// SPDX-License-Identifier: GPL-2.0+ // Copyright 2017 IBM Corp. #include <linux/sched/mm.h> #include <linux/mutex.h> #include <linux/mm_types.h> #include <linux/mmu_context.h> #include <asm/copro.h> #include <asm/pnv-ocxl.h> #include <misc/ocxl.h> #include "ocxl_internal.h" #include "trace.h" #define SPA_PASID_BITS 15 #define SPA_PASID_MAX ((1 << SPA_PASID_BITS) - 1) #define SPA_PE_MASK SPA_PASID_MAX #define SPA_SPA_SIZE_LOG 22 /* Each SPA is 4 Mb */ #define SPA_CFG_SF (1ull << (63-0)) #define SPA_CFG_TA (1ull << (63-1)) #define SPA_CFG_HV (1ull << (63-3)) #define SPA_CFG_UV (1ull << (63-4)) #define SPA_CFG_XLAT_hpt (0ull << (63-6)) /* Hashed page table (HPT) mode */ #define SPA_CFG_XLAT_roh (2ull << (63-6)) /* Radix on HPT mode */ #define SPA_CFG_XLAT_ror (3ull << (63-6)) /* Radix on Radix mode */ #define SPA_CFG_PR (1ull << (63-49)) #define SPA_CFG_TC (1ull << (63-54)) #define SPA_CFG_DR (1ull << (63-59)) #define SPA_XSL_TF (1ull << (63-3)) /* Translation fault */ #define SPA_XSL_S (1ull << (63-38)) /* Store operation */ #define SPA_PE_VALID 0x80000000 struct pe_data { struct mm_struct *mm; /* callback to trigger when a translation fault occurs */ void (*xsl_err_cb)(void *data, u64 addr, u64 dsisr); /* opaque pointer to be passed to the above callback */ void *xsl_err_data; struct rcu_head rcu; }; struct spa { struct ocxl_process_element *spa_mem; int spa_order; struct mutex spa_lock; struct radix_tree_root pe_tree; /* Maps PE handles to pe_data */ char *irq_name; int virq; void __iomem *reg_dsisr; void __iomem *reg_dar; void __iomem *reg_tfc; void __iomem *reg_pe_handle; /* * The following field are used by the memory fault * interrupt handler. We can only have one interrupt at a * time. The NPU won't raise another interrupt until the * previous one has been ack'd by writing to the TFC register */ struct xsl_fault { struct work_struct fault_work; u64 pe; u64 dsisr; u64 dar; struct pe_data pe_data; } xsl_fault; }; /* * A opencapi link can be used be by several PCI functions. We have * one link per device slot. * * A linked list of opencapi links should suffice, as there's a * limited number of opencapi slots on a system and lookup is only * done when the device is probed */ struct ocxl_link { struct list_head list; struct kref ref; int domain; int bus; int dev; atomic_t irq_available; struct spa *spa; void *platform_data; }; static struct list_head links_list = LIST_HEAD_INIT(links_list); static DEFINE_MUTEX(links_list_lock); enum xsl_response { CONTINUE, ADDRESS_ERROR, RESTART, }; static void read_irq(struct spa *spa, u64 *dsisr, u64 *dar, u64 *pe) { u64 reg; *dsisr = in_be64(spa->reg_dsisr); *dar = in_be64(spa->reg_dar); reg = in_be64(spa->reg_pe_handle); *pe = reg & SPA_PE_MASK; } static void ack_irq(struct spa *spa, enum xsl_response r) { u64 reg = 0; /* continue is not supported */ if (r == RESTART) reg = PPC_BIT(31); else if (r == ADDRESS_ERROR) reg = PPC_BIT(30); else WARN(1, "Invalid irq response %d\n", r); if (reg) { trace_ocxl_fault_ack(spa->spa_mem, spa->xsl_fault.pe, spa->xsl_fault.dsisr, spa->xsl_fault.dar, reg); out_be64(spa->reg_tfc, reg); } } static void xsl_fault_handler_bh(struct work_struct *fault_work) { vm_fault_t flt = 0; unsigned long access, flags, inv_flags = 0; enum xsl_response r; struct xsl_fault *fault = container_of(fault_work, struct xsl_fault, fault_work); struct spa *spa = container_of(fault, struct spa, xsl_fault); int rc; /* * We