// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2015, The Linux Foundation. All rights reserved. */ #include <linux/delay.h> #include <linux/highmem.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/dma-mapping.h> #include <linux/slab.h> #include <linux/scatterlist.h> #include <linux/platform_device.h> #include <linux/ktime.h> #include <linux/mmc/mmc.h> #include <linux/mmc/host.h> #include <linux/mmc/card.h> #include "cqhci.h" #include "cqhci-crypto.h" #define DCMD_SLOT 31 #define NUM_SLOTS 32 struct cqhci_slot { struct mmc_request *mrq; unsigned int flags; #define CQHCI_EXTERNAL_TIMEOUT BIT(0) #define CQHCI_COMPLETED BIT(1) #define CQHCI_HOST_CRC BIT(2) #define CQHCI_HOST_TIMEOUT BIT(3) #define CQHCI_HOST_OTHER BIT(4) }; static inline u8 *get_desc(struct cqhci_host *cq_host, u8 tag) { return cq_host->desc_base + (tag * cq_host->slot_sz); } static inline u8 *get_link_desc(struct cqhci_host *cq_host, u8 tag) { u8 *desc = get_desc(cq_host, tag); return desc + cq_host->task_desc_len; } static inline size_t get_trans_desc_offset(struct cqhci_host *cq_host, u8 tag) { return cq_host->trans_desc_len * cq_host->mmc->max_segs * tag; } static inline dma_addr_t get_trans_desc_dma(struct cqhci_host *cq_host, u8 tag) { size_t offset = get_trans_desc_offset(cq_host, tag); return cq_host->trans_desc_dma_base + offset; } static inline u8 *get_trans_desc(struct cqhci_host *cq_host, u8 tag) { size_t offset = get_trans_desc_offset(cq_host, tag); return cq_host->trans_desc_base + offset; } static void setup_trans_desc(struct cqhci_host *cq_host, u8 tag) { u8 *link_temp; dma_addr_t trans_temp; link_temp = get_link_desc(cq_host, tag); trans_temp = get_trans_desc_dma(cq_host, tag); memset(link_temp, 0, cq_host->link_desc_len); if (cq_host->link_desc_len > 8) *(link_temp + 8) = 0; if (tag == DCMD_SLOT && (cq_host->mmc->caps2 & MMC_CAP2_CQE_DCMD)) { *link_temp = CQHCI_VALID(0) | CQHCI_ACT(0) | CQHCI_END(1); return; } *link_temp = CQHCI_VALID(1) | CQHCI_ACT(0x6) | CQHCI_END(0); if (cq_host->dma64) { __le64 *data_addr = (__le64 __force *)(link_temp + 4); data_addr[0] = cpu_to_le64(trans_temp); } else { __le32 *data_addr = (__le32 __force *)(link_temp + 4); data_addr[0] = cpu_to_le32(trans_temp); } } static void cqhci_set_irqs(struct cqhci_host *cq_host, u32 set) { cqhci_writel(cq_host, set, CQHCI_ISTE); cqhci_writel(cq_host, set, CQHCI_ISGE); } #define DRV_NAME "cqhci" #define CQHCI_DUMP(f, x...) \ pr_err("%s: " DRV_NAME ": " f, mmc_hostname(mmc), ## x) static void cqhci_dumpregs(struct cqhci_host *cq_host) { struct mmc_host *mmc = cq_host->mmc; CQHCI_DUMP("============ CQHCI REGISTER DUMP ===========\n"); CQHCI_DUMP("Caps: 0x%08x | Version: 0x%08x\n", cqhci_readl(cq_host, CQHCI_CAP), cqhci_readl(cq_host, CQHCI_VER)); CQHCI_DUMP("Config: 0x%08x | Control: 0x%08x\n", cqhci_readl(cq_host, CQHCI_CFG), cqhci_readl(cq_host, CQHCI_CTL)); CQHCI_DUMP("Int stat: 0x%08x | Int enab: 0x%08x\n", cqhci_readl(cq_host, CQHCI_IS), cqhci_readl(cq_host, CQHCI_ISTE)); CQHCI_DUMP("Int sig: 0x%08x | Int Coal: 0x%08x\n", cqhci_readl(cq_host, CQHCI_ISGE), cqhci_readl(cq_host, CQHCI_IC)); CQHCI_DUMP("TDL base: 0x%08x | TDL up32: 0x%08x\n", cqhci_readl(cq_host, CQHCI_TDLBA), cqhci_readl(cq_host, CQHCI_TDLBAU)); CQHCI_DUMP("Doorbell: 0x%08x | TCN: 0x%08x\n", cqhci_readl(cq_host, CQHCI_TDBR), cqhci_readl(cq_host, CQHCI_TCN)); CQHCI_DUMP("Dev queue: 0x%08x | Dev Pend: 0x%08x\n", cqhci_readl(cq_host, CQHCI_DQS), cqhci_readl(cq_host, CQHCI_DPT)); CQHCI_DUMP("Task clr: 0x%08x | SSC1: 0x%08x\n", cqhci_readl(cq_host, CQHCI_TCLR), cqhci_readl(cq_host, CQHCI_SSC1)); CQHCI_DUMP("SSC2: 0x%08x | DCMD rsp: 