/* * Afatech AF9013 demodulator driver * * Copyright (C) 2007 Antti Palosaari * Copyright (C) 2011 Antti Palosaari * * Thanks to Afatech who kindly provided information. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include "af9013_priv.h" struct af9013_state { struct i2c_client *client; struct regmap *regmap; struct dvb_frontend fe; u32 clk; u8 tuner; u32 if_frequency; u8 ts_mode; u8 ts_output_pin; bool spec_inv; u8 api_version[4]; u8 gpio[4]; /* tuner/demod RF and IF AGC limits used for signal strength calc */ u8 signal_strength_en, rf_50, rf_80, if_50, if_80; u16 signal_strength; u32 ber; u32 ucblocks; u16 snr; u32 bandwidth_hz; enum fe_status fe_status; /* RF and IF AGC limits used for signal strength calc */ u8 strength_en, rf_agc_50, rf_agc_80, if_agc_50, if_agc_80; unsigned long set_frontend_jiffies; unsigned long read_status_jiffies; unsigned long strength_jiffies; unsigned long cnr_jiffies; unsigned long ber_ucb_jiffies; bool first_tune; bool i2c_gate_state; unsigned int statistics_step:3; struct delayed_work statistics_work; }; static int af9013_set_gpio(struct af9013_state *state, u8 gpio, u8 gpioval) { struct i2c_client *client = state->client; int ret; u8 pos; u16 addr; dev_dbg(&client->dev, "gpio %u, gpioval %02x\n", gpio, gpioval); /* * GPIO0 & GPIO1 0xd735 * GPIO2 & GPIO3 0xd736 */ switch (gpio) { case 0: case 1: addr = 0xd735; break; case 2: case 3: addr = 0xd736; break; default: ret = -EINVAL; goto err; } switch (gpio) { case 0: case 2: pos = 0; break; case 1: case 3: default: pos = 4; break; } ret = regmap_update_bits(state->regmap, addr, 0x0f << pos, gpioval << pos); if (ret) goto err; return 0; err: dev_dbg(&client->dev, "failed %d\n", ret); return ret; } static int af9013_statistics_ber_unc_start(struct dvb_frontend *fe) { struct af9013_state *state = fe->demodulator_priv; struct i2c_client *client = state->client; int ret; dev_dbg(&client->dev, "\n"); /* reset and start BER counter */ ret = regmap_update_bits(state->regmap, 0xd391, 0x10, 0x10); if (ret) goto err; return 0; err: dev_dbg(&client->dev, "failed %d\n", ret); return ret; } static int af9013_statistics_ber_unc_result(struct dvb_frontend *fe) { struct af9013_state *state = fe->demodulator_priv; struct i2c_client *client = state->client; int ret; unsigned int utmp; u8 buf[5]; dev_dbg(&client->dev, "\n"); /* check if error bit count is ready */ ret = regmap_read(state->regmap, 0xd391, &utmp); if (ret) goto err; if (!((utmp >> 4) & 0x01)) { dev_dbg(&client->dev, "not ready\n"); return 0; } ret = regmap_bulk_read(state->regmap, 0xd387, buf, 5); if (ret) goto err; state->ber = (buf[2] << 16) | (buf[1] << 8) | buf[0]; state->ucblocks += (buf[4] << 8) | buf[3]; return 0; err: dev_dbg(&client->dev, "failed %d\n", ret); return ret; } static int af9013_statistics_snr_start(struct dvb_frontend *fe) { struct af9013_state *state = fe->demodulator_priv; struct i2c_client *client = state->client; int ret; dev_dbg(&client->dev, "\n"); /* start SNR meas */ ret = regmap_update_bits(state->regmap, 0xd2e1, 0x08, 0x08); if (ret) goto err; return 0; err: dev_dbg(&client->dev, "failed %d\n", ret); return ret; } static int af9013_statistics_snr_result(struct dvb_frontend *fe) { struct af9013_state *state = fe->demodulator_priv; struct i2c_client *client = state->client; int ret, i, len; unsigned int utmp; u8 buf[3]; u32 snr_val; const struct af9013_snr *uninitialized_var(snr_lut); dev_dbg(&client->dev, "\n"); /* check if SNR ready */ ret = regmap_read(state->regmap, 0xd2e1, &utmp); if (ret) goto err; if (!((utmp >> 3) & 0x01)) { dev_dbg(&client->dev, "not ready\n"); return 0; } /* read value */ ret = regmap_bulk_read(state->regmap, 0xd2e3, buf, 3); if (ret) goto err; snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0]; /* read current modulation */ ret = regmap_read(state->regmap, 0xd3c1, &utmp); if (ret) goto err; switch ((utmp >> 6) & 3) { case 0: len = ARRAY_SIZE(qpsk_snr_lut); snr_lut = qpsk_snr_lut; break; case 1: len = ARRAY_SIZE(qam16_snr_lut); snr_lut = qam16_snr_lut; break; case 2: len = ARRAY_SIZE(qam64_snr_lut); snr_lut = qam64_snr_lut; break; default: goto err; } for (i = 0; i < len; i++) { utmp = snr_lut[i].snr; if (snr_val < snr_lut[i].val) break; } state->snr = utmp * 10; /* dB/10 */ return 0; err: dev_dbg(&client->dev, "failed %d\n", ret); return ret; } static int af9013_statistics_signal_strength(struct dvb_frontend *fe) { struct af9013_state *state = fe->demodulator_priv; struct i2c_client *client = state->client; int ret = 0; u8 buf[2], rf_gain, if_gain; int signal_strength; dev_dbg(&client->dev, "\n"); if (!state->signal_strength_en) return 