/* * JZ4780 NAND/external memory controller (NEMC) * * Copyright (c) 2015 Imagination Technologies * Author: Alex Smith <alex@alex-smith.me.uk> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. */ #include <linux/clk.h> #include <linux/init.h> #include <linux/math64.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_device.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/jz4780-nemc.h> #define NEMC_SMCRn(n) (0x14 + (((n) - 1) * 4)) #define NEMC_NFCSR 0x50 #define NEMC_SMCR_SMT BIT(0) #define NEMC_SMCR_BW_SHIFT 6 #define NEMC_SMCR_BW_MASK (0x3 << NEMC_SMCR_BW_SHIFT) #define NEMC_SMCR_BW_8 (0 << 6) #define NEMC_SMCR_TAS_SHIFT 8 #define NEMC_SMCR_TAS_MASK (0xf << NEMC_SMCR_TAS_SHIFT) #define NEMC_SMCR_TAH_SHIFT 12 #define NEMC_SMCR_TAH_MASK (0xf << NEMC_SMCR_TAH_SHIFT) #define NEMC_SMCR_TBP_SHIFT 16 #define NEMC_SMCR_TBP_MASK (0xf << NEMC_SMCR_TBP_SHIFT) #define NEMC_SMCR_TAW_SHIFT 20 #define NEMC_SMCR_TAW_MASK (0xf << NEMC_SMCR_TAW_SHIFT) #define NEMC_SMCR_TSTRV_SHIFT 24 #define NEMC_SMCR_TSTRV_MASK (0x3f << NEMC_SMCR_TSTRV_SHIFT) #define NEMC_NFCSR_NFEn(n) BIT(((n) - 1) << 1) #define NEMC_NFCSR_NFCEn(n) BIT((((n) - 1) << 1) + 1) #define NEMC_NFCSR_TNFEn(n) BIT(16 + (n) - 1) struct jz4780_nemc { spinlock_t lock; struct device *dev; void __iomem *base; struct clk *clk; uint32_t clk_period; unsigned long banks_present; }; /** * jz4780_nemc_num_banks() - count the number of banks referenced by a device * @dev: device to count banks for, must be a child of the NEMC. * * Return: The number of unique NEMC banks referred to by the specified NEMC * child device. Unique here means that a device that references the same bank * multiple times in the its "reg" property will only count once. */ unsigned int jz4780_nemc_num_banks(struct device *dev) { const __be32 *prop; unsigned int bank, count = 0; unsigned long referenced = 0; int i = 0; while ((prop = of_get_address(dev->of_node, i++, NULL, NULL))) { bank = of_read_number(prop, 1); if (!(referenced & BIT(bank))) { referenced |= BIT(bank); count++; } } return count; } EXPORT_SYMBOL(jz4780_nemc_num_banks); /** * jz4780_nemc_set_type() - set the type of device connected to a bank * @dev: child device of the NEMC. * @bank: bank number to configure. * @type: type of device connected to the bank. */ void jz4780_nemc_set_type(struct device *dev, unsigned int bank, enum jz4780_nemc_bank_type type) { struct jz4780_nemc *nemc = dev_get_drvdata(dev->parent); uint32_t nfcsr; nfcsr = readl(nemc->base + NEMC_NFCSR); /* TODO: Support toggle NAND devices. */ switch (type) { case JZ4780_NEMC_BANK_SRAM: nfcsr &= ~(NEMC_NFCSR_TNFEn(bank) | NEMC_NFCSR_NFEn(bank)); break; case JZ4780_NEMC_BANK_NAND: nfcsr &= ~NEMC_NFCSR_TNFEn(bank); nfcsr |= NEMC_NFCSR_NFEn(bank); break; } writel(nfcsr, nemc->base + NEMC_NFCSR); } EXPORT_SYMBOL(jz4780_nemc_set_type); /** * jz4780_nemc_assert() - (de-)assert a NAND device's chip enable pin * @dev: child device of the NEMC. * @bank: bank number of device. * @assert: whether the chip enable pin should be asserted. * * (De-)asserts the chip