0x%08x\n", cqhci_readl(cq_host, CQHCI_SSC2), cqhci_readl(cq_host, CQHCI_CRDCT)); CQHCI_DUMP("RED mask: 0x%08x | TERRI: 0x%08x\n", cqhci_readl(cq_host, CQHCI_RMEM), cqhci_readl(cq_host, CQHCI_TERRI)); CQHCI_DUMP("Resp idx: 0x%08x | Resp arg: 0x%08x\n", cqhci_readl(cq_host, CQHCI_CRI), cqhci_readl(cq_host, CQHCI_CRA)); if (cq_host->ops->dumpregs) cq_host->ops->dumpregs(mmc); else CQHCI_DUMP(": ===========================================\n"); } /* * The allocated descriptor table for task, link & transfer descriptors * looks like: * |----------| * |task desc | |->|----------| * |----------| | |trans desc| * |link desc-|->| |----------| * |----------| . * . . * no. of slots max-segs * . |----------| * |----------| * The idea here is to create the [task+trans] table and mark & point the * link desc to the transfer desc table on a per slot basis. */ static int cqhci_host_alloc_tdl(struct cqhci_host *cq_host) { int i = 0; /* task descriptor can be 64/128 bit irrespective of arch */ if (cq_host->caps & CQHCI_TASK_DESC_SZ_128) { cqhci_writel(cq_host, cqhci_readl(cq_host, CQHCI_CFG) | CQHCI_TASK_DESC_SZ, CQHCI_CFG); cq_host->task_desc_len = 16; } else { cq_host->task_desc_len = 8; } /* * 96 bits length of transfer desc instead of 128 bits which means * ADMA would expect next valid descriptor at the 96th bit * or 128th bit */ if (cq_host->dma64) { if (cq_host->quirks & CQHCI_QUIRK_SHORT_TXFR_DESC_SZ) cq_host->trans_desc_len = 12; else cq_host->trans_desc_len = 16; cq_host->link_desc_len = 16; } else { cq_host->trans_desc_len = 8; cq_host->link_desc_len = 8; } /* total size of a slot: 1 task & 1 transfer (link) */ cq_host->slot_sz = cq_host->task_desc_len + cq_host->link_desc_len; cq_host->desc_size = cq_host->slot_sz * cq_host->num_slots; cq_host->data_size = get_trans_desc_offset(cq_host, cq_host->mmc->cqe_qdepth); pr_debug("%s: cqhci: desc_size: %zu data_sz: %zu slot-sz: %d\n", mmc_hostname(cq_host->mmc), cq_host->desc_size, cq_host->data_size, cq_host->slot_sz); /* * allocate a dma-mapped chunk of memory for the descriptors * allocate a dma-mapped chunk of memory for link descriptors * setup each link-desc memory offset per slot-number to * the descriptor table. */ cq_host->desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc), cq_host->desc_size, &cq_host->desc_dma_base, GFP_KERNEL); if (!cq_host->desc_base) return -ENOMEM; cq_host->trans_desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc), cq_host->data_size, &cq_host->trans_desc_dma_base, GFP_KERNEL); if (!cq_host->trans_desc_base) { dmam_free_coherent(mmc_dev(cq_host->mmc), cq_host->desc_size, cq_host->desc_base, cq_host->desc_dma_base); cq_host->desc_base = NULL; cq_host->desc_dma_base = 0; return -ENOMEM; } pr_debug("%s: cqhci: desc-base: 0x%p trans-base: 0x%p\n desc_dma 0x%llx trans_dma: 0x%llx\n", mmc_hostname(cq_host->mmc), cq_host->desc_base, cq_host->trans_desc_base, (unsigned long long)cq_host->desc_dma_base, (unsigned long long)cq_host->trans_desc_dma_base); for (; i < (cq_host->num_slots); i++) setup_trans_desc(cq_host, i); return 0; } static void __cqhci_enable(struct cqhci_host *cq_host) { struct mmc_host *mmc = cq_host->mmc; u32 cqcfg; cqcfg = cqhci_readl(cq_host, CQHCI_CFG); /* Configuration must not be changed while enabled */ if (cqcfg & CQHCI_ENABLE) { cqcfg &= ~CQHCI_ENABLE; cqhci_writel(cq_host, cqcfg, CQHCI_CFG); } cqcfg &= ~(CQHCI_DCMD | CQHCI_TASK_DESC_SZ); if (mmc->caps2 & MMC_CAP2_CQE_DCMD) cqcfg |= CQHCI_DCMD; if (cq_host->caps & CQHCI_TASK_DESC_SZ_128) cqcfg |= CQHCI_TASK_DESC_SZ; if (mmc->caps2 & MMC_CAP2_CRYPTO) cqcfg |= CQHCI_CRYPTO_GENERAL_ENABLE; cqhci_writel(cq_host, cqcfg, CQHCI_CFG); cqhci_writel(cq_host, lower_32_bits(cq_host->desc_dma_base), CQHCI_TDLBA); cqhci_writel(cq_host, upper_32_bits(cq_host->desc_dma_base), CQHCI_TDLBAU); cqhci_writel(cq_host, cq_host->rca, CQHCI_SSC2); cqhci_set_irqs(cq_host, 0); cqcfg |= CQHCI_ENABLE; cqhci_writel(cq_host, cqcfg, CQHCI_CFG); if (cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_HALT) cqhci_writel(cq_host, 0, CQHCI_CTL); mmc->cqe_on = true; if (cq_host->ops->enable) cq_host->ops->enable(mmc); /* Ensure all writes are done before interrupts are enabled */ wmb(); cqhci_set_irqs(cq_host, CQHCI_IS_MASK); cq_host->activated = true; } static void __cqhci_disable(struct cqhci_host *cq_host) { u32 cqcfg; cqcfg = cqhci_readl(cq_host, CQHCI_CFG); cqcfg &= ~CQHCI_ENABLE; cqhci_writel(cq_host, cqcfg, CQHCI_CFG); cq_host->mmc->cqe_on = false; cq_host->activated = false; } int cqhci_deactivate(struct mmc_host *mmc) { struct cqhci_host *cq_host = mmc->cqe_private; if (cq_host->enabled && cq_host->activated) __cqhci_disable(cq_host); return 0; } EXPORT_SYMBOL(cqhci_deactivate); int cqhci_resume(struct mmc_host *mmc) { /* Re-enable is done upon first request */ return 0; } EXPORT_SYMBOL(cqhci_resume); static int cqhci_enable(struct mmc_host *mmc, struct mmc_card *card) { struct cqhci_host *cq_host = mmc->cqe_private; int err; if (!card->ext_csd.cmdq_en) return -EINVAL; if (cq_host->enabled) return 0; cq_host->rca = card->rca; err = cqhci_host_alloc_tdl(cq_host); if (err) { pr_err("%s: Failed to enable CQE, error %d\n", mmc_hostname(mmc), err); return err; } __cqhci_enable(cq_host); cq_host->enabled = true; #ifdef DEBUG cqhci_dumpregs(cq_host); #endif return 0; } /* CQHCI is idle and should halt immediately, so set a small timeout */ #define CQHCI_OFF_TIMEOUT 100 static u32 cqhci_read_ctl(struct cqhci_host *cq_host) { return cqhci_readl(cq_host, CQHCI_CTL); } static void cqhci_off(struct mmc_host *mmc) { struct cqhci_host *cq_host = mmc->cqe_private; u32 reg; int err; if (!cq_host->enabled || !mmc->cqe_on || cq_host->recovery_halt) return; if (cq_host->ops->disable) cq_host->ops->disable(mmc, false); cqhci_writel(cq_host, CQHCI_HALT, CQHCI_CTL); err = readx_poll_timeout(cqhci_read_ctl, cq_host, reg, reg & CQHCI_HALT, 0, CQHCI_OFF_TIMEOUT); if (err < 0) pr_err("%s: cqhci: CQE stuck on\n", mmc_hostname(mmc)); else pr_debug("%s: cqhci: CQE off\n", mmc_hostname(mmc)); if (cq_host->ops->post_disable) cq_host->ops->post_disable(mmc); mmc->cqe_on = false; } static void cqhci_disable(struct mmc_host *mmc) { struct cqhci_host *cq_host = mmc->cqe_private; if (!cq_host->enabled) return; cqhci_off(mmc); __cqhci_disable(cq_host); dmam_free_coherent(mmc_dev(mmc), cq_host->data_size, cq_host->trans_desc_base, cq_host->trans_desc_dma_base); dmam_free_coherent(mmc_dev(mmc), cq_host->desc_size, cq_host->desc_base, cq_host->desc_dma_base); cq_host->trans_desc_base = NULL; cq_host->desc_base = NULL; cq_host->enabled = false; } static void cqhci_prep_task_desc(struct mmc_request *mrq, struct cqhci_host *cq_host, int tag) { __le64 *task_desc = (__le64 __force *)get_desc(cq_host, tag); u32 req_flags = mrq->data->flags; u64 desc0; desc0 = CQHCI_VALID(1) | CQHCI_END(1) | CQHCI_INT(1) | CQHCI_ACT(0x5) | CQHCI_FORCED_PROG(!!(req_flags & MMC_DATA_FORCED_PRG)) | CQHCI_DATA_TAG(!!(req_flags & MMC_DATA_DAT_TAG)) | CQHCI_DATA_DIR(!!(req_flags & MMC_DATA_READ)) | CQHCI_PRIORITY(!!(req_flags & MMC_DATA_PRIO)) | CQHCI_QBAR(!!(req_flags & MMC_DATA_QBR)) | CQHCI_REL_WRITE(!!