0; ret = regmap_bulk_read(state->regmap, 0xd07c, buf, 2); if (ret) goto err; rf_gain = buf[0]; if_gain = buf[1]; signal_strength = (0xffff / \ (9 * (state->rf_50 + state->if_50) - \ 11 * (state->rf_80 + state->if_80))) * \ (10 * (rf_gain + if_gain) - \ 11 * (state->rf_80 + state->if_80)); if (signal_strength < 0) signal_strength = 0; else if (signal_strength > 0xffff) signal_strength = 0xffff; state->signal_strength = signal_strength; return 0; err: dev_dbg(&client->dev, "failed %d\n", ret); return ret; } static void af9013_statistics_work(struct work_struct *work) { struct af9013_state *state = container_of(work, struct af9013_state, statistics_work.work); unsigned int next_msec; /* update only signal strength when demod is not locked */ if (!(state->fe_status & FE_HAS_LOCK)) { state->statistics_step = 0; state->ber = 0; state->snr = 0; } switch (state->statistics_step) { default: state->statistics_step = 0; /* fall-through */ case 0: af9013_statistics_signal_strength(&state->fe); state->statistics_step++; next_msec = 300; break; case 1: af9013_statistics_snr_start(&state->fe); state->statistics_step++; next_msec = 200; break; case 2: af9013_statistics_ber_unc_start(&state->fe); state->statistics_step++; next_msec = 1000; break; case 3: af9013_statistics_snr_result(&state->fe); state->statistics_step++; next_msec = 400; break; case 4: af9013_statistics_ber_unc_result(&state->fe); state->statistics_step++; next_msec = 100; break; } schedule_delayed_work(&state->statistics_work, msecs_to_jiffies(next_msec)); } static int af9013_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *fesettings) { fesettings->min_delay_ms = 800; fesettings->step_size = 0; fesettings->max_drift = 0; return 0; } static int af9013_set_frontend(struct dvb_frontend *fe) { struct af9013_state *state = fe->demodulator_priv; struct i2c_client *client = state->client; struct dtv_frontend_properties *c = &fe->dtv_property_cache; int ret, i, sampling_freq; bool auto_mode, spec_inv; u8 buf[6]; u32 if_frequency, freq_cw; dev_dbg(&client->dev, "frequency %u, bandwidth_hz %u\n", c->frequency, c->bandwidth_hz); /* program tuner */ if (fe->ops.tuner_ops.set_params) { ret = fe->ops.tuner_ops.set_params(fe); if (ret) goto err; } /* program CFOE coefficients */ if (c->bandwidth_hz != state->bandwidth_hz) { for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) { if (coeff_lut[i].clock == state->clk && coeff_lut[i].bandwidth_hz == c->bandwidth_hz) { break; } } /* Return an error if can't find bandwidth or the right clock */ if (i == ARRAY_SIZE(coeff_lut)) { ret = -EINVAL; goto err; } ret = regmap_bulk_write(state->regmap, 0xae00, coeff_lut[i].val, sizeof(coeff_lut[i].val)); if (ret) goto err; } /* program frequency control */ if (c->bandwidth_hz != state->bandwidth_hz || state->first_tune) { /* get used IF frequency */ if (fe->ops.tuner_ops.get_if_frequency) { ret = fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency); if (ret) goto err; } else { if_frequency = state->if_frequency; } dev_dbg(&client->dev, "if_frequency %u\n", if_frequency); sampling_freq = if_frequency; while (sampling_freq > (state->clk / 2)) sampling_freq -= state->clk; if (sampling_freq < 0) { sampling_freq *= -1; spec_inv = state->spec_inv; } else { spec_inv = !state->spec_inv; } freq_cw = DIV_ROUND_CLOSEST_ULL((u64)sampling_freq * 0x800000, state->clk); if (spec_inv) freq_cw = 0x800000 - freq_cw; buf[0] = (freq_cw >> 0) & 0xff; buf[1] = (freq_cw >> 8) & 0xff; buf[2] = (freq_cw >> 16) & 0x7f; freq_cw = 0x800000 - freq_cw; buf[3] = (freq_cw >> 0) & 0xff; buf[4] = (freq_cw >> 8) & 0xff; buf[5] = (freq_cw >> 16) & 0x7f; ret = regmap_bulk_write(state->regmap, 0xd140, buf, 3); if (ret) goto err; ret = regmap_bulk_write(state->regmap, 0x9be7, buf, 6); if (ret) goto err; } /* clear TPS lock flag */ ret = regmap_update_bits(state->regmap, 0xd330, 0x08, 0x08); if (ret) goto err; /* clear MPEG2 lock flag */ ret = regmap_update_bits(state->regmap, 0xd507, 0x40, 0x00); if (ret) goto err; /* empty channel function */ ret = regmap_update_bits(state->regmap, 0x9bfe, 0x01, 0x00); if (ret) goto err; /* empty DVB-T channel function */ ret = regmap_update_bits(state->regmap, 0x9bc2, 0x01, 0x00); if (ret) goto err; /* transmission parameters */ auto_mode = false; memset(buf, 0, 3); switch (c->transmission_mode) { case TRANSMISSION_MODE_AUTO: auto_mode = true; break; case TRANSMISSION_MODE_2K: break; case TRANSMISSION_MODE_8K: buf[0] |= (1 << 0); break; default: dev_dbg(&client->dev, "invalid transmission_mode\n"); auto_mode = true; } switch (c->guard_interval) { case GUARD_INTERVAL_AUTO: auto_mode = true; break; case