// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2002 ARM Limited, All Rights Reserved. * * Interrupt architecture for the GIC: * * o There is one Interrupt Distributor, which receives interrupts * from system devices and sends them to the Interrupt Controllers. * * o There is one CPU Interface per CPU, which sends interrupts sent * by the Distributor, and interrupts generated locally, to the * associated CPU. The base address of the CPU interface is usually * aliased so that the same address points to different chips depending * on the CPU it is accessed from. * * Note that IRQs 0-31 are special - they are local to each CPU. * As such, the enable set/clear, pending set/clear and active bit * registers are banked per-cpu for these sources. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "irq-gic-common.h" #ifdef CONFIG_ARM64 #include static void gic_check_cpu_features(void) { WARN_TAINT_ONCE(this_cpu_has_cap(ARM64_HAS_SYSREG_GIC_CPUIF), TAINT_CPU_OUT_OF_SPEC, "GICv3 system registers enabled, broken firmware!\n"); } #else #define gic_check_cpu_features() do { } while(0) #endif union gic_base { void __iomem *common_base; void __percpu * __iomem *percpu_base; }; struct gic_chip_data { struct irq_chip chip; union gic_base dist_base; union gic_base cpu_base; void __iomem *raw_dist_base; void __iomem *raw_cpu_base; u32 percpu_offset; #if defined(CONFIG_CPU_PM) || defined(CONFIG_ARM_GIC_PM) u32 saved_spi_enable[DIV_ROUND_UP(1020, 32)]; u32 saved_spi_active[DIV_ROUND_UP(1020, 32)]; u32 saved_spi_conf[DIV_ROUND_UP(1020, 16)]; u32 saved_spi_target[DIV_ROUND_UP(1020, 4)]; u32 __percpu *saved_ppi_enable; u32 __percpu *saved_ppi_active; u32 __percpu *saved_ppi_conf; #endif struct irq_domain *domain; unsigned int gic_irqs; #ifdef CONFIG_GIC_NON_BANKED void __iomem *(*get_base)(union gic_base *); #endif }; #ifdef CONFIG_BL_SWITCHER static DEFINE_RAW_SPINLOCK(cpu_map_lock); #define gic_lock_irqsave(f) \ raw_spin_lock_irqsave(&cpu_map_lock, (f)) #define gic_unlock_irqrestore(f) \ raw_spin_unlock_irqrestore(&cpu_map_lock, (f)) #define gic_lock() raw_spin_lock(&cpu_map_lock) #define gic_unlock() raw_spin_unlock(&cpu_map_lock) #else #define gic_lock_irqsave(f) do { (void)(f); } while(0) #define gic_unlock_irqrestore(f) do { (void)(f); } while(0) #define gic_lock() do { } while(0) #define gic_unlock() do { } while(0) #endif /* * The GIC mapping of CPU interfaces does not necessarily match * the logical CPU numbering. Let's use a mapping as returned * by the GIC itself. */ #define NR_GIC_CPU_IF 8 static u8 gic_cpu_map[NR_GIC_CPU_IF] __read_mostly; static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key); static struct gic_chip_data gic_data[CONFIG_ARM_GIC_MAX_NR] __read_mostly; static struct gic_kvm_info gic_v2_kvm_info; #ifdef CONFIG_GIC_NON_BANKED static void __iomem *gic_get_percpu_base(union gic_base *base) { return raw_cpu_read(*base->percpu_base); } static void __iomem *gic_get_common_base(union gic_base *base) { return base->common_base; } static inline void __iomem *gic_data_dist_base(struct gic_chip_data *data) { return data->get_base(&data->dist_base); } static inline void __iomem *gic_data_cpu_base(struct gic_chip_data *data) { return data->get_base(&data->cpu_base); } static inline void gic_set_base_accessor(struct gic_chip_data *data, void __iomem *(*f)(union gic_base *)) { data->get_base = f; } #else #define gic_data_dist_base(d) ((d)->dist_base.common_base) #define gic_data_cpu_base(d) ((d)->cpu_base.common_base) #define gic_set_base_accessor(d, f) #endif static inline void __iomem *gic_dist_base(struct irq_data *d) { struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d); return gic_data_dist_base(gic_data); } static inline void __iomem *gic_cpu_base(struct irq_data *d) { struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d); return gic_data_cpu_base(gic_data); } static inline unsigned int gic_irq(struct irq_data *d) { return d->hwirq; } static inline bool cascading_gic_irq(struct irq_data *d) { void *data = irq_data_get_irq_handler_data(d); /* * If handler_data is set, this is a cascading interrupt, and * it cannot possibly be forwarded. */ return data != NULL; } /* * Routines to acknowledge, disable and enable interrupts */ static void gic_poke_irq(struct irq_data *d, u32 offset) { u32 mask = 1 << (gic_irq(d) % 32); writel_relaxed(mask, gic_dist_base(d) + offset + (gic_irq(d) / 32) * 4); } static int gic_peek_irq(struct irq_data *d, u32 offset) { u32 mask = 1 << (gic_irq(d) % 32); return !!