must release a reference on mm_users whenever exiting this * function (taken in the memory fault interrupt handler) */ rc = copro_handle_mm_fault(fault->pe_data.mm, fault->dar, fault->dsisr, &flt); if (rc) { pr_debug("copro_handle_mm_fault failed: %d\n", rc); if (fault->pe_data.xsl_err_cb) { fault->pe_data.xsl_err_cb( fault->pe_data.xsl_err_data, fault->dar, fault->dsisr); } r = ADDRESS_ERROR; goto ack; } if (!radix_enabled()) { /* * update_mmu_cache() will not have loaded the hash * since current->trap is not a 0x400 or 0x300, so * just call hash_page_mm() here. */ access = _PAGE_PRESENT | _PAGE_READ; if (fault->dsisr & SPA_XSL_S) access |= _PAGE_WRITE; if (get_region_id(fault->dar) != USER_REGION_ID) access |= _PAGE_PRIVILEGED; local_irq_save(flags); hash_page_mm(fault->pe_data.mm, fault->dar, access, 0x300, inv_flags); local_irq_restore(flags); } r = RESTART; ack: mmput(fault->pe_data.mm); ack_irq(spa, r); } static irqreturn_t xsl_fault_handler(int irq, void *data) { struct ocxl_link *link = (struct ocxl_link *) data; struct spa *spa = link->spa; u64 dsisr, dar, pe_handle; struct pe_data *pe_data; struct ocxl_process_element *pe; int pid; bool schedule = false; read_irq(spa, &dsisr, &dar, &pe_handle); trace_ocxl_fault(spa->spa_mem, pe_handle, dsisr, dar, -1); WARN_ON(pe_handle > SPA_PE_MASK); pe = spa->spa_mem + pe_handle; pid = be32_to_cpu(pe->pid); /* We could be reading all null values here if the PE is being * removed while an interrupt kicks in. It's not supposed to * happen if the driver notified the AFU to terminate the * PASID, and the AFU waited for pending operations before * acknowledging. But even if it happens, we won't find a * memory context below and fail silently, so it should be ok. */ if (!(dsisr & SPA_XSL_TF)) { WARN(1, "Invalid xsl interrupt fault register %#llx\n", dsisr); ack_irq(spa, ADDRESS_ERROR); return IRQ_HANDLED; } rcu_read_lock(); pe_data = radix_tree_lookup(&spa->pe_tree, pe_handle); if (!pe_data) { /* * Could only happen if the driver didn't notify the * AFU about PASID termination before removing the PE, * or the AFU didn't wait for all memory access to * have completed. * * Either way, we fail early, but we shouldn't log an * error message, as it is a valid (if unexpected) * scenario */ rcu_read_unlock(); pr_debug("Unknown mm context for xsl interrupt\n"); ack_irq(spa, ADDRESS_ERROR); return IRQ_HANDLED; } if (!pe_data->mm) { /* * translation fault from a kernel context - an OpenCAPI * device tried to access a bad kernel address */ rcu_read_unlock(); pr_warn("Unresolved OpenCAPI xsl fault in kernel context\n"); ack_irq(spa, ADDRESS_ERROR); return IRQ_HANDLED; } WARN_ON(pe_data->mm->context.id != pid); if (mmget_not_zero(pe_data->mm)) { spa->xsl_fault.pe = pe_handle; spa->xsl_fault.dar = dar; spa->xsl_fault.dsisr = dsisr; spa->xsl_fault.pe_data = *pe_data; schedule = true; /* mm_users count released by bottom half */ } rcu_read_unlock(); if (schedule) schedule_work(&spa->xsl_fault.fault_work); else ack_irq(spa, ADDRESS_ERROR); return IRQ_HANDLED; } static void unmap_irq_registers(struct spa *spa) { pnv_ocxl_unmap_xsl_regs(spa->reg_dsisr, spa->reg_dar, spa->reg_tfc, spa->reg_pe_handle); } static int map_irq_registers(struct pci_dev *dev, struct spa *spa) { return pnv_ocxl_map_xsl_regs(dev, &spa->reg_dsisr, &spa->reg_dar, &spa->reg_tfc, &spa->reg_pe_handle); } static int setup_xsl_irq(struct pci_dev *dev, struct ocxl_link *link) { struct spa *spa = link->spa; int rc; int hwirq; rc = pnv_ocxl_get_xsl_irq(dev, &hwirq); if (rc) return rc; rc = map_irq_registers(dev, spa); if (rc) return rc; spa->irq_name = kasprintf(GFP_KERNEL, "ocxl-xsl-%x-%x-%x", link->domain, link->bus, link->dev); if (!spa->irq_name) { dev_err(&dev->dev, "Can't allocate name for xsl interrupt\n"); rc = -ENOMEM; goto err_xsl; } /* * At some point, we'll need to look into allowing a higher * number of interrupts. Could we have an IRQ domain per link? */ spa->virq = irq_create_mapping(NULL, hwirq); if (!spa->virq) { dev_err(&dev->dev, "irq_create_mapping failed for translation interrupt\n"); rc = -EINVAL; goto err_name; } dev_dbg(&dev->dev, "hwirq %d mapped to virq %d\n", hwirq, spa->virq); rc = request_irq(spa->virq, xsl_fault_handler, 0, spa->irq_name, link); if (rc) { dev_err(&dev->dev, "request_irq failed for translation interrupt: %d\n", rc); rc = -EINVAL; goto err_mapping; } return 0; err_mapping: irq_dispose_mapping(spa->virq); err_name: kfree(spa->irq_name); err_xsl: unmap_irq_registers(spa); return rc; } static void release_xsl_irq(struct ocxl_link *link) { struct spa *spa = link->spa; if (spa->virq) { free_irq(spa->virq, link); irq_dispose_mapping(spa->virq); } kfree(spa->irq_name); unmap_irq_registers(spa); } static int alloc_spa(struct pci_dev *dev, struct ocxl_link *link) { struct spa *spa; spa = kzalloc(sizeof(struct spa), GFP_KERNEL); if (!spa) return -ENOMEM; mutex_init(&spa->spa_lock); INIT_RADIX_TREE(&spa->pe_tree, GFP_KERNEL); INIT_WORK(&spa->xsl_fault.fault_work, xsl_fault_handler_bh); spa->spa_order = SPA_SPA_SIZE_LOG - PAGE_SHIFT; spa->spa_mem = (struct ocxl_process_element *) __get_free_pages(GFP_KERNEL | __GFP_ZERO, spa->spa_order); if (!spa->spa_mem) { dev_err(&dev->dev, "Can't allocate Shared Process Area\n"); kfree(spa); return -ENOMEM; } pr_debug("Allocated SPA for %x:%x:%x at %p\n", link->domain, link->bus, link->dev, spa->spa_mem); link->spa = spa; return 0; } static void free_spa(struct ocxl_link *link) { struct spa *spa = link->spa; pr_debug("Freeing SPA for %x:%x:%x\n", link->domain, link->bus, link->dev); if (spa && spa->spa_mem) { free_pages((unsigned long) spa->spa_mem, spa->spa_order); kfree(spa); link->spa = NULL; } } static int alloc_link(struct pci_dev *dev, int PE_mask, struct ocxl_link **out_link) { struct ocxl_link *link; int rc; link = kzalloc(sizeof(struct ocxl_link), GFP_KERNEL); if (!link) return -ENOMEM; kref_init(&link->ref); link->domain = pci_domain_nr(dev->bus); link->bus = dev->bus->number; link->dev = PCI_SLOT(dev->devfn); atomic_set(&link->irq_available, MAX_IRQ_PER_LINK); rc = alloc_spa(dev, link); if (rc) goto err_free; rc = setup_xsl_irq(dev, link); if (rc) goto err_spa; /* platform specific hook */ rc = pnv_ocxl_spa_setup(dev, link->spa->spa_mem, PE_mask, &link->platform_data); if (rc) goto err_xsl_irq; *out_link = link; return 0; err_xsl_irq: release_xsl_irq(link); err_spa: free_spa(link); err_free: kfree(link); return rc; } static void free_link(struct ocxl_link *link) { release_xsl_irq(link); free_spa(link); kfree(link); } int ocxl_link_setup(struct pci_dev *dev, int PE_mask, void **link_handle) { int rc = 0; struct ocxl_link *link; mutex_lock(&links_list_lock); list_for_each_entry(link, &links_list, list) { /* The functions of a device all share the same link */ if (link->domain == pci_domain_nr(dev->bus) && link->bus == dev->bus->number && link->dev == PCI_SLOT(dev->devfn)) { kref_get(&link->ref); *link_handle = link; goto unlock; } } rc = alloc_link(dev, PE_mask, &link); if (rc) goto unlock; list_add(&link->list, &links_list); *link_handle = link; unlock: mutex_unlock(&links_list_lock); return rc; } EXPORT_SYMBOL_GPL(ocxl_link_setup); static void release_xsl(struct kref *ref) { struct ocxl_link *link = container_of(ref, struct ocxl_link, ref); list_del(&link->list); /* call platform code before releasing data */ pnv_ocxl_spa_release(link->platform_data); free_link(link); } void ocxl_link_release(struct pci_dev *dev, void *link_handle) { struct ocxl_link *link = (struct ocxl_link *) link_handle; mutex_lock(&links_list_lock); kref_put(&link->ref, release_xsl); mutex_unlock(&links_list_lock); } EXPORT_SYMBOL_GPL(ocxl_link_release); static u64 calculate_cfg_state(bool kernel) { u64 state; state = SPA_CFG_DR; if (mfspr(SPRN_LPCR) & LPCR_TC) state |= SPA_CFG_TC; if (radix_enabled()) state |= SPA_CFG_XLAT_ror; else state |= SPA_CFG_XLAT_hpt; state |= SPA_CFG_HV; if (kernel) { if (mfmsr() & MSR_SF) state |= SPA_CFG_SF; } else { state |= SPA_CFG_PR; if (!test_tsk_thread_flag(current, TIF_32BIT)) state |= SPA_CFG_SF; } return state; } int ocxl_link_add_pe(void *link_handle, int pasid, u32 pidr, u32 tidr, u64 amr, struct mm_struct *mm, void (*xsl_err_cb)(void *data, u64 addr, u64 dsisr), void *xsl_err_data) { struct ocxl_link *link = (struct ocxl_link *) link_handle; struct spa *spa = link->spa; struct ocxl_process_element *pe; int pe_handle, rc = 0; struct pe_data *pe_data; BUILD_BUG_ON(sizeof(struct ocxl_process_element) != 128); if (pasid > SPA_PASID_MAX) return -EINVAL; mutex_lock(&spa->spa_lock); pe_handle = pasid & SPA_PE_MASK; pe = spa->spa_mem + pe_handle; if (pe->software_state) { rc = -EBUSY; goto unlock; } pe_data = kmalloc(sizeof(*pe_data), GFP_KERNEL); if (!pe_data) { rc = -ENOMEM; goto unlock; } pe_data->mm = mm; pe_data->xsl_err_cb = xsl_err_cb; pe_data->xsl_err_data = xsl_err_data; memset(pe, 0, sizeof(struct ocxl_process_element)); pe->config_state = cpu_to_be64(calculate_cfg_state(pidr == 0)); pe->lpid = cpu_to_be32(mfspr(SPRN_LPID)); pe->pid = cpu_to_be32(pidr); pe->tid = cpu_to_be32(tidr); pe->amr = cpu_to_be64(amr); pe->software_state = cpu_to_be32(SPA_PE_VALID); /* * For user contexts, register a copro so that TLBIs are seen * by the nest MMU. If we have a kernel context, TLBIs are * already global. */ if (mm) mm_context_add_copro(mm); /* * Barrier is to make sure PE is visible in the SPA before it * is used by the device. It also helps with the global TLBI * invalidation */ mb(); radix_tree_insert(&spa->pe_tree, pe_handle, pe_data); /* * The mm must stay valid for as long as the device uses it. We * lower the count when the context is removed from the SPA. * * We grab mm_count (and not mm_users), as we don't want to * end up in a circular dependency if a process mmaps its * mmio, therefore incrementing the file ref count when * calling mmap(), and forgets to unmap before exiting. In * that scenario, when the kernel handles the death of the * process, the file is not cleaned because unmap was not * called, and the mm wouldn't be freed because we would still * have a reference on mm_users. Incrementing mm_count solves * the problem. */ if (mm) mmgrab(mm); trace_ocxl_context_add(current->pid, spa->spa_mem, pasid, pidr, tidr); unlock: mutex_unlock(&spa->spa_lock); return rc; } EXPORT_SYMBOL_GPL(ocxl_link_add_pe); int