(req_flags & MMC_DATA_REL_WR)) | CQHCI_BLK_COUNT(mrq->data->blocks) | CQHCI_BLK_ADDR((u64)mrq->data->blk_addr); task_desc[0] = cpu_to_le64(desc0); if (cq_host->caps & CQHCI_TASK_DESC_SZ_128) { u64 desc1 = cqhci_crypto_prep_task_desc(mrq); task_desc[1] = cpu_to_le64(desc1); pr_debug("%s: cqhci: tag %d task descriptor 0x%016llx%016llx\n", mmc_hostname(mrq->host), mrq->tag, desc1, desc0); } else { pr_debug("%s: cqhci: tag %d task descriptor 0x%016llx\n", mmc_hostname(mrq->host), mrq->tag, desc0); } } static int cqhci_dma_map(struct mmc_host *host, struct mmc_request *mrq) { int sg_count; struct mmc_data *data = mrq->data; if (!data) return -EINVAL; sg_count = dma_map_sg(mmc_dev(host), data->sg, data->sg_len, (data->flags & MMC_DATA_WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); if (!sg_count) { pr_err("%s: sg-len: %d\n", __func__, data->sg_len); return -ENOMEM; } return sg_count; } static void cqhci_set_tran_desc(u8 *desc, dma_addr_t addr, int len, bool end, bool dma64) { __le32 *attr = (__le32 __force *)desc; *attr = (CQHCI_VALID(1) | CQHCI_END(end ? 1 : 0) | CQHCI_INT(0) | CQHCI_ACT(0x4) | CQHCI_DAT_LENGTH(len)); if (dma64) { __le64 *dataddr = (__le64 __force *)(desc + 4); dataddr[0] = cpu_to_le64(addr); } else { __le32 *dataddr = (__le32 __force *)(desc + 4); dataddr[0] = cpu_to_le32(addr); } } static int cqhci_prep_tran_desc(struct mmc_request *mrq, struct cqhci_host *cq_host, int tag) { struct mmc_data *data = mrq->data; int i, sg_count, len; bool end = false; bool dma64 = cq_host->dma64; dma_addr_t addr; u8 *desc; struct scatterlist *sg; sg_count = cqhci_dma_map(mrq->host, mrq); if (sg_count < 0) { pr_err("%s: %s: unable to map sg lists, %d\n", mmc_hostname(mrq->host), __func__, sg_count); return sg_count; } desc = get_trans_desc(cq_host, tag); for_each_sg(data->sg, sg, sg_count, i) { addr = sg_dma_address(sg); len = sg_dma_len(sg); if ((i+1) == sg_count) end = true; cqhci_set_tran_desc(desc, addr, len, end, dma64); desc += cq_host->trans_desc_len; } return 0; } static void cqhci_prep_dcmd_desc(struct mmc_host *mmc, struct mmc_request *mrq) { u64 *task_desc = NULL; u64 data = 0; u8 resp_type; u8 *desc; __le64 *dataddr; struct cqhci_host *cq_host = mmc->cqe_private; u8 timing; if (!(mrq->cmd->flags & MMC_RSP_PRESENT)) { resp_type = 0x0; timing = 0x1; } else { if (mrq->cmd->flags & MMC_RSP_R1B) { resp_type = 0x3; timing = 0x0; } else { resp_type = 0x2; timing = 0x1; } } task_desc = (__le64 __force *)get_desc(cq_host, cq_host->dcmd_slot); memset(task_desc, 0, cq_host->task_desc_len); data |= (CQHCI_VALID(1) | CQHCI_END(1) | CQHCI_INT(1) | CQHCI_QBAR(1) | CQHCI_ACT(0x5) | CQHCI_CMD_INDEX(mrq->cmd->opcode) | CQHCI_CMD_TIMING(timing) | CQHCI_RESP_TYPE(resp_type)); if (cq_host->ops->update_dcmd_desc) cq_host->ops->update_dcmd_desc(mmc, mrq, &data); *task_desc |= data; desc = (u8 *)task_desc; pr_debug("%s: cqhci: dcmd: cmd: %d timing: %d resp: %d\n", mmc_hostname(mmc), mrq->cmd->opcode, timing, resp_type); dataddr = (__le64 __force *)(desc + 4); dataddr[0] = cpu_to_le64((u64)mrq->cmd->arg); } static void cqhci_post_req(struct mmc_host *host, struct mmc_request *mrq) { struct mmc_data *data = mrq->data; if (data) { dma_unmap_sg(mmc_dev(host), data->sg, data->sg_len, (data->flags & MMC_DATA_READ) ? DMA_FROM_DEVICE : DMA_TO_DEVICE); } } static inline int cqhci_tag(struct mmc_request *mrq) { return mrq->cmd ? DCMD_SLOT : mrq->tag; } static int cqhci_request(struct mmc_host *mmc, struct mmc_request *mrq) { int err = 0; int tag = cqhci_tag(mrq); struct cqhci_host *cq_host = mmc->cqe_private; unsigned long flags; if (!cq_host->enabled) { pr_err("%s: cqhci: not enabled\n", mmc_hostname(mmc)); return -EINVAL; } /* First request after resume has to re-enable */ if (!cq_host->activated) __cqhci_enable(cq_host); if (!mmc->cqe_on) { if (cq_host->ops->pre_enable) cq_host->ops->pre_enable(mmc); cqhci_writel(cq_host, 