(readl_relaxed(gic_dist_base(d) + offset + (gic_irq(d) / 32) * 4) & mask); } static void gic_mask_irq(struct irq_data *d) { gic_poke_irq(d, GIC_DIST_ENABLE_CLEAR); } static void gic_eoimode1_mask_irq(struct irq_data *d) { gic_mask_irq(d); /* * When masking a forwarded interrupt, make sure it is * deactivated as well. * * This ensures that an interrupt that is getting * disabled/masked will not get "stuck", because there is * noone to deactivate it (guest is being terminated). */ if (irqd_is_forwarded_to_vcpu(d)) gic_poke_irq(d, GIC_DIST_ACTIVE_CLEAR); } static void gic_unmask_irq(struct irq_data *d) { gic_poke_irq(d, GIC_DIST_ENABLE_SET); } static void gic_eoi_irq(struct irq_data *d) { writel_relaxed(gic_irq(d), gic_cpu_base(d) + GIC_CPU_EOI); } static void gic_eoimode1_eoi_irq(struct irq_data *d) { /* Do not deactivate an IRQ forwarded to a vcpu. */ if (irqd_is_forwarded_to_vcpu(d)) return; writel_relaxed(gic_irq(d), gic_cpu_base(d) + GIC_CPU_DEACTIVATE); } static int gic_irq_set_irqchip_state(struct irq_data *d, enum irqchip_irq_state which, bool val) { u32 reg; switch (which) { case IRQCHIP_STATE_PENDING: reg = val ? GIC_DIST_PENDING_SET : GIC_DIST_PENDING_CLEAR; break; case IRQCHIP_STATE_ACTIVE: reg = val ? GIC_DIST_ACTIVE_SET : GIC_DIST_ACTIVE_CLEAR; break; case IRQCHIP_STATE_MASKED: reg = val ? GIC_DIST_ENABLE_CLEAR : GIC_DIST_ENABLE_SET; break; default: return -EINVAL; } gic_poke_irq(d, reg); return 0; } static int gic_irq_get_irqchip_state(struct irq_data *d, enum irqchip_irq_state which, bool *val) { switch (which) { case IRQCHIP_STATE_PENDING: *val = gic_peek_irq(d, GIC_DIST_PENDING_SET); break; case IRQCHIP_STATE_ACTIVE: *val = gic_peek_irq(d, GIC_DIST_ACTIVE_SET); break; case IRQCHIP_STATE_MASKED: *val = !gic_peek_irq(d, GIC_DIST_ENABLE_SET); break; default: return -EINVAL; } return 0; } static int gic_set_type(struct irq_data *d, unsigned int type) { void __iomem *base = gic_dist_base(d); unsigned int gicirq = gic_irq(d); int ret; /* Interrupt configuration for SGIs can't be changed */ if (gicirq < 16) return -EINVAL; /* SPIs have restrictions on the supported types */ if (gicirq >= 32 && type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING) return -EINVAL; ret = gic_configure_irq(gicirq, type, base + GIC_DIST_CONFIG, NULL); if (ret && gicirq < 32) { /* Misconfigured PPIs are usually not fatal */ pr_warn("GIC: PPI%d is secure or misconfigured\n", gicirq - 16); ret = 0; } return ret; } static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu) { /* Only interrupts on the primary GIC can be forwarded to a vcpu. */ if (cascading_gic_irq(d)) return -EINVAL; if (vcpu) irqd_set_forwarded_to_vcpu(d); else irqd_clr_forwarded_to_vcpu(d); return 0; } #ifdef CONFIG_SMP static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val, bool force) { void __iomem *reg = gic_dist_base(d) + GIC_DIST_TARGET + gic_irq(d); unsigned int cpu; if (!force) cpu = cpumask_any_and(mask_val, cpu_online_mask); else cpu = cpumask_first(mask_val); if (cpu >= NR_GIC_CPU_IF || cpu >= nr_cpu_ids) return -EINVAL; writeb_relaxed(gic_cpu_map[cpu], reg); irq_data_update_effective_affinity(d, cpumask_of(cpu)); return IRQ_SET_MASK_OK_DONE; } #endif static int gic_retrigger(struct irq_data *data) { return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true); } static void __exception_irq_entry gic_handle_irq(struct pt_regs *regs) { u32 irqstat, irqnr; struct gic_chip_data *gic = &gic_data[0]; void __iomem *cpu_base = gic_data_cpu_base(gic); do { irqstat = readl_relaxed(cpu_base + GIC_CPU_INTACK); irqnr = irqstat & GICC_IAR_INT_ID_MASK; if (likely(irqnr > 15 && irqnr < 1020)) { if (static_branch_likely(&supports_deactivate_key)) writel_relaxed(irqstat, cpu_base + GIC_CPU_EOI); isb(); handle_domain_irq(gic->domain, irqnr, regs); continue; } if (irqnr < 16) { writel_relaxed(irqstat, cpu_base + GIC_CPU_EOI); if (static_branch_likely(&supports_deactivate_key)) writel_relaxed(irqstat, cpu_base + GIC_CPU_DEACTIVATE); #ifdef CONFIG_SMP /* * Ensure any shared data written by the CPU sending * the IPI is read after we've read the ACK register * on the GIC. * * Pairs with the write barrier in gic_raise_softirq */ smp_rmb(); handle_IPI(irqnr, regs); #endif continue; } break; } while (1); } static void gic_handle_cascade_irq(struct irq_desc *desc) { struct gic_chip_data *chip_data = irq_desc_get_handler_data(desc); struct irq_chip *chip = irq_desc_get_chip(desc); unsigned int cascade_irq, gic_irq; unsigned long status; chained_irq_enter(chip, desc); status = readl_relaxed(gic_data_cpu_base(chip_data) + GIC_CPU_INTACK); gic_irq = (status & GICC_IAR_INT_ID_MASK); if (gic_irq == GICC_INT_SPURIOUS) goto out; cascade_irq = irq_find_mapping(chip_data->domain, gic_irq); if (unlikely(gic_irq < 32 || gic_irq > 1020)) { handle_bad_irq(desc); } else { isb(); generic_handle_irq(cascade_irq); } out: chained_irq_exit(chip, desc); } static const struct irq_chip gic_chip = { .irq_mask = gic_mask_irq, .irq_unmask = gic_unmask_irq, .irq_eoi = gic_eoi_irq, .irq_set_type = gic_set_type, .irq_retrigger = gic_retrigger, .irq_get_irqchip_state = gic_irq_get_irqchip_state, .irq_set_irqchip_state = gic_irq_set_irqchip_state, .flags = IRQCHIP_SET_TYPE_MASKED | IRQCHIP_SKIP_SET_WAKE | IRQCHIP_MASK_ON_SUSPEND, }; void __init gic_cascade_irq(unsigned int gic_nr, unsigned int irq) { BUG_ON(gic_nr >= CONFIG_ARM_GIC_MAX_NR); irq_set_chained_handler_and_data(irq, gic_handle_cascade_irq, &gic_data[gic_nr]); } static u8 gic_get_cpumask(struct gic_chip_data *gic) { void __iomem *base = gic_data_dist_base(gic); u32 mask, i; for (i = mask = 0; i < 32; i += 4) { mask = readl_relaxed(base + GIC_DIST_TARGET + i); mask |= mask >> 16; mask |= mask >> 8; if (mask) break; } if (!mask && num_possible_cpus() > 1) pr_crit("GIC CPU mask not found - kernel will fail to boot.