// SPDX-License-Identifier: GPL-2.0 // ir-sanyo-decoder.c - handle SANYO IR Pulse/Space protocol // // Copyright (C) 2011 by Mauro Carvalho Chehab // // This protocol uses the NEC protocol timings. However, data is formatted as: // 13 bits Custom Code // 13 bits NOT(Custom Code) // 8 bits Key data // 8 bits NOT(Key data) // // According with LIRC, this protocol is used on Sanyo, Aiwa and Chinon // Information for this protocol is available at the Sanyo LC7461 datasheet. #include <linux/module.h> #include <linux/bitrev.h> #include "rc-core-priv.h" #define SANYO_NBITS (13+13+8+8) #define SANYO_UNIT 563 /* us */ #define SANYO_HEADER_PULSE (16 * SANYO_UNIT) #define SANYO_HEADER_SPACE (8 * SANYO_UNIT) #define SANYO_BIT_PULSE (1 * SANYO_UNIT) #define SANYO_BIT_0_SPACE (1 * SANYO_UNIT) #define SANYO_BIT_1_SPACE (3 * SANYO_UNIT) #define SANYO_REPEAT_SPACE (150 * SANYO_UNIT) #define SANYO_TRAILER_PULSE (1 * SANYO_UNIT) #define SANYO_TRAILER_SPACE (10 * SANYO_UNIT) /* in fact, 42 */ enum sanyo_state { STATE_INACTIVE, STATE_HEADER_SPACE, STATE_BIT_PULSE, STATE_BIT_SPACE, STATE_TRAILER_PULSE, STATE_TRAILER_SPACE, }; /** * ir_sanyo_decode() - Decode one SANYO pulse or space * @dev: the struct rc_dev descriptor of the device * @ev: the struct ir_raw_event descriptor of the pulse/space * * This function returns -EINVAL if the pulse violates the state machine */ static int ir_sanyo_decode(struct rc_dev *dev, struct ir_raw_event ev) { struct sanyo_dec *data = &dev->raw->sanyo; u32 scancode; u16 address; u8 command, not_command; if (!is_timing_event(ev)) { if (ev.reset) { dev_dbg(&dev->dev, "SANYO event reset received. reset to state 0\n"); data->state = STATE_INACTIVE; } return 0; } dev_dbg(&dev->dev, "SANYO decode started at state %d (%uus %s)\n", data->state, ev.duration, TO_STR(ev.pulse)); switch (data->state) { case STATE_INACTIVE: if (!ev.pulse) break; if (eq_margin(ev.duration, SANYO_HEADER_PULSE, SANYO_UNIT / 2)) { data->count = 0; data->state = STATE_HEADER_SPACE; return 0; } break; case STATE_HEADER_SPACE: if (ev.pulse) break; if (eq_margin(ev.duration, SANYO_HEADER_SPACE, SANYO_UNIT / 2)) { data->state = STATE_BIT_PULSE; return 0; } break; case STATE_BIT_PULSE: if (!ev.pulse) break; if (!eq_margin(ev.duration, SANYO_BIT_PULSE, SANYO_UNIT / 2)) break; data->state = STATE_BIT_SPACE; return 0; case STATE_BIT_SPACE: if (ev.pulse) break; if (!data->count && geq_margin(ev.duration, SANYO_REPEAT_SPACE, SANYO_UNIT / 2)) { rc_repeat(dev); dev_dbg(&dev->dev, "SANYO repeat last key\n"); data->state = STATE_INACTIVE; return 0; } data->bits <<= 1; if (eq_margin(ev.duration, SANYO_BIT_1_SPACE, SANYO_UNIT / 2)) data->bits |= 1; else if (!eq_margin(ev.duration, SANYO_BIT_0_SPACE, SANYO_UNIT / 2)) break; data->count++; if (data->count == SANYO_NBITS) data->state = STATE_TRAILER_PULSE; else data->state = STATE_BIT_PULSE; return 0; case STATE_TRAILER_PULSE: if (!ev.pulse) break; if (!eq_margin(ev.duration, SANYO_TRAILER_PULSE, SANYO_UNIT / 2)) break; data->state = STATE_TRAILER_SPACE; return 0; case STATE_TRAILER_SPACE: if (ev.pulse) break; if (!geq_margin(ev.duration, SANYO_TRAILER_SPACE, SANYO_UNIT / 2)) break; address = bitrev16((data->bits >> 29) & 0x1fff) >> 3; /* not_address = bitrev16((data->bits >> 16) & 0x1fff) >> 3; */ command = bitrev8((data->bits >> 8) & 0xff); not_command = bitrev8((data->bits >> 0) & 0xff); if ((command ^ not_command) != 0xff) { dev_dbg(&dev->dev, "SANYO checksum error: received 0x%08llx\n", data->bits); data->state = STATE_INACTIVE; return 0; } scancode = address << 8 | command; dev_dbg(&dev->dev, "SANYO scancode: 0x%06x\n", scancode); rc_keydown(dev, RC_PROTO_SANYO, scancode, 0); data->state = STATE_INACTIVE; return 0; } dev_dbg(&dev->dev, "SANYO decode failed at count %d state %d (%uus %s)\n", data->count, data->state, ev.duration, TO_STR(ev.pulse)); data->state = STATE_INACTIVE; return -EINVAL; } static const struct ir_raw_timings_pd ir_sanyo_timings = { .header_pulse = SANYO_HEADER_PULSE, .header_space = SANYO_HEADER_SPACE, .bit_pulse = SANYO_BIT_PULSE, .bit_space[0] = SANYO_BIT_0_SPACE, .bit_space[1] = SANYO_BIT_1_SPACE, .trailer_pulse = SANYO_TRAILER_PULSE, .trailer_space = SANYO_TRAILER_SPACE, .msb_first = 1, }; /** * ir_sanyo_encode() - Encode a scancode as a stream of raw events * * @protocol: protocol to encode * @scancode: scancode to encode * @events: array of raw ir events to write into * @max: maximum size of @events * * Returns: The number of events written. * -ENOBUFS if there isn't enough space in the array to fit the * encoding. In this case all @max events will have been written. */ static int ir_sanyo_encode(enum rc_proto protocol, u32 scancode, struct ir_raw_event *events, unsigned int max) { struct ir_raw_event *e = events; int ret; u64 raw; raw = ((u64)(bitrev16(scancode >> 8) & 0xfff8) << (8 + 8 + 13 - 3)) | ((u64)(bitrev16(~scancode >> 8) & 0xfff8) << (8 + 8 + 0 - 3)) | ((bitrev8(scancode) & 0xff) << 8) | (bitrev8(~scancode) & 0xff); ret = ir_raw_gen_pd(&e, max, &ir_sanyo_timings, SANYO_NBITS, raw); if (ret < 0) return ret; return e - events; } static struct ir_raw_handler sanyo_handler = { .protocols = RC_PROTO_BIT_SANYO, .decode = ir_sanyo_decode, .encode = ir_sanyo_encode, .carrier = 38000, .min_timeout = SANYO_TRAILER_SPACE, }; static int __init ir_sanyo_decode_init(void) { ir_raw_handler_register(&sanyo_handler); printk(KERN_INFO "IR SANYO protocol handler initialized\n"); return 0; } static void __exit ir_sanyo_decode_exit(void) { ir_raw_handler_unregister(&sanyo_handler); } module_init(ir_sanyo_decode_init); module_exit(ir_sanyo_decode_exit); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Mauro Carvalho Chehab"); MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)"); MODULE_DESCRIPTION("SANYO IR protocol decoder");