE0; set = BXCAN_IER_ERRIE | BXCAN_IER_BOFIE | BXCAN_IER_EPVIE | BXCAN_IER_EWGIE | BXCAN_IER_FMPIE0 | BXCAN_IER_TMEIE; if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) set |= BXCAN_IER_LECIE; else clr |= BXCAN_IER_LECIE; bxcan_rmw(priv, ®s->ier, clr, set); priv->can.state = CAN_STATE_ERROR_ACTIVE; return 0; failed_leave_init: failed_enter_init: failed_leave_sleep: bxcan_chip_softreset(priv); return err; } static int bxcan_open(struct net_device *ndev) { struct bxcan_priv *priv = netdev_priv(ndev); int err; err = clk_prepare_enable(priv->clk); if (err) { netdev_err(ndev, "failed to enable clock, error %pe\n", ERR_PTR(err)); return err; } err = open_candev(ndev); if (err) { netdev_err(ndev, "open_candev() failed, error %pe\n", ERR_PTR(err)); goto out_disable_clock; } can_rx_offload_enable(&priv->offload); err = request_irq(ndev->irq, bxcan_rx_isr, IRQF_SHARED, ndev->name, ndev); if (err) { netdev_err(ndev, "failed to register rx irq(%d), error %pe\n", ndev->irq, ERR_PTR(err)); goto out_close_candev; } err = request_irq(priv->tx_irq, bxcan_tx_isr, IRQF_SHARED, ndev->name, ndev); if (err) { netdev_err(ndev, "failed to register tx irq(%d), error %pe\n", priv->tx_irq, ERR_PTR(err)); goto out_free_rx_irq; } err = request_irq(priv->sce_irq, bxcan_state_change_isr, IRQF_SHARED, ndev->name, ndev); if (err) { netdev_err(ndev, "failed to register sce irq(%d), error %pe\n", priv->sce_irq, ERR_PTR(err)); goto out_free_tx_irq; } err = bxcan_chip_start(ndev); if (err) goto out_free_sce_irq; netif_start_queue(ndev); return 0; out_free_sce_irq: free_irq(priv->sce_irq, ndev); out_free_tx_irq: free_irq(priv->tx_irq, ndev); out_free_rx_irq: free_irq(ndev->irq, ndev); out_close_candev: can_rx_offload_disable(&priv->offload); close_candev(ndev); out_disable_clock: clk_disable_unprepare(priv->clk); return err; } static void bxcan_chip_stop(struct net_device *ndev) { struct bxcan_priv *priv = netdev_priv(ndev); struct bxcan_regs __iomem *regs = priv->regs; /* disable all interrupts */ bxcan_rmw(priv, ®s->ier, BXCAN_IER_SLKIE | BXCAN_IER_WKUIE | BXCAN_IER_ERRIE | BXCAN_IER_LECIE | BXCAN_IER_BOFIE | BXCAN_IER_EPVIE | BXCAN_IER_EWGIE | BXCAN_IER_FOVIE1 | BXCAN_IER_FFIE1 | BXCAN_IER_FMPIE1 | BXCAN_IER_FOVIE0 | BXCAN_IER_FFIE0 | BXCAN_IER_FMPIE0 | BXCAN_IER_TMEIE, 0); bxcan_disable_filters(priv, priv->primary); bxcan_enter_sleep_mode(priv); priv->can.state = CAN_STATE_STOPPED; } static int bxcan_stop(struct net_device *ndev) { struct bxcan_priv *priv = netdev_priv(ndev); netif_stop_queue(ndev); bxcan_chip_stop(ndev); free_irq(ndev->irq, ndev); free_irq(priv->tx_irq, ndev); free_irq(priv->sce_irq, ndev); can_rx_offload_disable(&priv->offload); close_candev(ndev); clk_disable_unprepare(priv->clk); return 0; } static netdev_tx_t bxcan_start_xmit(struct sk_buff *skb, struct net_device *ndev) { struct bxcan_priv *priv = netdev_priv(ndev); struct can_frame *cf = (struct can_frame *)skb->data; struct bxcan_regs __iomem *regs = priv->regs; struct bxcan_mb __iomem *mb_regs; unsigned int idx; u32 id; int i, j; if (can_dropped_invalid_skb(ndev, skb)) return NETDEV_TX_OK; if (bxcan_tx_busy(priv)) return NETDEV_TX_BUSY; idx = bxcan_get_tx_head(priv); priv->tx_head++; if (bxcan_get_tx_free(priv) == 0) netif_stop_queue(ndev); mb_regs = ®s->tx_mb[idx]; if (cf->can_id & CAN_EFF_FLAG) id = FIELD_PREP(BXCAN_TIxR_EXID_MASK, cf->can_id) | BXCAN_TIxR_IDE; else id = FIELD_PREP(BXCAN_TIxR_STID_MASK, cf->can_id); if (cf->can_id & CAN_RTR_FLAG) { /* Remote transmission request */ id |= BXCAN_TIxR_RTR; } else { for (i = 0, j = 0; i < cf->len; i += 4, j++) writel(*(u32 *)(cf->data + i), &mb_regs->data[j]); } writel(FIELD_PREP(BXCAN_TDTxR_DLC_MASK, cf->len), &mb_regs->dlc); can_put_echo_skb(skb, ndev, idx, 0); /* Start transmission */ writel(id | BXCAN_TIxR_TXRQ, &mb_regs->id); return NETDEV_TX_OK; } static const struct net_device_ops bxcan_netdev_ops = { .ndo_open = bxcan_open, .ndo_stop = bxcan_stop, .ndo_start_xmit = bxcan_start_xmit, .ndo_change_mtu = can_change_mtu, }; static const struct ethtool_ops bxcan_ethtool_ops = { .get_ts_info = ethtool_op_get_ts_info, }; static int bxcan_do_set_mode(struct net_device *ndev, enum can_mode mode) { int err; switch (mode) { case CAN_MODE_START: err = bxcan_chip_start(ndev); if (err) return err; netif_wake_queue(ndev); break; default: return -EOPNOTSUPP; } return 0; } static int bxcan_get_berr_counter(const struct net_device *ndev, struct can_berr_counter *bec) { struct bxcan_priv *priv = netdev_priv(ndev); struct bxcan_regs __iomem *regs = priv->regs; u32 esr; int err; err = clk_prepare_enable(priv->clk); if (err) return err; esr = readl(®s->esr); bec->txerr = FIELD_GET(BXCAN_ESR_TEC_MASK, esr); bec->rxerr = FIELD_GET(BXCAN_ESR_REC_MASK, esr); clk_disable_unprepare(priv->clk); return 0; } static int bxcan_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct device *dev = &pdev->dev; struct net_device *ndev; struct bxcan_priv *priv; struct clk *clk = NULL; void __iomem *regs; struct regmap *gcan; bool primary; int err, rx_irq, tx_irq, sce_irq; regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(regs)) { dev_err(dev, "failed to get base address\n"); return PTR_ERR(regs); } gcan = syscon_regmap_lookup_by_phandle(np, "st,gcan"); if (IS_ERR(gcan)) { dev_err(dev, "failed to get shared memory base address\n"); return PTR_ERR(gcan); } primary = of_property_read_bool(np, "st,can-primary"); clk = devm_clk_get(dev, NULL); if (IS_ERR(clk)) { dev_err(dev, "failed to get clock\n"); return PTR_ERR(clk); } rx_irq = platform_get_irq_byname(pdev, "rx0"); if (rx_irq < 0) { dev_err(dev, "failed to get rx0 irq\n"); return rx_irq; } tx_irq = platform_get_irq_byname(pdev, "tx"); if (tx_irq < 0) { dev_err(dev, "failed to get tx irq\n"); return tx_irq; } sce_irq = platform_get_irq_byname(pdev, "sce"); if (sce_irq < 0) { dev_err(dev, "failed to get sce irq\n"); return sce_irq; } ndev = alloc_candev(sizeof(struct bxcan_priv), BXCAN_TX_MB_NUM); if (!ndev) { dev_err(dev, "alloc_candev() failed\n"); return -ENOMEM; } priv = netdev_priv(ndev); platform_set_drvdata(pdev, ndev); SET_NETDEV_DEV(ndev, dev); ndev->netdev_ops = &bxcan_netdev_ops; ndev->ethtool_ops = &bxcan_ethtool_ops; ndev->irq = rx_irq; ndev->flags |= IFF_ECHO; priv->dev = dev; priv->ndev = ndev; priv->regs = regs; priv->gcan = gcan; priv->clk = clk; priv->tx_irq = tx_irq; priv->sce_irq = sce_irq; priv->primary = primary; priv->can.clock.freq = clk_get_rate(clk); spin_lock_init(&priv->rmw_lock); priv->tx_head = 0; priv->tx_tail = 0; priv->can.bittiming_const = &bxcan_bittiming_const; priv->can.do_set_mode = bxcan_do_set_mode; priv->can.do_get_berr_counter = bxcan_get_berr_counter; priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY | CAN_CTRLMODE_BERR_REPORTING; priv->offload.mailbox_read = bxcan_mailbox_read; err = can_rx_offload_add_fifo(ndev, &priv->offload, BXCAN_NAPI_WEIGHT); if (err) { dev_err(dev, "failed to add FIFO rx_offload\n"); goto out_free_candev; } err = register_candev(ndev); if (err) { dev_err(dev, "failed to register netdev\n"); goto out_can_rx_offload_del; } dev_info(dev, "clk: %d Hz, IRQs: %d, %d, %d\n", priv->can.clock.freq, tx_irq, rx_irq, sce_irq); return 0; out_can_rx_offload_del: can_rx_offload_del(&priv->offload); out_free_candev: free_candev(ndev); return err; } static int bxcan_remove(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct bxcan_priv *priv = netdev_priv(ndev); unregister_candev(ndev); clk_disable_unprepare(priv->clk); can_rx_offload_del(&priv->offload); free_candev(ndev); return 0; } static int __maybe_unused bxcan_suspend(struct device *dev) { struct net_device *ndev = dev_get_drvdata(dev); struct bxcan_priv *priv = netdev_priv(ndev); if (!netif_running(ndev)) return 0; netif_stop_queue(ndev); netif_device_detach(ndev); bxcan_enter_sleep_mode(priv); priv->can.state = CAN_STATE_SLEEPING; clk_disable_unprepare(priv->clk); return 0; } static int __maybe_unused bxcan_resume(struct device *dev) { struct net_device *ndev = dev_get_drvdata(dev); struct bxcan_priv *priv = netdev_priv(ndev); if (!netif_running(ndev)) return 0; clk_prepare_enable(priv->clk); bxcan_leave_sleep_mode(priv); priv->can.state = CAN_STATE_ERROR_ACTIVE; netif_device_attach(ndev); netif_start_queue(ndev); return 0; } static SIMPLE_DEV_PM_OPS(bxcan_pm_ops, bxcan_suspend, bxcan_resume); static const struct of_device_id bxcan_of_match[] = { {.compatible = "st,stm32f4-bxcan"}, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, bxcan_of_match); static struct platform_driver bxcan_driver = { .driver = { .name = KBUILD_MODNAME, .pm = &bxcan_pm_ops, .of_match_table = bxcan_of_match, }, .probe = bxcan_probe, .remove = bxcan_remove, }; module_platform_driver(bxcan_driver); MODULE_AUTHOR("Dario Binacchi "); MODULE_DESCRIPTION("STMicroelectronics Basic Extended CAN controller driver"); MODULE_LICENSE("GPL");