\n"); return mask; } static bool gic_check_gicv2(void __iomem *base) { u32 val = readl_relaxed(base + GIC_CPU_IDENT); return (val & 0xff0fff) == 0x02043B; } static void gic_cpu_if_up(struct gic_chip_data *gic) { void __iomem *cpu_base = gic_data_cpu_base(gic); u32 bypass = 0; u32 mode = 0; int i; if (gic == &gic_data[0] && static_branch_likely(&supports_deactivate_key)) mode = GIC_CPU_CTRL_EOImodeNS; if (gic_check_gicv2(cpu_base)) for (i = 0; i < 4; i++) writel_relaxed(0, cpu_base + GIC_CPU_ACTIVEPRIO + i * 4); /* * Preserve bypass disable bits to be written back later */ bypass = readl(cpu_base + GIC_CPU_CTRL); bypass &= GICC_DIS_BYPASS_MASK; writel_relaxed(bypass | mode | GICC_ENABLE, cpu_base + GIC_CPU_CTRL); } static void gic_dist_init(struct gic_chip_data *gic) { unsigned int i; u32 cpumask; unsigned int gic_irqs = gic->gic_irqs; void __iomem *base = gic_data_dist_base(gic); writel_relaxed(GICD_DISABLE, base + GIC_DIST_CTRL); /* * Set all global interrupts to this CPU only. */ cpumask = gic_get_cpumask(gic); cpumask |= cpumask << 8; cpumask |= cpumask << 16; for (i = 32; i < gic_irqs; i += 4) writel_relaxed(cpumask, base + GIC_DIST_TARGET + i * 4 / 4); gic_dist_config(base, gic_irqs, NULL); writel_relaxed(GICD_ENABLE, base + GIC_DIST_CTRL); } static int gic_cpu_init(struct gic_chip_data *gic) { void __iomem *dist_base = gic_data_dist_base(gic); void __iomem *base = gic_data_cpu_base(gic); unsigned int cpu_mask, cpu = smp_processor_id(); int i; /* * Setting up the CPU map is only relevant for the primary GIC * because any nested/secondary GICs do not directly interface * with the CPU(s). */ if (gic == &gic_data[0]) { /* * Get what the GIC says our CPU mask is. */ if (WARN_ON(cpu >= NR_GIC_CPU_IF)) return -EINVAL; gic_check_cpu_features(); cpu_mask = gic_get_cpumask(gic); gic_cpu_map[cpu] = cpu_mask; /* * Clear our mask from the other map entries in case they're * still undefined. */ for (i = 0; i < NR_GIC_CPU_IF; i++) if (i != cpu) gic_cpu_map[i] &= ~cpu_mask; } gic_cpu_config(dist_base, 32, NULL); writel_relaxed(GICC_INT_PRI_THRESHOLD, base + GIC_CPU_PRIMASK); gic_cpu_if_up(gic); return 0; } int gic_cpu_if_down(unsigned int gic_nr) { void __iomem *cpu_base; u32 val = 0; if (gic_nr >= CONFIG_ARM_GIC_MAX_NR) return -EINVAL; cpu_base = gic_data_cpu_base(&gic_data[gic_nr]); val = readl(cpu_base + GIC_CPU_CTRL); val &= ~GICC_ENABLE; writel_relaxed(val, cpu_base + GIC_CPU_CTRL); return 0; } #if defined(CONFIG_CPU_PM) || defined(CONFIG_ARM_GIC_PM) /* * Saves the GIC distributor registers during suspend or idle. Must be called * with interrupts disabled but before powering down the GIC. After calling * this function, no interrupts will be delivered by the GIC, and another * platform-specific wakeup source must be enabled. */ void gic_dist_save(struct gic_chip_data *gic) { unsigned int gic_irqs; void __iomem *dist_base; int i; if (WARN_ON(!gic)) return; gic_irqs = gic->gic_irqs; dist_base = gic_data_dist_base(gic); if (!dist_base) return; for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++) gic->saved_spi_conf[i] = readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4); for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++) gic->saved_spi_target[i] = readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4); for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++) gic->saved_spi_enable[i] = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4); for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++) gic->saved_spi_active[i] = readl_relaxed(dist_base + GIC_DIST_ACTIVE_SET + i * 4); } /* * Restores the GIC distributor registers during resume or when coming out of * idle. Must be called before enabling interrupts. If a level interrupt * that occurred while the GIC was suspended is still present, it will be * handled normally, but any edge interrupts that occurred will not be seen by * the GIC and need to be handled by the platform-specific wakeup source. */ void gic_dist_restore(struct gic_chip_data *gic) { unsigned int gic_irqs; unsigned int i; void __iomem *dist_base; if (WARN_ON(!gic)) return; gic_irqs = gic->gic_irqs; dist_base = gic_data_dist_base(gic); if (!dist_base) return; writel_relaxed(GICD_DISABLE, dist_base + GIC_DIST_CTRL); for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++) writel_relaxed(gic->saved_spi_conf[i], dist_base + GIC_DIST_CONFIG + i * 4); for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++) writel_relaxed(GICD_INT_DEF_PRI_X4, dist_base + GIC_DIST_PRI + i * 