GUARD_INTERVAL_1_32: break; case GUARD_INTERVAL_1_16: buf[0] |= (1 << 2); break; case GUARD_INTERVAL_1_8: buf[0] |= (2 << 2); break; case GUARD_INTERVAL_1_4: buf[0] |= (3 << 2); break; default: dev_dbg(&client->dev, "invalid guard_interval\n"); auto_mode = true; } switch (c->hierarchy) { case HIERARCHY_AUTO: auto_mode = true; break; case HIERARCHY_NONE: break; case HIERARCHY_1: buf[0] |= (1 << 4); break; case HIERARCHY_2: buf[0] |= (2 << 4); break; case HIERARCHY_4: buf[0] |= (3 << 4); break; default: dev_dbg(&client->dev, "invalid hierarchy\n"); auto_mode = true; } switch (c->modulation) { case QAM_AUTO: auto_mode = true; break; case QPSK: break; case QAM_16: buf[1] |= (1 << 6); break; case QAM_64: buf[1] |= (2 << 6); break; default: dev_dbg(&client->dev, "invalid modulation\n"); auto_mode = true; } /* Use HP. How and which case we can switch to LP? */ buf[1] |= (1 << 4); switch (c->code_rate_HP) { case FEC_AUTO: auto_mode = true; break; case FEC_1_2: break; case FEC_2_3: buf[2] |= (1 << 0); break; case FEC_3_4: buf[2] |= (2 << 0); break; case FEC_5_6: buf[2] |= (3 << 0); break; case FEC_7_8: buf[2] |= (4 << 0); break; default: dev_dbg(&client->dev, "invalid code_rate_HP\n"); auto_mode = true; } switch (c->code_rate_LP) { case FEC_AUTO: auto_mode = true; break; case FEC_1_2: break; case FEC_2_3: buf[2] |= (1 << 3); break; case FEC_3_4: buf[2] |= (2 << 3); break; case FEC_5_6: buf[2] |= (3 << 3); break; case FEC_7_8: buf[2] |= (4 << 3); break; case FEC_NONE: break; default: dev_dbg(&client->dev, "invalid code_rate_LP\n"); auto_mode = true; } switch (c->bandwidth_hz) { case 6000000: break; case 7000000: buf[1] |= (1 << 2); break; case 8000000: buf[1] |= (2 << 2); break; default: dev_dbg(&client->dev, "invalid bandwidth_hz\n"); ret = -EINVAL; goto err; } ret = regmap_bulk_write(state->regmap, 0xd3c0, buf, 3); if (ret) goto err; if (auto_mode) { /* clear easy mode flag */ ret = regmap_write(state->regmap, 0xaefd, 0x00); if (ret) goto err; dev_dbg(&client->dev, "auto params\n"); } else { /* set easy mode flag */ ret = regmap_write(state->regmap, 0xaefd, 0x01); if (ret) goto err; ret = regmap_write(state->regmap, 0xaefe, 0x00); if (ret) goto err; dev_dbg(&client->dev, "manual params\n"); } /* Reset FSM */ ret = regmap_write(state->regmap, 0xffff, 0x00); if (ret) goto err; state->bandwidth_hz = c->bandwidth_hz; state->set_frontend_jiffies = jiffies; state->first_tune = false; return 0; err: dev_dbg(&client->dev, "failed %d\n", ret); return ret; } static int af9013_get_frontend(struct dvb_frontend *fe, struct dtv_frontend_properties *c) { struct af9013_state *state = fe->demodulator_priv; struct i2c_client *client = state->client; int ret; u8 buf[3]; dev_dbg(&client->dev, "\n"); ret = regmap_bulk_read(state->regmap, 0xd3c0, buf, 3); if (ret) goto err; switch ((buf[1] >> 6) & 3) { case 0: c->modulation = QPSK; break; case 1: c->modulation = QAM_16; break; case 2: c->modulation = QAM_64; break; } switch ((buf[0] >> 0) & 3) { case 0: c->transmission_mode = TRANSMISSION_MODE_2K; break; case 1: c->transmission_mode = TRANSMISSION_MODE_8K; } switch ((buf[0] >> 2) & 3) { case 0: c->guard_interval = GUARD_INTERVAL_1_32; break; case 1: c->guard_interval = GUARD_INTERVAL_1_16; break; case 2: c->guard_interval = GUARD_INTERVAL_1_8; break; case 3: c->guard_interval = GUARD_INTERVAL_1_4; break; } switch ((buf[0] >> 4) & 7) { case 0: c->hierarchy = HIERARCHY_NONE; break; case 1: c->hierarchy = HIERARCHY_1; break; case 2: c->hierarchy = HIERARCHY_2; break; case 3: c->hierarchy = HIERARCHY_4; break; } switch ((buf[2] >> 0) & 7) { case 0: c->code_rate_HP = FEC_1_2; break; case 1: c->code_rate_HP = FEC_2_3; break; case 2: c->code_rate_HP = FEC_3_4; break; case 3: c->code_rate_HP = FEC_5_6; break; case 4: c->code_rate_HP = FEC_7_8; break; } switch ((buf[2] >> 3) & 7) { case 0: c->code_rate_LP = FEC_1_2; break; case 1: c->code_rate_LP = FEC_2_3; break; case 2: c->code_rate_LP = FEC_3_4; break; case 3: c->code_rate_LP = FEC_5_6; break; case 4: c->code_rate_LP = FEC_7_8; break; } switch ((buf[1] >> 2) & 3) { case 0: c->bandwidth_hz = 6000000; break; case 1: c->bandwidth_hz = 7000000; break; case 2: c->bandwidth_hz = 8000000; break; } return 0; err: dev_dbg(&client->dev, "failed %d\n", ret); return ret; } static int af9013_read_status(struct dvb_frontend *fe, enum fe_status *status) { struct af9013_state *state = fe->demodulator_priv; struct i2c_client *client = state->client; struct dtv_frontend_properties *c = &fe->dtv_property_cache; int ret, stmp1; unsigned int utmp, utmp1, utmp2, utmp3, utmp4; u8 buf[7]; dev_dbg(&client->dev, "\n"); /* * Return status from