0, CQHCI_CTL); mmc->cqe_on = true; pr_debug("%s: cqhci: CQE on\n", mmc_hostname(mmc)); if (cqhci_readl(cq_host, CQHCI_CTL) && CQHCI_HALT) { pr_err("%s: cqhci: CQE failed to exit halt state\n", mmc_hostname(mmc)); } if (cq_host->ops->enable) cq_host->ops->enable(mmc); } if (mrq->data) { cqhci_prep_task_desc(mrq, cq_host, tag); err = cqhci_prep_tran_desc(mrq, cq_host, tag); if (err) { pr_err("%s: cqhci: failed to setup tx desc: %d\n", mmc_hostname(mmc), err); return err; } } else { cqhci_prep_dcmd_desc(mmc, mrq); } spin_lock_irqsave(&cq_host->lock, flags); if (cq_host->recovery_halt) { err = -EBUSY; goto out_unlock; } cq_host->slot[tag].mrq = mrq; cq_host->slot[tag].flags = 0; cq_host->qcnt += 1; /* Make sure descriptors are ready before ringing the doorbell */ wmb(); cqhci_writel(cq_host, 1 << tag, CQHCI_TDBR); if (!(cqhci_readl(cq_host, CQHCI_TDBR) & (1 << tag))) pr_debug("%s: cqhci: doorbell not set for tag %d\n", mmc_hostname(mmc), tag); out_unlock: spin_unlock_irqrestore(&cq_host->lock, flags); if (err) cqhci_post_req(mmc, mrq); return err; } static void cqhci_recovery_needed(struct mmc_host *mmc, struct mmc_request *mrq, bool notify) { struct cqhci_host *cq_host = mmc->cqe_private; if (!cq_host->recovery_halt) { cq_host->recovery_halt = true; pr_debug("%s: cqhci: recovery needed\n", mmc_hostname(mmc)); wake_up(&cq_host->wait_queue); if (notify && mrq->recovery_notifier) mrq->recovery_notifier(mrq); } } static unsigned int cqhci_error_flags(int error1, int error2) { int error = error1 ? error1 : error2; switch (error) { case -EILSEQ: return CQHCI_HOST_CRC; case -ETIMEDOUT: return CQHCI_HOST_TIMEOUT; default: return CQHCI_HOST_OTHER; } } static void cqhci_error_irq(struct mmc_host *mmc, u32 status, int cmd_error, int data_error) { struct cqhci_host *cq_host = mmc->cqe_private; struct cqhci_slot *slot; u32 terri; u32 tdpe; int tag; spin_lock(&cq_host->lock); terri = cqhci_readl(cq_host, CQHCI_TERRI); pr_debug("%s: cqhci: error IRQ status: 0x%08x cmd error %d data error %d TERRI: 0x%08x\n", mmc_hostname(mmc), status, cmd_error, data_error, terri); /* Forget about errors when recovery has already been triggered */ if (cq_host->recovery_halt) goto out_unlock; if (!cq_host->qcnt) { WARN_ONCE(1, "%s: cqhci: error when idle. IRQ status: 0x%08x cmd error %d data error %d TERRI: 0x%08x\n", mmc_hostname(mmc), status, cmd_error, data_error, terri); goto out_unlock; } if (CQHCI_TERRI_C_VALID(terri)) { tag = CQHCI_TERRI_C_TASK(terri); slot = &cq_host->slot[tag]; if (slot->mrq) { slot->flags = cqhci_error_flags(cmd_error, data_error); cqhci_recovery_needed(mmc, slot->mrq, true); } } if (CQHCI_TERRI_D_VALID(terri)) { tag = CQHCI_TERRI_D_TASK(terri); slot = &cq_host->slot[tag]; if (slot->mrq) { slot->flags = cqhci_error_flags(data_error, cmd_error); cqhci_recovery_needed(mmc, slot->mrq, true); } } /* * Handle ICCE ("Invalid Crypto Configuration Error"). This should * never happen, since the block layer ensures that all crypto-enabled * I/O requests have a valid keyslot before they reach the driver. * * Note that GCE ("General Crypto Error") is different; it already got * handled above by checking TERRI. */ if (status & CQHCI_IS_ICCE) { tdpe = cqhci_readl(cq_host, CQHCI_TDPE); WARN_ONCE(1, "%s: cqhci: invalid crypto configuration error. IRQ status: 0x%08x TDPE: 0x%08x\n", mmc_hostname(mmc), status, tdpe); while (tdpe != 0) { tag = __ffs(tdpe); tdpe &= ~(1 << tag); slot = &cq_host->slot[tag]; if (!slot->mrq) continue; slot->flags = cqhci_error_flags(data_error, cmd_error); cqhci_recovery_needed(mmc, slot->mrq, true); } } if (!cq_host->recovery_halt) { /* * The only way to guarantee forward progress