4); for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++) writel_relaxed(gic->saved_spi_target[i], dist_base + GIC_DIST_TARGET + i * 4); for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++) { writel_relaxed(GICD_INT_EN_CLR_X32, dist_base + GIC_DIST_ENABLE_CLEAR + i * 4); writel_relaxed(gic->saved_spi_enable[i], dist_base + GIC_DIST_ENABLE_SET + i * 4); } for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++) { writel_relaxed(GICD_INT_EN_CLR_X32, dist_base + GIC_DIST_ACTIVE_CLEAR + i * 4); writel_relaxed(gic->saved_spi_active[i], dist_base + GIC_DIST_ACTIVE_SET + i * 4); } writel_relaxed(GICD_ENABLE, dist_base + GIC_DIST_CTRL); } void gic_cpu_save(struct gic_chip_data *gic) { int i; u32 *ptr; void __iomem *dist_base; void __iomem *cpu_base; if (WARN_ON(!gic)) return; dist_base = gic_data_dist_base(gic); cpu_base = gic_data_cpu_base(gic); if (!dist_base || !cpu_base) return; ptr = raw_cpu_ptr(gic->saved_ppi_enable); for (i = 0; i < DIV_ROUND_UP(32, 32); i++) ptr[i] = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4); ptr = raw_cpu_ptr(gic->saved_ppi_active); for (i = 0; i < DIV_ROUND_UP(32, 32); i++) ptr[i] = readl_relaxed(dist_base + GIC_DIST_ACTIVE_SET + i * 4); ptr = raw_cpu_ptr(gic->saved_ppi_conf); for (i = 0; i < DIV_ROUND_UP(32, 16); i++) ptr[i] = readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4); } void gic_cpu_restore(struct gic_chip_data *gic) { int i; u32 *ptr; void __iomem *dist_base; void __iomem *cpu_base; if (WARN_ON(!gic)) return; dist_base = gic_data_dist_base(gic); cpu_base = gic_data_cpu_base(gic); if (!dist_base || !cpu_base) return; ptr = raw_cpu_ptr(gic->saved_ppi_enable); for (i = 0; i < DIV_ROUND_UP(32, 32); i++) { writel_relaxed(GICD_INT_EN_CLR_X32, dist_base + GIC_DIST_ENABLE_CLEAR + i * 4); writel_relaxed(ptr[i], dist_base + GIC_DIST_ENABLE_SET + i * 4); } ptr = raw_cpu_ptr(gic->saved_ppi_active); for (i = 0; i < DIV_ROUND_UP(32, 32); i++) { writel_relaxed(GICD_INT_EN_CLR_X32, dist_base + GIC_DIST_ACTIVE_CLEAR + i * 4); writel_relaxed(ptr[i], dist_base + GIC_DIST_ACTIVE_SET + i * 4); } ptr = raw_cpu_ptr(gic->saved_ppi_conf); for (i = 0; i < DIV_ROUND_UP(32, 16); i++) writel_relaxed(ptr[i], dist_base + GIC_DIST_CONFIG + i * 4); for (i = 0; i < DIV_ROUND_UP(32, 4); i++) writel_relaxed(GICD_INT_DEF_PRI_X4, dist_base + GIC_DIST_PRI + i * 4); writel_relaxed(GICC_INT_PRI_THRESHOLD, cpu_base + GIC_CPU_PRIMASK); gic_cpu_if_up(gic); } static int gic_notifier(struct notifier_block *self, unsigned long cmd, void *v) { int i; for (i = 0; i < CONFIG_ARM_GIC_MAX_NR; i++) { #ifdef CONFIG_GIC_NON_BANKED /* Skip over unused GICs */ if (!gic_data[i].get_base) continue; #endif switch (cmd) { case CPU_PM_ENTER: gic_cpu_save(&gic_data[i]); break; case CPU_PM_ENTER_FAILED: case CPU_PM_EXIT: gic_cpu_restore(&gic_data[i]); break; case CPU_CLUSTER_PM_ENTER: gic_dist_save(&gic_data[i]); break; case CPU_CLUSTER_PM_ENTER_FAILED: case CPU_CLUSTER_PM_EXIT: gic_dist_restore(&gic_data[i]); break; } } return NOTIFY_OK; } static struct notifier_block gic_notifier_block = { .notifier_call = gic_notifier, }; static int gic_pm_init(struct gic_chip_data *gic) { gic->saved_ppi_enable = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4, sizeof(u32)); if (WARN_ON(!gic->saved_ppi_enable)) return -ENOMEM; gic->saved_ppi_active = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4, sizeof(u32)); if (WARN_ON(!gic->saved_ppi_active)) goto free_ppi_enable; gic->saved_ppi_conf = __alloc_percpu(DIV_ROUND_UP(32, 16) * 4, sizeof(u32)); if (WARN_ON(!gic->saved_ppi_conf)) goto free_ppi_active; if (gic == &gic_data[0]) cpu_pm_register_notifier(&gic_notifier_block); return 0; free_ppi_active: free_percpu(gic->saved_ppi_active); free_ppi_enable: free_percpu(gic->saved_ppi_enable); return -ENOMEM; } #else static int gic_pm_init(struct gic_chip_data *gic) { return 0; } #endif #ifdef CONFIG_SMP static void gic_raise_softirq(const struct cpumask *mask, unsigned int irq) { int cpu; unsigned long flags, map = 0; if (unlikely(nr_cpu_ids == 1)) { /* Only one CPU? let's do a self-IPI... */ writel_relaxed(2 << 24 | irq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT); return; } gic_lock_irqsave(flags); /* Convert our logical CPU mask into a physical one. */ for_each_cpu(cpu, mask) map |= gic_cpu_map[cpu]; /* * Ensure that stores to Normal memory are visible to the * other CPUs before they observe us issuing the IPI. */ dmb(ishst); /* this always happens on GIC0 */ writel_relaxed(map << 16 | irq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT); gic_unlock_irqrestore(flags); } #endif #ifdef CONFIG_BL_SWITCHER /* * gic_send_sgi - send a SGI directly to given CPU interface number * * cpu_id: the ID for the destination CPU interface * irq: the IPI number to send a SGI for */ void gic_send_sgi(unsigned int cpu_id, unsigned int irq) { BUG_ON(cpu_id >= NR_GIC_CPU_IF); cpu_id = 1 << cpu_id; /* this always happens on GIC0 */ writel_relaxed((cpu_id << 16) | irq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT); } /* * gic_get_cpu_id - get the CPU interface ID for the specified CPU * * @cpu: the logical CPU number to get the GIC ID for. * * Return the CPU interface ID for the given logical CPU number, * or -1 if the CPU number is too large or the interface ID is * unknown (more than one bit set). */ int gic_get_cpu_id(unsigned int cpu) { unsigned int cpu_bit; if (cpu >= NR_GIC_CPU_IF) return -1; cpu_bit = gic_cpu_map[cpu]; if (cpu_bit & (cpu_bit - 1)) return -1; return __ffs(cpu_bit); } /* * gic_migrate_target - migrate IRQs to another CPU interface * * @new_cpu_id: the CPU target ID to migrate IRQs to * * Migrate all peripheral interrupts with a target matching the current CPU * to the interface corresponding to @new_cpu_id. The CPU interface mapping * is also updated. Targets to other CPU interfaces are unchanged. * This must be called with IRQs locally disabled. */ void gic_migrate_target(unsigned int new_cpu_id) { unsigned int cur_cpu_id, gic_irqs, gic_nr = 0; void __iomem *dist_base; int i, ror_val, cpu = smp_processor_id(); u32 val, cur_target_mask, active_mask; BUG_ON(gic_nr >= CONFIG_ARM_GIC_MAX_NR); dist_base = gic_data_dist_base(&gic_data[gic_nr]); if (!dist_base) return; gic_irqs = gic_data[gic_nr].gic_irqs; cur_cpu_id = __ffs(gic_cpu_map[cpu]); cur_target_mask = 0x01010101 << cur_cpu_id; ror_val = (cur_cpu_id - new_cpu_id) & 31; gic_lock(); /* Update the target interface for this logical CPU */ gic_cpu_map[cpu] = 1 << new_cpu_id; /* * Find all the peripheral interrupts targeting the current * CPU interface and migrate them to the new CPU interface. * We skip DIST_TARGET 0 to 7 as they are read-only. */ for (i = 8; i < DIV_ROUND_UP(gic_irqs, 4); i++) { val = readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4); active_mask = val & cur_target_mask; if (active_mask) { val &= ~active_mask; val |= ror32(active_mask, ror_val); writel_relaxed(val, dist_base + GIC_DIST_TARGET + i*4); } } gic_unlock(); /* * Now let's migrate and clear any potential SGIs that might be * pending for us (cur_cpu_id). Since GIC_DIST_SGI_PENDING_SET * is a banked register, we can only forward the SGI using * GIC_DIST_SOFTINT. The original SGI source is lost but Linux * doesn't use that information anyway. * * For the same reason we do not adjust SGI source information * for previously sent SGIs by us to other CPUs either. */ for (i = 0; i < 16; i += 4) { int j; val = readl_relaxed(dist_base + GIC_DIST_SGI_PENDING_SET + i); if (!val) continue; writel_relaxed(val, dist_base + GIC_DIST_SGI_PENDING_CLEAR + i); for (j = i; j < i + 4; j++) { if (val & 0xff) writel_relaxed((1 << (new_cpu_id + 16)) | j, dist_base + GIC_DIST_SOFTINT); val >>= 8; } } } /* * gic_get_sgir_physaddr - get the physical address for the SGI register * * REturn the physical address of the SGI register to be used * by some early assembly code when the kernel is not yet available. */ static unsigned long gic_dist_physaddr; unsigned long gic_get_sgir_physaddr(void) { if (!gic_dist_physaddr) return 0; return gic_dist_physaddr + GIC_DIST_SOFTINT; } static void __init gic_init_physaddr(struct device_node *node) { struct resource res; if (of_address_to_resource(node, 0, &res) == 0) { gic_dist_physaddr = res.start; pr_info("GIC physical location is %#lx\n", gic_dist_physaddr); } } #else #define gic_init_physaddr(node) do { } while (0) #endif static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq, irq_hw_number_t hw) { struct gic_chip_data *gic = d->host_data; struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq)); if (hw < 32) { irq_set_percpu_devid(irq); irq_domain_set_info(d, irq, hw, &gic->chip, d->host_data, handle_percpu_devid_irq, NULL, NULL); } else { irq_domain_set_info(d, irq, hw, &gic->chip, d->host_data, handle_fasteoi_irq, NULL, NULL); irq_set_probe(irq); irqd_set_single_target(irqd); } /* Prevents SW retriggers which mess up the ACK/EOI ordering */ irqd_set_handle_enforce_irqctx(irqd); return 0; } static void gic_irq_domain_unmap(struct irq_domain *d, unsigned int irq) { } static int gic_irq_domain_translate(struct irq_domain *d, struct irq_fwspec *fwspec, unsigned long *hwirq, unsigned int *type) { if (is_of_node(fwspec->fwnode)) { if (fwspec->param_count < 3) return -EINVAL; /* Get the interrupt number and add 16 to skip over SGIs */ *hwirq = fwspec->param[1] + 16; /* * For SPIs, we need to add 16 more to get the GIC irq * ID number */ if (!fwspec->param[0]) *hwirq += 16; *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK; /* Make it clear that broken DTs are... broken */ WARN_ON(*type == IRQ_TYPE_NONE); return 0; } if (is_fwnode_irqchip(fwspec->fwnode)) { if(fwspec->param_count != 2) return -EINVAL; *hwirq = fwspec->param[0]; *type = fwspec->param[1]; WARN_ON(*type == IRQ_TYPE_NONE); return 0; } return -EINVAL; } static int gic_starting_cpu(unsigned int cpu) { gic_cpu_init(&gic_data[0]); return 0; } static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs, void *arg) { int