// SPDX-License-Identifier: GPL-2.0-or-later /* * SN Platform GRU Driver * * MMUOPS callbacks + TLB flushing * * This file handles emu notifier callbacks from the core kernel. The callbacks * are used to update the TLB in the GRU as a result of changes in the * state of a process address space. This file also handles TLB invalidates * from the GRU driver. * * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include "gru.h" #include "grutables.h" #include #define gru_random() get_cycles() /* ---------------------------------- TLB Invalidation functions -------- * get_tgh_handle * * Find a TGH to use for issuing a TLB invalidate. For GRUs that are on the * local blade, use a fixed TGH that is a function of the blade-local cpu * number. Normally, this TGH is private to the cpu & no contention occurs for * the TGH. For offblade GRUs, select a random TGH in the range above the * private TGHs. A spinlock is required to access this TGH & the lock must be * released when the invalidate is completes. This sucks, but it is the best we * can do. * * Note that the spinlock is IN the TGH handle so locking does not involve * additional cache lines. * */ static inline int get_off_blade_tgh(struct gru_state *gru) { int n; n = GRU_NUM_TGH - gru->gs_tgh_first_remote; n = gru_random() % n; n += gru->gs_tgh_first_remote; return n; } static inline int get_on_blade_tgh(struct gru_state *gru) { return uv_blade_processor_id() >> gru->gs_tgh_local_shift; } static struct gru_tlb_global_handle *get_lock_tgh_handle(struct gru_state *gru) { struct gru_tlb_global_handle *tgh; int n; if (uv_numa_blade_id() == gru->gs_blade_id) n = get_on_blade_tgh(gru); else n = get_off_blade_tgh(gru); tgh = get_tgh_by_index(gru, n); lock_tgh_handle(tgh); return tgh; } static void get_unlock_tgh_handle(struct gru_tlb_global_handle *tgh) { unlock_tgh_handle(tgh); } /* * gru_flush_tlb_range * * General purpose TLB invalidation function. This function scans every GRU in * the ENTIRE system (partition) looking for GRUs where the specified MM has * been accessed by the GRU. For each GRU found, the TLB must be invalidated OR * the ASID invalidated. Invalidating an ASID causes a new ASID to be assigned * on the next fault. This effectively flushes the ENTIRE TLB for the MM at the * cost of (possibly) a large number of future TLBmisses. * * The current algorithm is optimized based on the following (somewhat true) * assumptions: * - GRU contexts are not loaded into a GRU unless a reference is made to * the data segment or control block (this is true, not an assumption). * If a DS/CB is referenced, the user will also issue instructions that * cause TLBmisses. It is not necessary to optimize for the case where * contexts are loaded but no instructions cause TLB misses. (I know * this will happen but I'm not optimizing for it). * - GRU instructions to invalidate TLB entries are SLOOOOWWW - normally * a few usec but in unusual cases, it could be longer. Avoid if * possible. * - intrablade process migration between cpus is not frequent but is * common. * - a GRU context is not typically migrated to a different GRU on the * blade because of intrablade migration * - interblade migration is rare. Processes migrate their GRU context to * the new blade. * - if interblade migration occurs, migration back to the original blade * is very very rare (ie., no optimization for this case) * - most GRU instruction operate on a subset of the user REGIONS. Code * & shared library regions are not likely targets of GRU instructions. * * To help improve the efficiency of TLB invalidation, the GMS data * structure is maintained for EACH address space (MM struct). The GMS is * also the structure that contains the pointer to the mmu callout * functions. This structure is linked to the mm_struct for the address space * using the mmu "register" function. The mmu interfaces are used to * provide the callbacks for TLB invalidation. The GMS contains: * * - asid[maxgrus] array. ASIDs are assigned to a GRU when a context is * loaded into the GRU. * - asidmap[maxgrus]. bitmap to make it easier to find non-zero asids in * the above array * - ctxbitmap[maxgrus]. Indicates the contexts that are currently active * in the GRU for the address space. This bitmap must be passed to the * GRU to do an invalidate. * * The current algorithm for invalidating TLBs is: * - scan the asidmap for GRUs where the context has been loaded, ie, * asid is non-zero. * - for each gru found: * - if the ctxtmap is non-zero, there are active contexts in the * GRU. TLB invalidate instructions must be issued to the GRU. * - if the ctxtmap is zero, no context is active. Set the ASID to * zero to force a full TLB