is to mark at * least one task in error, so if none is indicated, pick one. */ for (tag = 0; tag < NUM_SLOTS; tag++) { slot = &cq_host->slot[tag]; if (!slot->mrq) continue; slot->flags = cqhci_error_flags(data_error, cmd_error); cqhci_recovery_needed(mmc, slot->mrq, true); break; } } out_unlock: spin_unlock(&cq_host->lock); } static void cqhci_finish_mrq(struct mmc_host *mmc, unsigned int tag) { struct cqhci_host *cq_host = mmc->cqe_private; struct cqhci_slot *slot = &cq_host->slot[tag]; struct mmc_request *mrq = slot->mrq; struct mmc_data *data; if (!mrq) { WARN_ONCE(1, "%s: cqhci: spurious TCN for tag %d\n", mmc_hostname(mmc), tag); return; } /* No completions allowed during recovery */ if (cq_host->recovery_halt) { slot->flags |= CQHCI_COMPLETED; return; } slot->mrq = NULL; cq_host->qcnt -= 1; data = mrq->data; if (data) { if (data->error) data->bytes_xfered = 0; else data->bytes_xfered = data->blksz * data->blocks; } mmc_cqe_request_done(mmc, mrq); } irqreturn_t cqhci_irq(struct mmc_host *mmc, u32 intmask, int cmd_error, int data_error) { u32 status; unsigned long tag = 0, comp_status; struct cqhci_host *cq_host = mmc->cqe_private; status = cqhci_readl(cq_host, CQHCI_IS); cqhci_writel(cq_host, status, CQHCI_IS); pr_debug("%s: cqhci: IRQ status: 0x%08x\n", mmc_hostname(mmc), status); if ((status & (CQHCI_IS_RED | CQHCI_IS_GCE | CQHCI_IS_ICCE)) || cmd_error || data_error) { if (status & CQHCI_IS_RED) mmc_debugfs_err_stats_inc(mmc, MMC_ERR_CMDQ_RED); if (status & CQHCI_IS_GCE) mmc_debugfs_err_stats_inc(mmc, MMC_ERR_CMDQ_GCE); if (status & CQHCI_IS_ICCE) mmc_debugfs_err_stats_inc(mmc, MMC_ERR_CMDQ_ICCE); cqhci_error_irq(mmc, status, cmd_error, data_error); } if (status & CQHCI_IS_TCC) { /* read TCN and complete the request */ comp_status = cqhci_readl(cq_host, CQHCI_TCN); cqhci_writel(cq_host, comp_status, CQHCI_TCN); pr_debug("%s: cqhci: TCN: 0x%08lx\n", mmc_hostname(mmc), comp_status); spin_lock(&cq_host->lock); for_each_set_bit(tag, &comp_status, cq_host->num_slots) { /* complete the corresponding mrq */ pr_debug("%s: cqhci: completing tag %lu\n", mmc_hostname(mmc), tag); cqhci_finish_mrq(mmc, tag); } if (cq_host->waiting_for_idle && !cq_host->qcnt) { cq_host->waiting_for_idle = false; wake_up(&cq_host->wait_queue); } spin_unlock(&cq_host->lock); } if (status & CQHCI_IS_TCL) wake_up(&cq_host->wait_queue); if (status & CQHCI_IS_HAC) wake_up(&cq_host->wait_queue); return IRQ_HANDLED; } EXPORT_SYMBOL(cqhci_irq); static bool cqhci_is_idle(struct cqhci_host *cq_host, int *ret) { unsigned long flags; bool is_idle; spin_lock_irqsave(&cq_host->lock, flags); is_idle = !cq_host->qcnt || cq_host->recovery_halt; *ret = cq_host->recovery_halt ? -EBUSY : 0; cq_host->waiting_for_idle = !is_idle; spin_unlock_irqrestore(&cq_host->lock, flags); return is_idle; } static int cqhci_wait_for_idle(struct mmc_host *mmc) { struct cqhci_host *cq_host = mmc->cqe_private; int ret; wait_event(cq_host->wait_queue, cqhci_is_idle(cq_host, &ret)); return ret; } static bool cqhci_timeout(struct mmc_host *mmc, struct mmc_request *mrq, bool *recovery_needed) { struct cqhci_host *cq_host = mmc->cqe_private; int tag = cqhci_tag(mrq); struct cqhci_slot *slot = &cq_host->slot[tag]; unsigned long flags; bool timed_out; spin_lock_irqsave(&cq_host->lock, flags); timed_out = slot->mrq == mrq; if (timed_out) { slot->flags |= CQHCI_EXTERNAL_TIMEOUT; cqhci_recovery_needed(mmc, mrq, false); *recovery_needed = cq_host->recovery_halt; } spin_unlock_irqrestore(&cq_host->lock, flags); if (timed_out) { pr_err("%s: cqhci: timeout for tag %d, qcnt %d\n", mmc_hostname(mmc), tag, cq_host->qcnt); cqhci_dumpregs(cq_host); } return timed_out; } static bool cqhci_tasks_cleared(struct cqhci_host *cq_host) { return !(cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_CLEAR_ALL_TASKS); } static bool cqhci_clear_all_tasks(struct mmc_host *mmc, unsigned int timeout) { struct cqhci_host *cq_host = mmc->cqe_private; bool ret; u32 ctl; cqhci_set_irqs(cq_host, CQHCI_IS_TCL); ctl = cqhci_readl(cq_host, CQHCI_CTL); ctl |= CQHCI_CLEAR_ALL_TASKS; cqhci_writel(cq_host, ctl, CQHCI_CTL); wait_event_timeout(cq_host->wait_queue, cqhci_tasks_cleared(cq_host), msecs_to_jiffies(timeout) + 1); cqhci_set_irqs(cq_host, 0); ret = cqhci_tasks_cleared(cq_host); if (!ret) pr_warn("%s: cqhci: Failed to clear tasks\n", mmc_hostname(mmc)); return ret; } static bool cqhci_halted(struct cqhci_host *cq_host) { return cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_HALT; } static bool cqhci_halt(struct mmc_host *mmc, unsigned int timeout) { struct cqhci_host *cq_host = mmc->cqe_private; bool ret; u32 ctl; if (cqhci_halted(cq_host)) return true; cqhci_set_irqs(cq_host, CQHCI_IS_HAC); ctl = cqhci_readl(cq_host, CQHCI_CTL); ctl |= CQHCI_HALT; cqhci_writel(cq_host, ctl, CQHCI_CTL); wait_event_timeout(cq_host->wait_queue, cqhci_halted(cq_host), msecs_to_jiffies(timeout) + 1); cqhci_set_irqs(cq_host, 0); ret = cqhci_halted(cq_host); if (!ret) pr_warn("%s: cqhci: Failed to halt\n", mmc_hostname(mmc)); return ret; } /* * After halting we expect to be able to use the command line. We interpret the * failure to halt to mean the data lines might still be in use (and the upper * layers will need to send a STOP command), however failing to halt complicates * the recovery, so set a timeout that would reasonably allow I/O to complete. */ #define CQHCI_START_HALT_TIMEOUT 500 static void cqhci_recovery_start(struct mmc_host *mmc) { struct cqhci_host *cq_host = mmc->cqe_private; pr_debug("%s: cqhci: %s\n", mmc_hostname(mmc), __func__); WARN_ON(!cq_host->recovery_halt); cqhci_halt(mmc, CQHCI_START_HALT_TIMEOUT); if (cq_host->ops->disable) cq_host->ops->disable(mmc, true); mmc->cqe_on = false; } static int cqhci_error_from_flags(unsigned int flags) { if (!flags) return 0; /* CRC errors might indicate re-tuning so prefer to report that */ if (flags & CQHCI_HOST_CRC) return -EILSEQ; if (flags & (CQHCI_EXTERNAL_TIMEOUT | CQHCI_HOST_TIMEOUT)) return -ETIMEDOUT; return -EIO; } static void cqhci_recover_mrq(struct cqhci_host *cq_host, unsigned int tag) { struct cqhci_slot *slot = &cq_host->slot[tag]; struct mmc_request *mrq = slot->mrq; struct mmc_data *data; if (!mrq) return; slot->mrq = NULL; cq_host->qcnt -= 1; data = mrq->data; if (data) { data->bytes_xfered = 0; data->error = cqhci_error_from_flags(slot->flags); } else { mrq->cmd->error = cqhci_error_from_flags(slot->flags); } mmc_cqe_request_done(cq_host->mmc, mrq); } static void cqhci_recover_mrqs(struct cqhci_host *cq_host) { int i; for (i = 0; i < cq_host->num_slots; i++) cqhci_recover_mrq(cq_host, i); } /* * By now the command and data lines should be unused so there is no reason for * CQHCI to take a long time to halt, but if it doesn't halt there could be * problems clearing tasks, so be generous. */ #define CQHCI_FINISH_HALT_TIMEOUT 20 /* CQHCI could be expected to clear it's internal state pretty quickly */ #define CQHCI_CLEAR_TIMEOUT 20 static void cqhci_recovery_finish(struct mmc_host *mmc) { struct cqhci_host *cq_host = mmc->cqe_private; unsigned long flags; u32 cqcfg; bool ok; pr_debug("%s: cqhci: %s\n", mmc_hostname(mmc), __func__); WARN_ON(!cq_host->recovery_halt); ok = cqhci_halt(mmc, CQHCI_FINISH_HALT_TIMEOUT); /* * The specification contradicts itself, by saying that tasks cannot be * cleared