i, ret; irq_hw_number_t hwirq; unsigned int type = IRQ_TYPE_NONE; struct irq_fwspec *fwspec = arg; ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type); if (ret) return ret; for (i = 0; i < nr_irqs; i++) { ret = gic_irq_domain_map(domain, virq + i, hwirq + i); if (ret) return ret; } return 0; } static const struct irq_domain_ops gic_irq_domain_hierarchy_ops = { .translate = gic_irq_domain_translate, .alloc = gic_irq_domain_alloc, .free = irq_domain_free_irqs_top, }; static const struct irq_domain_ops gic_irq_domain_ops = { .map = gic_irq_domain_map, .unmap = gic_irq_domain_unmap, }; static void gic_init_chip(struct gic_chip_data *gic, struct device *dev, const char *name, bool use_eoimode1) { /* Initialize irq_chip */ gic->chip = gic_chip; gic->chip.name = name; gic->chip.parent_device = dev; if (use_eoimode1) { gic->chip.irq_mask = gic_eoimode1_mask_irq; gic->chip.irq_eoi = gic_eoimode1_eoi_irq; gic->chip.irq_set_vcpu_affinity = gic_irq_set_vcpu_affinity; } #ifdef CONFIG_SMP if (gic == &gic_data[0]) gic->chip.irq_set_affinity = gic_set_affinity; #endif } static int gic_init_bases(struct gic_chip_data *gic, struct fwnode_handle *handle) { int gic_irqs, ret; if (IS_ENABLED(CONFIG_GIC_NON_BANKED) && gic->percpu_offset) { /* Frankein-GIC without banked registers... */ unsigned int cpu; gic->dist_base.percpu_base = alloc_percpu(void __iomem *); gic->cpu_base.percpu_base = alloc_percpu(void __iomem *); if (WARN_ON(!gic->dist_base.percpu_base || !gic->cpu_base.percpu_base)) { ret = -ENOMEM; goto error; } for_each_possible_cpu(cpu) { u32 mpidr = cpu_logical_map(cpu); u32 core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0); unsigned long offset = gic->percpu_offset * core_id; *per_cpu_ptr(gic->dist_base.percpu_base, cpu) = gic->raw_dist_base + offset; *per_cpu_ptr(gic->cpu_base.percpu_base, cpu) = gic->raw_cpu_base + offset; } gic_set_base_accessor(gic, gic_get_percpu_base); } else { /* Normal, sane GIC... */ WARN(gic->percpu_offset, "GIC_NON_BANKED not enabled, ignoring %08x offset!", gic->percpu_offset); gic->dist_base.common_base = gic->raw_dist_base; gic->cpu_base.common_base = gic->raw_cpu_base; gic_set_base_accessor(gic, gic_get_common_base); } /* * Find out how many interrupts are supported. * The GIC only supports up to 1020 interrupt sources. */ gic_irqs = readl_relaxed(gic_data_dist_base(gic) + GIC_DIST_CTR) & 0x1f; gic_irqs = (gic_irqs + 1) * 32; if (gic_irqs > 1020) gic_irqs = 1020; gic->gic_irqs = gic_irqs; if (handle) { /* DT/ACPI */ gic->domain = irq_domain_create_linear(handle, gic_irqs, &gic_irq_domain_hierarchy_ops, gic); } else { /* Legacy support */ /* * For primary GICs, skip over SGIs. * No secondary GIC support whatsoever. */ int irq_base; gic_irqs -= 16; /* calculate # of irqs to allocate */ irq_base = irq_alloc_descs(16, 16, gic_irqs, numa_node_id()); if (irq_base < 0) { WARN(1, "Cannot allocate irq_descs @ IRQ16, assuming pre-allocated\n"); irq_base = 16; } gic->domain = irq_domain_add_legacy(NULL, gic_irqs, irq_base, 16, &gic_irq_domain_ops, gic); } if (WARN_ON(!gic->domain)) { ret = -ENODEV; goto error; } gic_dist_init(gic); ret = gic_cpu_init(gic); if (ret) goto error; ret = gic_pm_init(gic); if (ret) goto error; return 0; error: if (IS_ENABLED(CONFIG_GIC_NON_BANKED) && gic->percpu_offset) { free_percpu(gic->dist_base.percpu_base); free_percpu(gic->cpu_base.percpu_base); } return ret; } static int __init __gic_init_bases(struct gic_chip_data *gic, struct fwnode_handle *handle) { char *name; int i, ret; if (WARN_ON(!gic || gic->domain)) return -EINVAL; if (gic == &gic_data[0]) { /* * Initialize the CPU interface map to all CPUs. * It will be refined as each CPU probes its ID. * This is only necessary for the primary GIC. */ for (i = 0; i < NR_GIC_CPU_IF; i++) gic_cpu_map[i] = 0xff; #ifdef CONFIG_SMP set_smp_cross_call(gic_raise_softirq); #endif cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING, "irqchip/arm/gic:starting", gic_starting_cpu, NULL); set_handle_irq(gic_handle_irq); if (static_branch_likely(&supports_deactivate_key)) pr_info("GIC: Using split EOI/Deactivate mode\n"); } if (static_branch_likely(&supports_deactivate_key) && gic == &gic_data[0]) { name = kasprintf(GFP_KERNEL, "GICv2"); gic_init_chip(gic, NULL, name, true); } else { name = kasprintf(GFP_KERNEL, "GIC-%d", (int)(gic-&gic_data[0])); gic_init_chip(gic, NULL, name, false); } ret = gic_init_bases(gic, handle); if (ret) kfree(name); return ret; } void __init gic_init(void __iomem *dist_base, void __iomem *cpu_base) { struct gic_chip_data *gic; /* * Non-DT/ACPI systems won't run a hypervisor, so let's not * bother with these... */ static_branch_disable(&supports_deactivate_key); gic = &gic_data[0]; gic->raw_dist_base = dist_base; gic->raw_cpu_base = cpu_base; __gic_init_bases(gic, NULL); } static void gic_teardown(struct gic_chip_data *gic) { if (WARN_ON(!gic)) return; if (gic->raw_dist_base) iounmap(gic->raw_dist_base); if (gic->raw_cpu_base) iounmap(gic->raw_cpu_base); } #ifdef