invalidation. This is fast but will * cause a lot of TLB misses if the context is reloaded onto the * GRU * */ void gru_flush_tlb_range(struct gru_mm_struct *gms, unsigned long start, unsigned long len) { struct gru_state *gru; struct gru_mm_tracker *asids; struct gru_tlb_global_handle *tgh; unsigned long num; int grupagesize, pagesize, pageshift, gid, asid; /* ZZZ TODO - handle huge pages */ pageshift = PAGE_SHIFT; pagesize = (1UL << pageshift); grupagesize = GRU_PAGESIZE(pageshift); num = min(((len + pagesize - 1) >> pageshift), GRUMAXINVAL); STAT(flush_tlb); gru_dbg(grudev, "gms %p, start 0x%lx, len 0x%lx, asidmap 0x%lx\n", gms, start, len, gms->ms_asidmap[0]); spin_lock(&gms->ms_asid_lock); for_each_gru_in_bitmap(gid, gms->ms_asidmap) { STAT(flush_tlb_gru); gru = GID_TO_GRU(gid); asids = gms->ms_asids + gid; asid = asids->mt_asid; if (asids->mt_ctxbitmap && asid) { STAT(flush_tlb_gru_tgh); asid = GRUASID(asid, start); gru_dbg(grudev, " FLUSH gruid %d, asid 0x%x, vaddr 0x%lx, vamask 0x%x, num %ld, cbmap 0x%x\n", gid, asid, start, grupagesize, num, asids->mt_ctxbitmap); tgh = get_lock_tgh_handle(gru); tgh_invalidate(tgh, start, ~0, asid, grupagesize, 0, num - 1, asids->mt_ctxbitmap); get_unlock_tgh_handle(tgh); } else { STAT(flush_tlb_gru_zero_asid); asids->mt_asid = 0; __clear_bit(gru->gs_gid, gms->ms_asidmap); gru_dbg(grudev, " CLEARASID gruid %d, asid 0x%x, cbtmap 0x%x, asidmap 0x%lx\n", gid, asid, asids->mt_ctxbitmap, gms->ms_asidmap[0]); } } spin_unlock(&gms->ms_asid_lock); } /* * Flush the entire TLB on a chiplet. */ void gru_flush_all_tlb(struct gru_state *gru) { struct gru_tlb_global_handle *tgh; gru_dbg(grudev, "gid %d\n", gru->gs_gid); tgh = get_lock_tgh_handle(gru); tgh_invalidate(tgh, 0, ~0, 0, 1, 1, GRUMAXINVAL - 1, 0xffff); get_unlock_tgh_handle(tgh); } /* * MMUOPS notifier callout functions */ static int gru_invalidate_range_start(struct mmu_notifier *mn, const struct mmu_notifier_range *range) { struct gru_mm_struct *gms = container_of(mn, struct gru_mm_struct, ms_notifier); STAT(mmu_invalidate_range); atomic_inc(&gms->ms_range_active); gru_dbg(grudev, "gms %p, start 0x%lx, end 0x%lx, act %d\n", gms, range->start, range->end, atomic_read(&gms->ms_range_active)); gru_flush_tlb_range(gms, range->start, range->end - range->start); return 0; } static void gru_invalidate_range_end(struct mmu_notifier *mn, const struct mmu_notifier_range *range) { struct gru_mm_struct *gms = container_of(mn, struct gru_mm_struct, ms_notifier); /* ..._and_test() provides needed barrier */ (void)atomic_dec_and_test(&gms->ms_range_active); wake_up_all(&gms->ms_wait_queue); gru_dbg(grudev, "gms %p, start 0x%lx, end 0x%lx\n", gms, range->start, range->end); } static struct mmu_notifier *gru_alloc_notifier(struct mm_struct *mm) { struct gru_mm_struct *gms; gms = kzalloc(sizeof(*gms), GFP_KERNEL); if (!gms) return ERR_PTR(-ENOMEM); STAT(gms_alloc); spin_lock_init(&gms->ms_asid_lock); init_waitqueue_head(&gms->ms_wait_queue); return &gms->ms_notifier; } static void gru_free_notifier(struct mmu_notifier *mn) { kfree(container_of(mn, struct gru_mm_struct, ms_notifier)); STAT(gms_free); } static const struct mmu_notifier_ops gru_mmuops = { .invalidate_range_start = gru_invalidate_range_start, .invalidate_range_end = gru_invalidate_range_end, .alloc_notifier = gru_alloc_notifier, .free_notifier = gru_free_notifier, }; struct gru_mm_struct *gru_register_mmu_notifier(void) { struct mmu_notifier *mn; mn = mmu_notifier_get_locked(&gru_mmuops, current->mm); if (IS_ERR(mn)) return ERR_CAST(mn); return container_of(mn, struct gru_mm_struct, ms_notifier); } void gru_drop_mmu_notifier(struct gru_mm_struct *gms) { mmu_notifier_put(&gms->ms_notifier); } /* * Setup TGH parameters. There are: * - 24 TGH handles per GRU chiplet * - a portion (MAX_LOCAL_TGH) of the handles are reserved for * use by blade-local cpus * - the rest are used by off-blade cpus. This usage is * less frequent than blade-local usage. * * For now, use 16 handles for local flushes, 8 for remote flushes. If the blade * has less tan or equal to 16 cpus, each cpu has a unique handle that it can * use. */ #define MAX_LOCAL_TGH 16 void gru_tgh_flush_init(struct gru_state *gru) { int cpus, shift = 0, n; cpus = uv_blade_nr_possible_cpus(gru->gs_blade_id); /* n = cpus rounded up to next power of 2 */ if (cpus) { n = 1 << fls(cpus - 1); /* * shift count for converting local cpu# to TGH index * 0 if cpus <= MAX_LOCAL_TGH, * 1 if cpus <= 2*MAX_LOCAL_TGH, * etc */ shift = max(0, fls(n - 1) - fls(MAX_LOCAL_TGH - 1)); } gru->gs_tgh_local_shift = shift; /* first starting TGH index to use for remote purges */ gru->gs_tgh_first_remote = (cpus + (1 << shift) - 1) >> shift; }