enable pin for the NAND device connected to the * specified bank. */ void jz4780_nemc_assert(struct device *dev, unsigned int bank, bool assert) { struct jz4780_nemc *nemc = dev_get_drvdata(dev->parent); uint32_t nfcsr; nfcsr = readl(nemc->base + NEMC_NFCSR); if (assert) nfcsr |= NEMC_NFCSR_NFCEn(bank); else nfcsr &= ~NEMC_NFCSR_NFCEn(bank); writel(nfcsr, nemc->base + NEMC_NFCSR); } EXPORT_SYMBOL(jz4780_nemc_assert); static uint32_t jz4780_nemc_clk_period(struct jz4780_nemc *nemc) { unsigned long rate; rate = clk_get_rate(nemc->clk); if (!rate) return 0; /* Return in picoseconds. */ return div64_ul(1000000000000ull, rate); } static uint32_t jz4780_nemc_ns_to_cycles(struct jz4780_nemc *nemc, uint32_t ns) { return ((ns * 1000) + nemc->clk_period - 1) / nemc->clk_period; } static bool jz4780_nemc_configure_bank(struct jz4780_nemc *nemc, unsigned int bank, struct device_node *node) { uint32_t smcr, val, cycles; /* * Conversion of tBP and tAW cycle counts to values supported by the * hardware (round up to the next supported value). */ static const uint32_t convert_tBP_tAW[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, /* 11 - 12 -> 12 cycles */ 11, 11, /* 13 - 15 -> 15 cycles */ 12, 12, 12, /* 16 - 20 -> 20 cycles */ 13, 13, 13, 13, 13, /* 21 - 25 -> 25 cycles */ 14, 14, 14, 14, 14, /* 26 - 31 -> 31 cycles */ 15, 15, 15, 15, 15, 15 }; smcr = readl(nemc->base + NEMC_SMCRn(bank)); smcr &= ~NEMC_SMCR_SMT; if (!of_property_read_u32(node, "ingenic,nemc-bus-width", &val)) { smcr &= ~NEMC_SMCR_BW_MASK; switch (val) { case 8: smcr |= NEMC_SMCR_BW_8; break; default: /* * Earlier SoCs support a 16 bit bus width (the 4780 * does not), until those are properly supported, error. */ dev_err(nemc->dev, "unsupported bus width: %u\n", val); return false; } } if (of_property_read_u32(node, "ingenic,nemc-tAS", &val) == 0) { smcr &= ~NEMC_SMCR_TAS_MASK; cycles = jz4780_nemc_ns_to_cycles(nemc, val); if (cycles > 15) { dev_err(nemc->dev, "tAS %u is too high (%u cycles)\n", val, cycles); return false; } smcr |= cycles << NEMC_SMCR_TAS_SHIFT; } if (of_property_read_u32(node, "ingenic,nemc-tAH", &val) == 0) { smcr &= ~NEMC_SMCR_TAH_MASK; cycles = jz4780_nemc_ns_to_cycles(nemc, val); if (cycles > 15) { dev_err(nemc->dev, "tAH %u is too high (%u cycles)\n", val, cycles); return false; } smcr |= cycles << NEMC_SMCR_TAH_SHIFT; } if (of_property_read_u32(node, "ingenic,nemc-tBP", &val) == 0) { smcr &= ~NEMC_SMCR_TBP_MASK; cycles = jz4780_nemc_ns_to_cycles(nemc, val); if (cycles > 31) { dev_err(nemc->dev, "tBP %u is too high (%u cycles)\n", val, cycles); return false; } smcr |= convert_tBP_tAW[cycles] << NEMC_SMCR_TBP_SHIFT; } if (of_property_read_u32(node, "ingenic,nemc-tAW", &val) == 0) { smcr &= ~NEMC_SMCR_TAW_MASK; cycles = jz4780_nemc_ns_to_cycles(nemc, val); if (cycles > 31) { dev_err(nemc->dev, "tAW %u is too high (%u cycles)\n", val, cycles); return false; } smcr |= convert_tBP_tAW[cycles] << NEMC_SMCR_TAW_SHIFT; } if (of_property_read_u32(node, "ingenic,nemc-tSTRV", &val) == 0) { smcr &= ~NEMC_SMCR_TSTRV_MASK; cycles = jz4780_nemc_ns_to_cycles(nemc, val); if (cycles > 63) { dev_err(nemc->dev, "tSTRV %u is too high (%u cycles)\n", val, cycles); return false; } smcr |= cycles << NEMC_SMCR_TSTRV_SHIFT; } writel(smcr, nemc->base + NEMC_SMCRn(bank)); return true; } static int jz4780_nemc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct jz4780_nemc *nemc; struct resource *res; struct device_node *child; const __be32 *prop; unsigned int bank; unsigned long referenced; int i, ret; nemc = devm_kzalloc(dev, sizeof(*nemc), GFP_KERNEL); if (!nemc) return -ENOMEM; spin_lock_init(&nemc->lock); nemc->dev = dev; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); nemc->base = devm_ioremap_resource(dev, res); if (IS_ERR(nemc->base)) { dev_err(dev, "failed to get I/O memory\n"); return PTR_ERR(nemc->base); } writel(0, nemc->base + NEMC_NFCSR); nemc->clk = devm_clk_get(dev, NULL); if (IS_ERR(nemc->clk)) { dev_err(dev, "failed to get clock\n"); return PTR_ERR(nemc->clk); } ret = clk_prepare_enable(nemc->clk); if (ret) { dev_err(dev, "failed to enable clock: %d\n", ret); return ret; } nemc->clk_period = jz4780_nemc_clk_period(nemc); if (!nemc->clk_period) { dev_err(dev, "failed to calculate clock period\n"); clk_disable_unprepare(nemc->clk); return -EINVAL; } /* * Iterate over child devices, check that they do not conflict with * each other, and register child devices for them. If a child device * has invalid properties, it is ignored and no platform device is * registered for it. */ for_each_child_of_node(nemc->dev->of_node, child) { referenced = 0; i = 0; while ((prop = of_get_address(child, i++, NULL, NULL))) { bank = of_read_number(prop, 1); if (bank < 1 || bank >= JZ4780_NEMC_NUM_BANKS) { dev_err(nemc->dev, "%pOF requests invalid bank %u\n", child, bank); /* Will continue the outer loop below. */ referenced = 0; break; } referenced |= BIT(bank); } if (!referenced) { dev_err(nemc->dev, "%pOF has no addresses\n", child); continue; } else if (nemc->banks_present & referenced) { dev_err(nemc->dev, "%pOF conflicts with another node\n", child); continue; } /* Configure bank parameters. */ for_each_set_bit(bank, &referenced, JZ4780_NEMC_NUM_BANKS) { if (!jz4780_nemc_configure_bank(nemc, bank, child)) { referenced = 0; break; } } if (referenced) { if (of_platform_device_create(child, NULL, nemc->dev)) nemc->banks_present |= referenced; } } platform_set_drvdata(pdev, nemc); dev_info(dev, "JZ4780 NEMC initialised\n"); return 0; } static int jz4780_nemc_remove(struct platform_device *pdev) { struct jz4780_nemc *nemc = platform_get_drvdata(pdev); clk_disable_unprepare(nemc->clk); return 0; } static const struct of_device_id jz4780_nemc_dt_match[] = { { .compatible = "ingenic,jz4780-nemc" }, {}, }; static struct platform_driver jz4780_nemc_driver = { .probe = jz4780_nemc_probe, .remove = jz4780_nemc_remove, .driver = { .name = "jz4780-nemc", .of_match_table = of_match_ptr(jz4780_nemc_dt_match), }, }; static int __init jz4780_nemc_init(void) { return platform_driver_register(&jz4780_nemc_driver); } subsys_initcall(jz4780_nemc_init);