CONFIG_OF static int gic_cnt __initdata; static bool gicv2_force_probe; static int __init gicv2_force_probe_cfg(char *buf) { return strtobool(buf, &gicv2_force_probe); } early_param("irqchip.gicv2_force_probe", gicv2_force_probe_cfg); static bool gic_check_eoimode(struct device_node *node, void __iomem **base) { struct resource cpuif_res; of_address_to_resource(node, 1, &cpuif_res); if (!is_hyp_mode_available()) return false; if (resource_size(&cpuif_res) < SZ_8K) { void __iomem *alt; /* * Check for a stupid firmware that only exposes the * first page of a GICv2. */ if (!gic_check_gicv2(*base)) return false; if (!gicv2_force_probe) { pr_warn("GIC: GICv2 detected, but range too small and irqchip.gicv2_force_probe not set\n"); return false; } alt = ioremap(cpuif_res.start, SZ_8K); if (!alt) return false; if (!gic_check_gicv2(alt + SZ_4K)) { /* * The first page was that of a GICv2, and * the second was *something*. Let's trust it * to be a GICv2, and update the mapping. */ pr_warn("GIC: GICv2 at %pa, but range is too small (broken DT?), assuming 8kB\n", &cpuif_res.start); iounmap(*base); *base = alt; return true; } /* * We detected *two* initial GICv2 pages in a * row. Could be a GICv2 aliased over two 64kB * pages. Update the resource, map the iospace, and * pray. */ iounmap(alt); alt = ioremap(cpuif_res.start, SZ_128K); if (!alt) return false; pr_warn("GIC: Aliased GICv2 at %pa, trying to find the canonical range over 128kB\n", &cpuif_res.start); cpuif_res.end = cpuif_res.start + SZ_128K -1; iounmap(*base); *base = alt; } if (resource_size(&cpuif_res) == SZ_128K) { /* * Verify that we have the first 4kB of a GICv2 * aliased over the first 64kB by checking the * GICC_IIDR register on both ends. */ if (!gic_check_gicv2(*base) || !gic_check_gicv2(*base + 0xf000)) return false; /* * Move the base up by 60kB, so that we have a 8kB * contiguous region, which allows us to use GICC_DIR * at its normal offset. Please pass me that bucket. */ *base += 0xf000; cpuif_res.start += 0xf000; pr_warn("GIC: Adjusting CPU interface base to %pa\n", &cpuif_res.start); } return true; } static int gic_of_setup(struct gic_chip_data *gic, struct device_node *node) { if (!gic || !node) return -EINVAL; gic->raw_dist_base = of_iomap(node, 0); if (WARN(!gic->raw_dist_base, "unable to map gic dist registers\n")) goto error; gic->raw_cpu_base = of_iomap(node, 1); if (WARN(!gic->raw_cpu_base, "unable to map gic cpu registers\n")) goto error; if (of_property_read_u32(node, "cpu-offset", &gic->percpu_offset)) gic->percpu_offset = 0; return 0; error: gic_teardown(gic); return -ENOMEM; } int gic_of_init_child(struct device *dev, struct gic_chip_data **gic, int irq) { int ret; if (!dev || !dev->of_node || !gic || !irq) return -EINVAL; *gic = devm_kzalloc(dev, sizeof(**gic), GFP_KERNEL); if (!*gic) return -ENOMEM; gic_init_chip(*gic, dev, dev->of_node->name, false); ret = gic_of_setup(*gic, dev->of_node); if (ret) return ret; ret = gic_init_bases(*gic, &dev->of_node->fwnode); if (ret) { gic_teardown(*gic); return ret; } irq_set_chained_handler_and_data(irq, gic_handle_cascade_irq, *gic); return 0; } static void __init gic_of_setup_kvm_info(struct device_node *node) { int ret; struct resource *vctrl_res = &gic_v2_kvm_info.vctrl; struct resource *vcpu_res = &gic_v2_kvm_info.vcpu; gic_v2_kvm_info.type = GIC_V2; gic_v2_kvm_info.maint_irq = irq_of_parse_and_map(node, 0); if (!gic_v2_kvm_info.maint_irq) return; ret = of_address_to_resource(node, 2, vctrl_res); if (ret) return; ret = of_address_to_resource(node, 3, vcpu_res); if (ret) return; if (static_branch_likely(&supports_deactivate_key)) gic_set_kvm_info(&gic_v2_kvm_info); } int __init gic_of_init(struct device_node *node, struct device_node *parent) { struct gic_chip_data *gic; int irq, ret; if (WARN_ON(!node)) return -ENODEV; if (WARN_ON(gic_cnt >= CONFIG_ARM_GIC_MAX_NR)) return -EINVAL; gic = &gic_data[gic_cnt]; ret = gic_of_setup(gic, node); if (ret) return ret; /* * Disable split EOI/Deactivate if either HYP is not available * or the CPU interface is too small. */ if (gic_cnt == 0 && !gic_check_eoimode(node, &gic->raw_cpu_base)) static_branch_disable(&supports_deactivate_key); ret = __gic_init_bases(gic, &node->fwnode); if (ret) { gic_teardown(gic); return ret; } if (!gic_cnt) { gic_init_physaddr(node); gic_of_setup_kvm_info(node); } if (parent) { irq = irq_of_parse_and_map(node, 0); gic_cascade_irq(gic_cnt, irq); } if (IS_ENABLED(CONFIG_ARM_GIC_V2M)) gicv2m_init(&node->fwnode, gic_data[gic_cnt].domain); gic_cnt++; return 0; } IRQCHIP_DECLARE(gic_400, "arm,gic-400", gic_of_init); IRQCHIP_DECLARE(arm11mp_gic, "arm,arm11mp-gic", gic_of_init); IRQCHIP_DECLARE(arm1176jzf_dc_gic, "arm,arm1176jzf-devchip-gic", gic_of_init); IRQCHIP_DECLARE(cortex_a15_gic, "arm,cortex-a15-gic", gic_of_init); IRQCHIP_DECLARE(cortex_a9_gic, "arm,cortex-a9-gic", gic_of_init); IRQCHIP_DECLARE(cortex_a7_gic, "arm,cortex-a7-gic", gic_of_init); IRQCHIP_DECLARE(msm_8660_qgic, "qcom,msm-8660-qgic", gic_of_init); IRQCHIP_DECLARE(msm_qgic2, "qcom,msm-qgic2", gic_of_init); IRQCHIP_DECLARE(pl390, "arm,pl390", gic_of_init); #else