the cache if it is younger than 2000ms with the * exception of last tune is done during 4000ms. */ if (time_is_after_jiffies(state->read_status_jiffies + msecs_to_jiffies(2000)) && time_is_before_jiffies(state->set_frontend_jiffies + msecs_to_jiffies(4000))) { *status = state->fe_status; } else { /* MPEG2 lock */ ret = regmap_read(state->regmap, 0xd507, &utmp); if (ret) goto err; if ((utmp >> 6) & 0x01) { utmp1 = FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK; } else { /* TPS lock */ ret = regmap_read(state->regmap, 0xd330, &utmp); if (ret) goto err; if ((utmp >> 3) & 0x01) utmp1 = FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI; else utmp1 = 0; } dev_dbg(&client->dev, "fe_status %02x\n", utmp1); state->read_status_jiffies = jiffies; state->fe_status = utmp1; *status = utmp1; } /* Signal strength */ switch (state->strength_en) { case 0: /* Check if we support signal strength */ ret = regmap_read(state->regmap, 0x9bee, &utmp); if (ret) goto err; if ((utmp >> 0) & 0x01) { /* Read agc values for signal strength estimation */ ret = regmap_read(state->regmap, 0x9bbd, &utmp1); if (ret) goto err; ret = regmap_read(state->regmap, 0x9bd0, &utmp2); if (ret) goto err; ret = regmap_read(state->regmap, 0x9be2, &utmp3); if (ret) goto err; ret = regmap_read(state->regmap, 0x9be4, &utmp4); if (ret) goto err; state->rf_agc_50 = utmp1; state->rf_agc_80 = utmp2; state->if_agc_50 = utmp3; state->if_agc_80 = utmp4; dev_dbg(&client->dev, "rf_agc_50 %u, rf_agc_80 %u, if_agc_50 %u, if_agc_80 %u\n", utmp1, utmp2, utmp3, utmp4); state->strength_en = 1; } else { /* Signal strength is not supported */ state->strength_en = 2; break; } /* Fall through */ case 1: if (time_is_after_jiffies(state->strength_jiffies + msecs_to_jiffies(2000))) break; /* Read value */ ret = regmap_bulk_read(state->regmap, 0xd07c, buf, 2); if (ret) goto err; /* * Construct line equation from tuner dependent -80/-50 dBm agc * limits and use it to map current agc value to dBm estimate */ #define agc_gain (buf[0] + buf[1]) #define agc_gain_50dbm (state->rf_agc_50 + state->if_agc_50) #define agc_gain_80dbm (state->rf_agc_80 + state->if_agc_80) stmp1 = 30000 * (agc_gain - agc_gain_80dbm) / (agc_gain_50dbm - agc_gain_80dbm) - 80000; dev_dbg(&client->dev, "strength %d, agc_gain %d, agc_gain_50dbm %d, agc_gain_80dbm %d\n", stmp1, agc_gain, agc_gain_50dbm, agc_gain_80dbm); state->strength_jiffies = jiffies; c->strength.stat[0].scale = FE_SCALE_DECIBEL; c->strength.stat[0].svalue = stmp1; break; default: c->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE; break; } /* CNR */ switch (state->fe_status & FE_HAS_VITERBI) { case FE_HAS_VITERBI: if (time_is_after_jiffies(state->cnr_jiffies + msecs_to_jiffies(2000))) break; /* Check if cnr ready */ ret = regmap_read(state->regmap, 0xd2e1, &utmp); if (ret) goto err; if (!((utmp >> 3) & 0x01)) { dev_dbg(&client->dev, "cnr not ready\n"); break; } /* Read value */ ret = regmap_bulk_read(state->regmap, 0xd2e3, buf, 3); if (ret) goto err; utmp1 = buf[2] << 16 | buf[1] << 8 | buf[0] << 0; /* Read current modulation */ ret = regmap_read(state->regmap, 0xd3c1, &utmp); if (ret) goto err; switch ((utmp >> 6) & 3) { case 0: /* * QPSK * CNR[dB] 13 * -log10((1690000 - value) / value) + 2.6 * value [653799, 1689999], 2.6 / 13 = 3355443 */ utmp1 = clamp(utmp1, 653799U, 1689999U); utmp1 = ((u64)(intlog10(utmp1) - intlog10(1690000 - utmp1) + 3355443) * 13 * 1000) >> 24; break; case 1: /* * QAM-16 * CNR[dB] 6 * log10((value - 370000) / (828000 - value)) + 15.7 * value [371105, 827999], 15.7 / 6 = 43900382 */ utmp1 = clamp(utmp1, 371105U, 827999U); utmp1 = ((u64)(intlog10(utmp1 - 370000) - intlog10(828000 - utmp1) + 43900382) * 6 * 1000) >> 24; break; case 2: /* * QAM-64 * CNR[dB] 8 * log10((value - 193000) / (425000 - value)) + 23.8 * value [193246, 424999], 23.8 / 8 = 49912218 */ utmp1 = clamp(utmp1, 193246U, 424999U); utmp1 = ((u64)(intlog10(utmp1 - 193000) - intlog10(425000 - utmp1) + 49912218) * 8 * 1000) >> 24; break; default: dev_dbg(&client->dev, "invalid modulation %u\n", (utmp >> 6) & 3); utmp1 = 0; break; } dev_dbg(&client->dev, "cnr %u\n", utmp1); state->cnr_jiffies = jiffies; c->cnr.stat[0].scale = FE_SCALE_DECIBEL; c->cnr.stat[0].svalue = utmp1; break; default: c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; break; } /* BER / PER */ switch (state->fe_status & FE_HAS_SYNC) { case FE_HAS_SYNC: if (time_is_after_jiffies(state->ber_ucb_jiffies + msecs_to_jiffies(2000))) break; /* Check if ber / ucb is ready */ ret = regmap_read(state->regmap, 0xd391, &utmp); if (ret) goto err; if (!