if CQHCI does not halt, but if CQHCI does not halt, it should * be disabled/re-enabled, but not to disable before clearing tasks. * Have a go anyway. */ if (!cqhci_clear_all_tasks(mmc, CQHCI_CLEAR_TIMEOUT)) ok = false; /* Disable to make sure tasks really are cleared */ cqcfg = cqhci_readl(cq_host, CQHCI_CFG); cqcfg &= ~CQHCI_ENABLE; cqhci_writel(cq_host, cqcfg, CQHCI_CFG); cqcfg = cqhci_readl(cq_host, CQHCI_CFG); cqcfg |= CQHCI_ENABLE; cqhci_writel(cq_host, cqcfg, CQHCI_CFG); cqhci_halt(mmc, CQHCI_FINISH_HALT_TIMEOUT); if (!ok) cqhci_clear_all_tasks(mmc, CQHCI_CLEAR_TIMEOUT); cqhci_recover_mrqs(cq_host); WARN_ON(cq_host->qcnt); spin_lock_irqsave(&cq_host->lock, flags); cq_host->qcnt = 0; cq_host->recovery_halt = false; mmc->cqe_on = false; spin_unlock_irqrestore(&cq_host->lock, flags); /* Ensure all writes are done before interrupts are re-enabled */ wmb(); cqhci_writel(cq_host, CQHCI_IS_HAC | CQHCI_IS_TCL, CQHCI_IS); cqhci_set_irqs(cq_host, CQHCI_IS_MASK); pr_debug("%s: cqhci: recovery done\n", mmc_hostname(mmc)); } static const struct mmc_cqe_ops cqhci_cqe_ops = { .cqe_enable = cqhci_enable, .cqe_disable = cqhci_disable, .cqe_request = cqhci_request, .cqe_post_req = cqhci_post_req, .cqe_off = cqhci_off, .cqe_wait_for_idle = cqhci_wait_for_idle, .cqe_timeout = cqhci_timeout, .cqe_recovery_start = cqhci_recovery_start, .cqe_recovery_finish = cqhci_recovery_finish, }; struct cqhci_host *cqhci_pltfm_init(struct platform_device *pdev) { struct cqhci_host *cq_host; struct resource *cqhci_memres = NULL; /* check and setup CMDQ interface */ cqhci_memres = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cqhci"); if (!cqhci_memres) { dev_dbg(&pdev->dev, "CMDQ not supported\n"); return ERR_PTR(-EINVAL); } cq_host = devm_kzalloc(&pdev->dev, sizeof(*cq_host), GFP_KERNEL); if (!cq_host) return ERR_PTR(-ENOMEM); cq_host->mmio = devm_ioremap(&pdev->dev, cqhci_memres->start, resource_size(cqhci_memres)); if (!cq_host->mmio) { dev_err(&pdev->dev, "failed to remap cqhci regs\n"); return ERR_PTR(-EBUSY); } dev_dbg(&pdev->dev, "CMDQ ioremap: done\n"); return cq_host; } EXPORT_SYMBOL(cqhci_pltfm_init); static unsigned int cqhci_ver_major(struct cqhci_host *cq_host) { return CQHCI_VER_MAJOR(cqhci_readl(cq_host, CQHCI_VER)); } static unsigned int cqhci_ver_minor(struct cqhci_host *cq_host) { u32 ver = cqhci_readl(cq_host, CQHCI_VER); return CQHCI_VER_MINOR1(ver) * 10 + CQHCI_VER_MINOR2(ver); } int cqhci_init(struct cqhci_host *cq_host, struct mmc_host *mmc, bool dma64) { int err; cq_host->dma64 = dma64; cq_host->mmc = mmc; cq_host->mmc->cqe_private = cq_host; cq_host->num_slots = NUM_SLOTS; cq_host->dcmd_slot = DCMD_SLOT; mmc->cqe_ops = &cqhci_cqe_ops; mmc->cqe_qdepth = NUM_SLOTS; if (mmc->caps2 & MMC_CAP2_CQE_DCMD) mmc->cqe_qdepth -= 1; cq_host->slot = devm_kcalloc(mmc_dev(mmc), cq_host->num_slots, sizeof(*cq_host->slot), GFP_KERNEL); if (!cq_host->slot) { err = -ENOMEM; goto out_err; } err = cqhci_crypto_init(cq_host); if (err) { pr_err("%s: CQHCI crypto initialization failed\n", mmc_hostname(mmc)); goto out_err; } spin_lock_init(&cq_host->lock); init_completion(&cq_host->halt_comp); init_waitqueue_head(&cq_host->wait_queue); pr_info("%s: CQHCI version %u.%02u\n", mmc_hostname(mmc), cqhci_ver_major(cq_host), cqhci_ver_minor(cq_host)); return 0; out_err: pr_err("%s: CQHCI version %u.%02u failed to initialize, error %d\n", mmc_hostname(mmc), cqhci_ver_major(cq_host), cqhci_ver_minor(cq_host), err); return err; } EXPORT_SYMBOL(cqhci_init); MODULE_AUTHOR("Venkat Gopalakrishnan <venkatg@codeaurora.org>"); MODULE_DESCRIPTION("Command Queue Host Controller Interface driver"); MODULE_LICENSE("GPL v2");