int gic_of_init_child(struct device *dev, struct gic_chip_data **gic, int irq) { return -ENOTSUPP; } #endif #ifdef CONFIG_ACPI static struct { phys_addr_t cpu_phys_base; u32 maint_irq; int maint_irq_mode; phys_addr_t vctrl_base; phys_addr_t vcpu_base; } acpi_data __initdata; static int __init gic_acpi_parse_madt_cpu(union acpi_subtable_headers *header, const unsigned long end) { struct acpi_madt_generic_interrupt *processor; phys_addr_t gic_cpu_base; static int cpu_base_assigned; processor = (struct acpi_madt_generic_interrupt *)header; if (BAD_MADT_GICC_ENTRY(processor, end)) return -EINVAL; /* * There is no support for non-banked GICv1/2 register in ACPI spec. * All CPU interface addresses have to be the same. */ gic_cpu_base = processor->base_address; if (cpu_base_assigned && gic_cpu_base != acpi_data.cpu_phys_base) return -EINVAL; acpi_data.cpu_phys_base = gic_cpu_base; acpi_data.maint_irq = processor->vgic_interrupt; acpi_data.maint_irq_mode = (processor->flags & ACPI_MADT_VGIC_IRQ_MODE) ? ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE; acpi_data.vctrl_base = processor->gich_base_address; acpi_data.vcpu_base = processor->gicv_base_address; cpu_base_assigned = 1; return 0; } /* The things you have to do to just *count* something... */ static int __init acpi_dummy_func(union acpi_subtable_headers *header, const unsigned long end) { return 0; } static bool __init acpi_gic_redist_is_present(void) { return acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR, acpi_dummy_func, 0) > 0; } static bool __init gic_validate_dist(struct acpi_subtable_header *header, struct acpi_probe_entry *ape) { struct acpi_madt_generic_distributor *dist; dist = (struct acpi_madt_generic_distributor *)header; return (dist->version == ape->driver_data && (dist->version != ACPI_MADT_GIC_VERSION_NONE || !acpi_gic_redist_is_present())); } #define ACPI_GICV2_DIST_MEM_SIZE (SZ_4K) #define ACPI_GIC_CPU_IF_MEM_SIZE (SZ_8K) #define ACPI_GICV2_VCTRL_MEM_SIZE (SZ_4K) #define ACPI_GICV2_VCPU_MEM_SIZE (SZ_8K) static void __init gic_acpi_setup_kvm_info(void) { int irq; struct resource *vctrl_res = &gic_v2_kvm_info.vctrl; struct resource *vcpu_res = &gic_v2_kvm_info.vcpu; gic_v2_kvm_info.type = GIC_V2; if (!acpi_data.vctrl_base) return; vctrl_res->flags = IORESOURCE_MEM; vctrl_res->start = acpi_data.vctrl_base; vctrl_res->end = vctrl_res->start + ACPI_GICV2_VCTRL_MEM_SIZE - 1; if (!acpi_data.vcpu_base) return; vcpu_res->flags = IORESOURCE_MEM; vcpu_res->start = acpi_data.vcpu_base; vcpu_res->end = vcpu_res->start + ACPI_GICV2_VCPU_MEM_SIZE - 1; irq = acpi_register_gsi(NULL, acpi_data.maint_irq, acpi_data.maint_irq_mode, ACPI_ACTIVE_HIGH); if (irq <= 0) return; gic_v2_kvm_info.maint_irq = irq; gic_set_kvm_info(&gic_v2_kvm_info); } static int __init gic_v2_acpi_init(union acpi_subtable_headers *header, const unsigned long end) { struct acpi_madt_generic_distributor *dist; struct fwnode_handle *domain_handle; struct gic_chip_data *gic = &gic_data[0]; int count, ret; /* Collect CPU base addresses */ count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, gic_acpi_parse_madt_cpu, 0); if (count <= 0) { pr_err("No valid GICC entries exist\n"); return -EINVAL; } gic->raw_cpu_base = ioremap(acpi_data.cpu_phys_base, ACPI_GIC_CPU_IF_MEM_SIZE); if (!gic->raw_cpu_base) { pr_err("Unable to map GICC registers\n"); return -ENOMEM; } dist = (struct acpi_madt_generic_distributor *)header; gic->raw_dist_base = ioremap(dist->base_address, ACPI_GICV2_DIST_MEM_SIZE); if (!gic->raw_dist_base) { pr_err("Unable to map GICD registers\n"); gic_teardown(gic); return -ENOMEM; } /* * Disable split EOI/Deactivate if HYP is not available. ACPI * guarantees that we'll always have a GICv2, so the CPU * interface will always be the right size. */ if (!is_hyp_mode_available()) static_branch_disable(&supports_deactivate_key); /* * Initialize GIC instance zero (no multi-GIC support). */ domain_handle = irq_domain_alloc_fwnode(&dist->base_address); if (!domain_handle) { pr_err("Unable to allocate domain handle\n"); gic_teardown(gic); return -ENOMEM; } ret = __gic_init_bases(gic, domain_handle); if (ret) { pr_err("Failed to initialise GIC\n"); irq_domain_free_fwnode(domain_handle); gic_teardown(gic); return ret; } acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, domain_handle); if (IS_ENABLED(CONFIG_ARM_GIC_V2M)) gicv2m_init(NULL, gic_data[0].domain); if (static_branch_likely(&supports_deactivate_key)) gic_acpi_setup_kvm_info(); return 0; } IRQCHIP_ACPI_DECLARE(gic_v2, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR, gic_validate_dist, ACPI_MADT_GIC_VERSION_V2, gic_v2_acpi_init); IRQCHIP_ACPI_DECLARE(gic_v2_maybe, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR, gic_validate_dist, ACPI_MADT_GIC_VERSION_NONE, gic_v2_acpi_init); #endif