((utmp >> 4) & 0x01)) { dev_dbg(&client->dev, "ber not ready\n"); break; } /* Read value */ ret = regmap_bulk_read(state->regmap, 0xd385, buf, 7); if (ret) goto err; utmp1 = buf[4] << 16 | buf[3] << 8 | buf[2] << 0; utmp2 = (buf[1] << 8 | buf[0] << 0) * 204 * 8; utmp3 = buf[6] << 8 | buf[5] << 0; utmp4 = buf[1] << 8 | buf[0] << 0; /* Use 10000 TS packets for measure */ if (utmp4 != 10000) { buf[0] = (10000 >> 0) & 0xff; buf[1] = (10000 >> 8) & 0xff; ret = regmap_bulk_write(state->regmap, 0xd385, buf, 2); if (ret) goto err; } /* Reset ber / ucb counter */ ret = regmap_update_bits(state->regmap, 0xd391, 0x20, 0x20); if (ret) goto err; dev_dbg(&client->dev, "post_bit_error %u, post_bit_count %u\n", utmp1, utmp2); dev_dbg(&client->dev, "block_error %u, block_count %u\n", utmp3, utmp4); state->ber_ucb_jiffies = jiffies; c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER; c->post_bit_error.stat[0].uvalue += utmp1; c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER; c->post_bit_count.stat[0].uvalue += utmp2; c->block_error.stat[0].scale = FE_SCALE_COUNTER; c->block_error.stat[0].uvalue += utmp3; c->block_count.stat[0].scale = FE_SCALE_COUNTER; c->block_count.stat[0].uvalue += utmp4; break; default: c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; break; } return 0; err: dev_dbg(&client->dev, "failed %d\n", ret); return ret; } static int af9013_read_snr(struct dvb_frontend *fe, u16 *snr) { struct af9013_state *state = fe->demodulator_priv; *snr = state->snr; return 0; } static int af9013_read_signal_strength(struct dvb_frontend *fe, u16 *strength) { struct af9013_state *state = fe->demodulator_priv; *strength = state->signal_strength; return 0; } static int af9013_read_ber(struct dvb_frontend *fe, u32 *ber) { struct af9013_state *state = fe->demodulator_priv; *ber = state->ber; return 0; } static int af9013_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks) { struct af9013_state *state = fe->demodulator_priv; *ucblocks = state->ucblocks; return 0; } static int af9013_init(struct dvb_frontend *fe) { struct af9013_state *state = fe->demodulator_priv; struct i2c_client *client = state->client; int ret, i, len; unsigned int utmp; u8 buf[3]; const struct af9013_reg_bit *init; dev_dbg(&client->dev, "\n"); /* ADC on */ ret = regmap_update_bits(state->regmap, 0xd73a, 0x08, 0x00); if (ret) goto err; /* Clear reset */ ret = regmap_update_bits(state->regmap, 0xd417, 0x02, 0x00); if (ret) goto err; /* Disable reset */ ret = regmap_update_bits(state->regmap, 0xd417, 0x10, 0x00); if (ret) goto err; /* write API version to firmware */ ret = regmap_bulk_write(state->regmap, 0x9bf2, state->api_version, 4); if (ret) goto err; /* program ADC control */ switch (state->clk) { case 28800000: /* 28.800 MHz */ utmp = 0; break; case 20480000: /* 20.480 MHz */ utmp = 1; break; case 28000000: /* 28.000 MHz */ utmp = 2; break; case 25000000: /* 25.000 MHz */ utmp = 3; break; default: ret = -EINVAL; goto err; } ret = regmap_update_bits(state->regmap, 0x9bd2, 0x0f, utmp); if (ret) goto err; utmp = div_u64((u64)state->clk * 0x80000, 1000000); buf[0] = (utmp >> 0) & 0xff; buf[1] = (utmp >> 8) & 0xff; buf[2] = (utmp >> 16) & 0xff; ret = regmap_bulk_write(state->regmap, 0xd180, buf, 3); if (ret) goto err; /* load OFSM settings */ dev_dbg(&client->dev, "load ofsm settings\n"); len = ARRAY_SIZE(ofsm_init); init = ofsm_init; for (i = 0; i < len; i++) { u16 reg = init[i].addr; u8 mask = GENMASK(init[i].pos + init[i].len - 1, init[i].pos); u8 val = init[i].val << init[i].pos; ret = regmap_update_bits(state->regmap, reg, mask, val); if (ret) goto err; } /* load tuner specific settings */ dev_dbg(&client->dev, "load tuner specific settings\n"); switch (state->tuner) { case AF9013_TUNER_MXL5003D: len = ARRAY_SIZE(tuner_init_mxl5003d); init = tuner_init_mxl5003d; break; case AF9013_TUNER_MXL5005D: case AF9013_TUNER_MXL5005R: case AF9013_TUNER_MXL5007T: len = ARRAY_SIZE(tuner_init_mxl5005); init = tuner_init_mxl5005; break; case AF9013_TUNER_ENV77H11D5: len = ARRAY_SIZE(tuner_init_env77h11d5); init = tuner_init_env77h11d5; break; case AF9013_TUNER_MT2060: len = ARRAY_SIZE(tuner_init_mt2060); init = tuner_init_mt2060; break; case AF9013_TUNER_MC44S803: len = ARRAY_SIZE(tuner_init_mc44s803); init = tuner_init_mc44s803; break; case AF9013_TUNER_QT1010: case AF9013_TUNER_QT1010A: len = ARRAY_SIZE(tuner_init_qt1010); init = tuner_init_qt1010; break; case AF9013_TUNER_MT2060_2: len = ARRAY_SIZE(tuner_init_mt2060_2); init = tuner_init_mt2060_2; break; case AF9013_TUNER_TDA18271: case AF9013_TUNER_TDA18218: len = ARRAY_SIZE(tuner_init_tda18271); init = tuner_init_tda18271; break; case AF9013_TUNER_UNKNOWN: default: len = ARRAY_SIZE(tuner_init_unknown); init = tuner_init_unknown; break; } for (i = 0; i < len; i++) { u16 reg = init[i].addr; u8 mask = GENMASK(init[i].pos + init[i].len - 1, init[i].pos); u8 val = init[i].val << init[i].pos; ret = regmap_update_bits(state->regmap, reg, mask, val); if (ret) goto err; } /* TS interface */ if (state->ts_output_pin == 7) utmp = 1 << 3 | state->ts_mode << 1; else utmp = 0 << 3 | state->ts_mode << 1; ret = regmap_update_bits(state->regmap, 0xd500, 0x0e, utmp); if (ret) goto err; /* enable lock led */ ret = regmap_update_bits(state->regmap, 0xd730, 0x01, 0x01); if (ret) goto err; /* check if we support signal strength */ if (!state->signal_strength_en) { ret = regmap_read(state->regmap, 0x9bee, &utmp); if (ret) goto err; state->signal_strength_en = (utmp >> 0) & 0x01; } /* read values needed for signal strength calculation */ if (state->signal_strength_en && !state->rf_50) { ret = regmap_bulk_read(state->regmap, 0x9bbd, &state->rf_50, 1); if (ret) goto err; ret = regmap_bulk_read(state->regmap, 0x9bd0, &state->rf_80, 1); if (ret) goto err; ret = regmap_bulk_read(state->regmap, 0x9be2, &state->if_50, 1); if (ret) goto err; ret = regmap_bulk_read(state->regmap, 0x9be4, &state->if_80, 1); if (ret) goto err; } /* SNR */ ret = regmap_write(state->regmap, 0xd2e2, 0x01); if (ret) goto err; /* BER / UCB */ buf[0] = (10000 >> 0) & 0xff; buf[1] = (10000 >> 8) & 0xff; ret = regmap_bulk_write(state->regmap, 0xd385, buf, 2); if (ret) goto err; /* enable FEC monitor */ ret = regmap_update_bits(state->regmap, 0xd392, 0x02, 0x02); if (ret) goto err; state->first_tune = true; schedule_delayed_work(&state->statistics_work, msecs_to_jiffies(400)); return 0; err: dev_dbg(&client->dev, "failed %d\n", ret); return ret; } static int af9013_sleep(struct dvb_frontend *fe) { struct af9013_state *state = fe->demodulator_priv; struct i2c_client *client = state->client; int ret; unsigned int utmp; dev_dbg(&client->dev, "\n"); /* stop statistics polling */ cancel_delayed_work_sync(&state->statistics_work); /* disable lock led */ ret = regmap_update_bits(state->regmap, 0xd730, 0x01, 0x00); if (ret) goto err; /* Enable reset */ ret = regmap_update_bits(state->regmap, 0xd417, 0x10, 0x10); if (ret) goto err; /* Start reset execution */ ret = regmap_write(state->regmap, 0xaeff, 0x01); if (ret) goto err; /* Wait reset performs */ ret = regmap_read_poll_timeout(state->regmap, 0xd417, utmp, (utmp >> 1) & 0x01, 5000, 1000000); if (ret) goto err; if (!((utmp >> 1) & 0x01)) { ret = -ETIMEDOUT; goto err; } /* ADC off */ ret = regmap_update_bits(state->regmap, 0xd73a, 0x08, 0x08); if (ret) goto err; return 0; err: dev_dbg(&client->dev, "failed %d\n", ret); return ret; } static int af9013_i2c_gate_ctrl(struct dvb_frontend *fe, int enable) { int ret; struct af9013_state *state = fe->demodulator_priv; struct i2c_client *client = state->client; dev_dbg(&client->dev, "enable %d\n", enable); /* gate already open or close */ if (state->i2c_gate_state == enable) return 0; if (state->ts_mode == AF9013_TS_MODE_USB) ret = regmap_update_bits(state->regmap, 0xd417, 0x08, enable << 3); else ret = regmap_update_bits(state->regmap, 0xd607, 0x04, enable << 2); if (ret) goto err; state->i2c_gate_state = enable; return 0; err: dev_dbg(&client->dev, "failed %d\n", ret); return ret; } static void af9013_release(struct dvb_frontend *fe) { struct af9013_state *state = fe->demodulator_priv; struct i2c_client *client = state->client; dev_dbg(&client->dev, "\n"); i2c_unregister_device(client); } static const struct dvb_frontend_ops af9013_ops; static int af9013_download_firmware(struct af9013_state *state) { struct i2c_client *client = state->client; int ret, i, len, rem; unsigned int utmp; u8 buf[4]; u16 checksum = 0; const struct firmware *firmware; const char *name = AF9013_FIRMWARE; dev_dbg(&client->dev, "\n"); /* Check whether firmware is already running */ ret = regmap_read(state->regmap, 0x98be, &utmp); if (ret) goto err; dev_dbg(&client->dev, "firmware status %02x\n", utmp); if (utmp == 0x0c) return 0; dev_info(&client->dev, "found a '%s' in cold state, will try to load a firmware\n", af9013_ops.info.name); /* Request the firmware, will block and timeout */ ret = request_firmware(&firmware, name, &client->dev); if (ret) { dev_info(&client->dev, "firmware file '%s' not found %d\n", name, ret); goto err; } dev_info(&client->dev, "downloading firmware from file '%s'\n", name); /* Write firmware checksum & size */ for (i = 0; i < firmware->size; i++) checksum += firmware->data[i]; buf[0] = (checksum >> 8) & 0xff; buf[1] = (checksum >> 0) & 0xff; buf[2] = (firmware->size >> 8) & 0xff; buf[3] = (firmware->size >> 0) & 0xff; ret = regmap_bulk_write(state->regmap, 0x50fc, buf, 4); if (ret) goto err_release_firmware; /* Download firmware */ #define LEN_MAX 16 for (rem = firmware->size; rem > 0; rem -= LEN_MAX) { len = min(LEN_MAX, rem); ret = regmap_bulk_write(state->regmap, 0x5100 + firmware->size - rem, &firmware->data[firmware->size - rem], len); if (ret) { dev_err(&client->dev, "firmware download failed %d\n", ret); goto err_release_firmware; } } release_firmware(firmware); /* Boot firmware */ ret = regmap_write(state->regmap, 0xe205, 0x01); if (ret) goto err; /* Check firmware status. 