ocxl_link_update_pe(void *link_handle, int pasid, __u16 tid) { struct ocxl_link *link = (struct ocxl_link *) link_handle; struct spa *spa = link->spa; struct ocxl_process_element *pe; int pe_handle, rc; if (pasid > SPA_PASID_MAX) return -EINVAL; pe_handle = pasid & SPA_PE_MASK; pe = spa->spa_mem + pe_handle; mutex_lock(&spa->spa_lock); pe->tid = cpu_to_be32(tid); /* * The barrier makes sure the PE is updated * before we clear the NPU context cache below, so that the * old PE cannot be reloaded erroneously. */ mb(); /* * hook to platform code * On powerpc, the entry needs to be cleared from the context * cache of the NPU. */ rc = pnv_ocxl_spa_remove_pe_from_cache(link->platform_data, pe_handle); WARN_ON(rc); mutex_unlock(&spa->spa_lock); return rc; } int ocxl_link_remove_pe(void *link_handle, int pasid) { struct ocxl_link *link = (struct ocxl_link *) link_handle; struct spa *spa = link->spa; struct ocxl_process_element *pe; struct pe_data *pe_data; int pe_handle, rc; if (pasid > SPA_PASID_MAX) return -EINVAL; /* * About synchronization with our memory fault handler: * * Before removing the PE, the driver is supposed to have * notified the AFU, which should have cleaned up and make * sure the PASID is no longer in use, including pending * interrupts. However, there's no way to be sure... * * We clear the PE and remove the context from our radix * tree. From that point on, any new interrupt for that * context will fail silently, which is ok. As mentioned * above, that's not expected, but it could happen if the * driver or AFU didn't do the right thing. * * There could still be a bottom half running, but we don't * need to wait/flush, as it is managing a reference count on * the mm it reads from the radix tree. */ pe_handle = pasid & SPA_PE_MASK; pe = spa->spa_mem + pe_handle; mutex_lock(&spa->spa_lock); if (!(be32_to_cpu(pe->software_state) & SPA_PE_VALID)) { rc = -EINVAL; goto unlock; } trace_ocxl_context_remove(current->pid, spa->spa_mem, pasid, be32_to_cpu(pe->pid), be32_to_cpu(pe->tid)); memset(pe, 0, sizeof(struct ocxl_process_element)); /* * The barrier makes sure the PE is removed from the SPA * before we clear the NPU context cache below, so that the * old PE cannot be reloaded erroneously. */ mb(); /* * hook to platform code * On powerpc, the entry needs to be cleared from the context * cache of the NPU. */ rc = pnv_ocxl_spa_remove_pe_from_cache(link->platform_data, pe_handle); WARN_ON(rc); pe_data = radix_tree_delete(&spa->pe_tree, pe_handle); if (!pe_data) { WARN(1, "Couldn't find pe data when removing PE\n"); } else { if (pe_data->mm) { mm_context_remove_copro(pe_data->mm); mmdrop(pe_data->mm); } kfree_rcu(pe_data, rcu); } unlock: mutex_unlock(&spa->spa_lock); return rc; } EXPORT_SYMBOL_GPL(ocxl_link_remove_pe); int ocxl_link_irq_alloc(void *link_handle, int *hw_irq, u64 *trigger_addr) { struct ocxl_link *link = (struct ocxl_link *) link_handle; int rc, irq; u64 addr; if (atomic_dec_if_positive(&link->irq_available) < 0) return -ENOSPC; rc = pnv_ocxl_alloc_xive_irq(&irq, &addr); if (rc) { atomic_inc(&link->irq_available); return rc; } *hw_irq = irq; *trigger_addr = addr; return 0; } EXPORT_SYMBOL_GPL(ocxl_link_irq_alloc); void ocxl_link_free_irq(void *link_handle, int hw_irq) { struct ocxl_link *link = (struct ocxl_link *) link_handle; pnv_ocxl_free_xive_irq(hw_irq); atomic_inc(&link->irq_available); } EXPORT_SYMBOL_GPL(ocxl_link_free_irq);