0c=OK, 04=fail */ ret = regmap_read_poll_timeout(state->regmap, 0x98be, utmp, (utmp == 0x0c || utmp == 0x04), 5000, 1000000); if (ret) goto err; dev_dbg(&client->dev, "firmware status %02x\n", utmp); if (utmp == 0x04) { ret = -ENODEV; dev_err(&client->dev, "firmware did not run\n"); goto err; } else if (utmp != 0x0c) { ret = -ENODEV; dev_err(&client->dev, "firmware boot timeout\n"); goto err; } dev_info(&client->dev, "found a '%s' in warm state\n", af9013_ops.info.name); return 0; err_release_firmware: release_firmware(firmware); err: dev_dbg(&client->dev, "failed %d\n", ret); return ret; } /* * XXX: That is wrapper to af9013_probe() via driver core in order to provide * proper I2C client for legacy media attach binding. * New users must use I2C client binding directly! */ struct dvb_frontend *af9013_attach(const struct af9013_config *config, struct i2c_adapter *i2c) { struct i2c_client *client; struct i2c_board_info board_info; struct af9013_platform_data pdata; pdata.clk = config->clock; pdata.tuner = config->tuner; pdata.if_frequency = config->if_frequency; pdata.ts_mode = config->ts_mode; pdata.ts_output_pin = 7; pdata.spec_inv = config->spec_inv; memcpy(&pdata.api_version, config->api_version, sizeof(pdata.api_version)); memcpy(&pdata.gpio, config->gpio, sizeof(pdata.gpio)); pdata.attach_in_use = true; memset(&board_info, 0, sizeof(board_info)); strlcpy(board_info.type, "af9013", sizeof(board_info.type)); board_info.addr = config->i2c_addr; board_info.platform_data = &pdata; client = i2c_new_device(i2c, &board_info); if (!client || !client->dev.driver) return NULL; return pdata.get_dvb_frontend(client); } EXPORT_SYMBOL(af9013_attach); static const struct dvb_frontend_ops af9013_ops = { .delsys = { SYS_DVBT }, .info = { .name = "Afatech AF9013", .frequency_min = 174000000, .frequency_max = 862000000, .frequency_stepsize = 250000, .frequency_tolerance = 0, .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS }, .release = af9013_release, .init = af9013_init, .sleep = af9013_sleep, .get_tune_settings = af9013_get_tune_settings, .set_frontend = af9013_set_frontend, .get_frontend = af9013_get_frontend, .read_status = af9013_read_status, .read_snr = af9013_read_snr, .read_signal_strength = af9013_read_signal_strength, .read_ber = af9013_read_ber, .read_ucblocks = af9013_read_ucblocks, .i2c_gate_ctrl = af9013_i2c_gate_ctrl, }; static struct dvb_frontend *af9013_get_dvb_frontend(struct i2c_client *client) { struct af9013_state *state = i2c_get_clientdata(client); dev_dbg(&client->dev, "\n"); return &state->fe; } /* Own I2C access routines needed for regmap as chip uses extra command byte */ static int af9013_wregs(struct i2c_client *client, u8 cmd, u16 reg, const u8 *val, int len) { int ret; u8 buf[21]; struct i2c_msg msg[1] = { { .addr = client->addr, .flags = 0, .len = 3 + len, .buf = buf, } }; if (3 + len > sizeof(buf)) { ret = -EINVAL; goto err; } buf[0] = (reg >> 8) & 0xff; buf[1] = (reg >> 0) & 0xff; buf[2] = cmd; memcpy(&buf[3], val, len); ret = i2c_transfer(client->adapter, msg, 1); if (ret < 0) { goto err; } else if (ret != 1) { ret = -EREMOTEIO; goto err; } return 0; err: dev_dbg(&client->dev, "failed %d\n", ret); return ret; } static int af9013_rregs(struct i2c_client *client, u8 cmd, u16 reg, u8 *val, int len) { int ret; u8 buf[3]; struct i2c_msg msg[2] = { { .addr = client->addr, .flags = 0, .len = 3, .buf = buf, }, { .addr = client->addr, .flags = I2C_M_RD, .len = len, .buf = val, } }; buf[0] = (reg >> 8) & 0xff; buf[1] = (reg >> 0) & 0xff; buf[2] = cmd; ret = i2c_transfer(client->adapter, msg, 2); if (ret < 0) { goto err; } else if (ret != 2) { ret = -EREMOTEIO; goto err; } return 0; err: dev_dbg(&client->dev, "failed %d\n", ret); return ret; } static int af9013_regmap_write(void *context, const void *data, size_t count) { struct i2c_client *client = context; struct af9013_state *state = i2c_get_clientdata(client); int ret, i; u8 cmd; u16 reg = ((u8 *)data)[0] << 8|((u8 *)data)[1] << 0; u8 *val = &((u8 *)data)[2]; const unsigned int len = count - 2; if (state->ts_mode == AF9013_TS_MODE_USB && (reg & 0xff00) != 0xae00) { cmd = 0 << 7|0 << 6|(len - 1) << 2|1 << 1|1 << 0; ret = af9013_wregs(client, cmd, reg, val, len); if (ret) goto err; } else if (reg >= 0x5100 && reg < 0x8fff) { /* Firmware download */ cmd = 1 << 7|1 << 6|(len - 1) << 2|1 << 1|1 << 0; ret = af9013_wregs(client, cmd, reg, val, len); if (ret) goto err; } else { cmd = 0 << 7|0 << 6|(1 - 1) << 2|1 << 1|1 << 0; for (i = 0; i < len; i++) { ret = af9013_wregs(client, cmd, reg + i, val + i, 1); if (ret) goto err; } } return 0; err: dev_dbg(&client->dev, "failed %d\n", ret); return ret; } static int af9013_regmap_read(void *context, const void *reg_buf, size_t reg_size, void *val_buf, size_t val_size) { struct i2c_client *client = context; struct af9013_state *state = i2c_get_clientdata(client); int ret, i; u8 cmd; u16 reg = ((u8 *)reg_buf)[0] << 8|((u8 *)reg_buf)[1] << 0; u8 *val = &((u8 *)val_buf)[0]; const unsigned int len = val_size; if (state->ts_mode == AF9013_TS_MODE_USB && (reg & 0xff00) != 0xae00) { cmd = 0 << 7|0 << 6|(len - 1) << 2|1 << 1|0 << 0; ret = af9013_rregs(client, cmd, reg, val_buf, len); if (ret) goto err; } else { cmd = 0 << 7|0 << 6|(1 - 1) << 2|1 << 1|0 << 0; for (i = 0; i < len; i++) { ret = af9013_rregs(client, cmd, reg + i, val + i, 1); if (ret) goto err; } } return 0; err: dev_dbg(&client->dev, "failed %d\n", ret); return ret; } static int af9013_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct af9013_state *state; struct af9013_platform_data *pdata = client->dev.platform_data; struct dtv_frontend_properties *c; int ret, i; u8 firmware_version[4]; static const struct regmap_bus regmap_bus = { .read = af9013_regmap_read, .write = af9013_regmap_write, }; static const struct regmap_config regmap_config = { .reg_bits = 16, .val_bits = 8, }; state = kzalloc(sizeof(*state), GFP_KERNEL); if (!state) { ret = -ENOMEM; goto err; } /* Setup the state */ state->client = client; i2c_set_clientdata(client, state); state->clk = pdata->clk; state->tuner = pdata->tuner; state->if_frequency = pdata->if_frequency; state->ts_mode = pdata->ts_mode; state->ts_output_pin = pdata->ts_output_pin; state->spec_inv = pdata->spec_inv; memcpy(&state->api_version, pdata->api_version, sizeof(state->api_version)); memcpy(&state->gpio, pdata->gpio, sizeof(state->gpio)); INIT_DELAYED_WORK(&state->statistics_work, af9013_statistics_work); state->regmap = regmap_init(&client->dev, ®map_bus, client, ®map_config); if (IS_ERR(state->regmap)) { ret = PTR_ERR(state->regmap); goto err_kfree; } /* Download firmware */ if (state->ts_mode != AF9013_TS_MODE_USB) { ret = af9013_download_firmware(state); if (ret) goto err_regmap_exit; } /* Firmware version */ ret = regmap_bulk_read(state->regmap, 0x5103, firmware_version, sizeof(firmware_version)); if (ret) goto err_regmap_exit; /* Set GPIOs */ for (i = 0; i < sizeof(state->gpio); i++) { ret = af9013_set_gpio(state, i, state->gpio[i]); if (ret) goto err_regmap_exit; } /* Create dvb frontend */ memcpy(&state->fe.ops, &af9013_ops, sizeof(state->fe.ops)); if (!pdata->attach_in_use) state->fe.ops.release = NULL; state->fe.demodulator_priv = state; /* Setup callbacks */ pdata->get_dvb_frontend = af9013_get_dvb_frontend; /* Init stats to indicate which stats are supported */ c = &state->fe.dtv_property_cache; c->strength.len = 1; c->cnr.len = 1; c->post_bit_error.len = 1; c->post_bit_count.len = 1; c->block_error.len = 1; c->block_count.len = 1; dev_info(&client->dev, "Afatech AF9013 successfully attached\n"); dev_info(&client->dev, "firmware version: %d.%d.%d.%d\n", firmware_version[0], firmware_version[1], firmware_version[2], firmware_version[3]); return 0; err_regmap_exit: regmap_exit(state->regmap); err_kfree: kfree(state); err: dev_dbg(&client->dev, "failed %d\n", ret); return ret; } static int af9013_remove(struct i2c_client *client) { struct af9013_state *state = i2c_get_clientdata(client); dev_dbg(&client->dev, "\n"); /* Stop statistics polling */ cancel_delayed_work_sync(&state->statistics_work); regmap_exit(state->regmap); kfree(state); return 0; } static const struct i2c_device_id af9013_id_table[] = { {"af9013", 0}, {} }; MODULE_DEVICE_TABLE(i2c, af9013_id_table); static struct i2c_driver af9013_driver = { .driver = { .name = "af9013", .suppress_bind_attrs = true, }, .probe = af9013_probe, .remove = af9013_remove, .id_table = af9013_id_table, }; module_i2c_driver(af9013_driver); MODULE_AUTHOR("Antti Palosaari "); MODULE_DESCRIPTION("Afatech AF9013 DVB-T demodulator driver"); MODULE_LICENSE("GPL"); MODULE_FIRMWARE(AF9013_FIRMWARE);