// SPDX-License-Identifier: GPL-2.0-only /* * Copyright © 2015 Intel Corporation. * * Authors: David Woodhouse <dwmw2@infradead.org> */ #include <linux/intel-iommu.h> #include <linux/mmu_notifier.h> #include <linux/sched.h> #include <linux/sched/mm.h> #include <linux/slab.h> #include <linux/intel-svm.h> #include <linux/rculist.h> #include <linux/pci.h> #include <linux/pci-ats.h> #include <linux/dmar.h> #include <linux/interrupt.h> #include <linux/mm_types.h> #include <linux/xarray.h> #include <linux/ioasid.h> #include <asm/page.h> #include <asm/fpu/api.h> #include <trace/events/intel_iommu.h> #include "pasid.h" #include "perf.h" #include "../iommu-sva-lib.h" static irqreturn_t prq_event_thread(int irq, void *d); static void intel_svm_drain_prq(struct device *dev, u32 pasid); #define to_intel_svm_dev(handle) container_of(handle, struct intel_svm_dev, sva) static DEFINE_XARRAY_ALLOC(pasid_private_array); static int pasid_private_add(ioasid_t pasid, void *priv) { return xa_alloc(&pasid_private_array, &pasid, priv, XA_LIMIT(pasid, pasid), GFP_ATOMIC); } static void pasid_private_remove(ioasid_t pasid) { xa_erase(&pasid_private_array, pasid); } static void *pasid_private_find(ioasid_t pasid) { return xa_load(&pasid_private_array, pasid); } static struct intel_svm_dev * svm_lookup_device_by_sid(struct intel_svm *svm, u16 sid) { struct intel_svm_dev *sdev = NULL, *t; rcu_read_lock(); list_for_each_entry_rcu(t, &svm->devs, list) { if (t->sid == sid) { sdev = t; break; } } rcu_read_unlock(); return sdev; } static struct intel_svm_dev * svm_lookup_device_by_dev(struct intel_svm *svm, struct device *dev) { struct intel_svm_dev *sdev = NULL, *t; rcu_read_lock(); list_for_each_entry_rcu(t, &svm->devs, list) { if (t->dev == dev) { sdev = t; break; } } rcu_read_unlock(); return sdev; } int intel_svm_enable_prq(struct intel_iommu *iommu) { struct iopf_queue *iopfq; struct page *pages; int irq, ret; pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, PRQ_ORDER); if (!pages) { pr_warn("IOMMU: %s: Failed to allocate page request queue\n", iommu->name); return -ENOMEM; } iommu->prq = page_address(pages); irq = dmar_alloc_hwirq(DMAR_UNITS_SUPPORTED + iommu->seq_id, iommu->node, iommu); if (irq <= 0) { pr_err("IOMMU: %s: Failed to create IRQ vector for page request queue\n", iommu->name); ret = -EINVAL; goto free_prq; } iommu->pr_irq = irq; snprintf(iommu->iopfq_name, sizeof(iommu->iopfq_name), "dmar%d-iopfq", iommu->seq_id); iopfq = iopf_queue_alloc(iommu->iopfq_name); if (!iopfq) { pr_err("IOMMU: %s: Failed to allocate iopf queue\n", iommu->name); ret = -ENOMEM; goto free_hwirq; } iommu->iopf_queue = iopfq; snprintf(iommu->prq_name, sizeof(iommu->prq_name), "dmar%d-prq", iommu->seq_id); ret = request_threaded_irq(irq, NULL, prq_event_thread, IRQF_ONESHOT, iommu->prq_name, iommu); if (ret) { pr_err("IOMMU: %s: Failed to request IRQ for page request queue\n", iommu->name); goto free_iopfq; } dmar_writeq(iommu->reg + DMAR_PQH_REG, 0ULL); dmar_writeq(iommu->reg + DMAR_PQT_REG, 0ULL); dmar_writeq(iommu->reg + DMAR_PQA_REG, virt_to_phys(iommu->prq) | PRQ_ORDER); init_completion(&iommu->prq_complete); return 0; free_iopfq: iopf_queue_free(iommu->iopf_queue); iommu->iopf_queue = NULL; free_hwirq: dmar_free_hwirq(irq); iommu->pr_irq = 0; free_prq: free_pages((unsigned long)iommu->prq, PRQ_ORDER); iommu->prq = NULL; return ret; } int intel_svm_finish_prq(struct intel_iommu *iommu) { dmar_writeq(iommu->reg + DMAR_PQH_REG, 0ULL); dmar_writeq(iommu->reg + DMAR_PQT_REG, 0ULL); dmar_writeq(iommu->reg + DMAR_PQA_REG, 0ULL); if (iommu->pr_irq) { free_irq(iommu->pr_irq, iommu); dmar_free_hwirq(iommu->pr_irq); iommu->pr_irq = 0; } if (iommu->iopf_queue) { iopf_queue_free(iommu->iopf_queue); iommu->iopf_queue = NULL; } free_pages((unsigned long)iommu->prq, PRQ_ORDER); iommu->prq = NULL; return 0; } static inline bool intel_svm_capable(struct intel_iommu *iommu) { return iommu->flags & VTD_FLAG_SVM_CAPABLE; } void intel_svm_check(struct intel_iommu *iommu) { if (!pasid_supported(iommu)) return; if (cpu_feature_enabled(X86_FEATURE_GBPAGES) && !cap_fl1gp_support(iommu->cap)) { pr_err("%s SVM disabled, incompatible 1GB page capability\n", iommu->name); return; } if (cpu_feature_enabled(X86_FEATURE_LA57) && !cap_5lp_support(iommu->cap)) { pr_err("%s SVM disabled, incompatible paging mode\n", iommu->name); return; } iommu->flags |= VTD_FLAG_SVM_CAPABLE; } static void __flush_svm_range_dev(struct intel_svm *svm, struct intel_svm_dev *sdev, unsigned long address, unsigned long pages, int ih) { struct device_domain_info *info = get_domain_info(sdev->dev); if (WARN_ON(!pages)) return; qi_flush_piotlb(sdev->iommu, sdev->did, svm->pasid, address, pages, ih); if (info->ats_enabled) qi_flush_dev_iotlb_pasid(sdev->iommu, sdev->sid, info->pfsid, svm->pasid, sdev->qdep, address, order_base_2(pages)); } static void intel_flush_svm_range_dev(struct intel_svm *svm, struct intel_svm_dev *sdev, unsigned long address, unsigned long pages, int ih) { unsigned long shift = ilog2(__roundup_pow_of_two(pages)); unsigned long align = (1ULL << (VTD_PAGE_SHIFT + shift)); unsigned long start = ALIGN_DOWN(address, align); unsigned long end = ALIGN(address + (pages << VTD_PAGE_SHIFT), align); while (start < end) { __flush_svm_range_dev(svm, sdev, start, align >> VTD_PAGE_SHIFT, ih); start += align; } } static void intel_flush_svm_range(struct intel_svm *svm, unsigned long address, unsigned long pages, int ih) { struct intel_svm_dev *sdev; rcu_read_lock(); list_for_each_entry_rcu(sdev, &svm->devs, list) intel_flush_svm_range_dev(svm, sdev, address, pages, ih); rcu_read_unlock(); } /* Pages have been freed at this point */ static void intel_invalidate_range(struct mmu_notifier *mn, struct mm_struct *mm, unsigned long start, unsigned long end) { struct intel_svm *svm = container_of(mn, struct intel_svm, notifier); intel_flush_svm_range(svm, start, (end - start + PAGE_SIZE - 1) >> VTD_PAGE_SHIFT, 0); } static void intel_mm_release(struct mmu_notifier *mn, struct mm_struct *mm) { struct intel_svm *svm = container_of(mn, struct intel_svm, notifier); struct intel_svm_dev *sdev; /* This might end up being called from exit_mmap(), *before* the page * tables are cleared. And __mmu_notifier_release() will delete us from * the list of notifiers so that our invalidate_range() callback doesn't * get called when the page tables are cleared. So we need to protect * against hardware accessing those page tables. * * We do it by clearing the entry in the PASID table and then flushing * the IOTLB and the PASID table caches. This might upset hardware; * perhaps we'll want to point the PASID to a dummy PGD (like the zero * page) so that we end up taking a fault that the hardware really * *has* to handle gracefully without affecting other processes. */ rcu_read_lock(); list_for_each_entry_rcu(sdev, &svm->devs, list) intel_pasid_tear_down_entry(sdev->iommu, sdev->dev, svm->pasid, true); rcu_read_unlock(); } static const struct mmu_notifier_ops intel_mmuops = { .release = intel_mm_release, .invalidate_range = intel_invalidate_range, }; static DEFINE_MUTEX(pasid_mutex); static int pasid_to_svm_sdev(struct device *dev, unsigned int pasid, struct intel_svm **rsvm, struct intel_svm_dev **rsdev) { struct intel_svm_dev *sdev = NULL; struct intel_svm *svm; /* The caller should hold the pasid_mutex lock */ if (WARN_ON(!mutex_is_locked(&pasid_mutex))) return -EINVAL; if (pasid == INVALID_IOASID || pasid >= PASID_MAX) return -EINVAL; svm = pasid_private_find(pasid); if (IS_ERR(svm)) return PTR_ERR(svm); if (!svm) goto out; /* * If we found svm for the PASID, there must be at least one device * bond. */ if (WARN_ON(list_empty(&svm->devs))) return -EINVAL; sdev = svm_lookup_device_by_dev(svm, dev); out: *rsvm = svm; *rsdev = sdev; return 0; } int intel_svm_bind_gpasid(struct iommu_domain *domain, struct device *dev, struct iommu_gpasid_bind_data *data) { struct intel_iommu *iommu = device_to_iommu(dev, NULL, NULL); struct intel_svm_dev *sdev = NULL; struct dmar_domain *dmar_domain; struct device_domain_info *info; struct intel_svm *svm = NULL; unsigned long iflags; int ret = 0; if (WARN_ON(!iommu) || !data) return -EINVAL; if (data->format != IOMMU_PASID_FORMAT_INTEL_VTD) return -EINVAL; /* IOMMU core ensures argsz is more than the start of the union */ if (data->argsz < offsetofend(struct iommu_gpasid_bind_data, vendor.vtd)) return -EINVAL; /* Make sure no undefined flags are used in vendor data */ if (data->vendor.vtd.flags & ~(IOMMU_SVA_VTD_GPASID_LAST - 1)) return -EINVAL; if (!dev_is_pci(dev)) return -ENOTSUPP; /* VT-d supports devices with full 20 bit PASIDs only */ if (pci_max_pasids(to_pci_dev(dev)) != PASID_MAX) return -EINVAL; /* * We only check host PASID range, we have no knowledge to check * guest PASID range. */ if (data->hpasid <= 0 || data->hpasid >= PASID_MAX) return -EINVAL; info = get_domain_info(dev); if (!info) return -EINVAL; dmar_domain = to_dmar_domain(domain); mutex_lock(&pasid_mutex); ret = pasid_to_svm_sdev(dev, data->hpasid, &svm, &sdev); if (ret) goto out; if (sdev) { /* * Do not allow multiple bindings of the same device-PASID since * there is only one SL page tables per PASID. We may revisit * once sharing PGD across domains are supported. */ dev_warn_ratelimited(dev, "Already bound with PASID %u\n", svm->pasid); ret = -EBUSY; goto out; } if (!svm) { /* We come here when PASID has never been bond to a device. */ svm = kzalloc(sizeof(*svm), GFP_KERNEL); if (!svm) { ret = -ENOMEM; goto out; } /* REVISIT: upper layer/VFIO can track host process that bind * the PASID. ioasid_set = mm might be sufficient for vfio to * check pasid VMM ownership. We can drop the following line * once VFIO and IOASID set check is in place. */ svm->mm = get_task_mm(current); svm->pasid = data->hpasid; if (data->flags & IOMMU_SVA_GPASID_VAL) { svm->gpasid = data->gpasid; svm->flags |= SVM_FLAG_GUEST_PASID; } pasid_private_add(data->hpasid, svm); INIT_LIST_HEAD_RCU(&svm->devs); mmput(svm->mm); } sdev = kzalloc(sizeof(*sdev), GFP_KERNEL); if (!sdev) { ret = -ENOMEM; goto out; } sdev->dev = dev; sdev->sid = PCI_DEVID(info->bus, info->devfn); sdev->iommu = iommu; /* Only count users if device has aux domains */ if (iommu_dev_feature_enabled(dev, IOMMU_DEV_FEAT_AUX)) sdev->users = 1; /* Set up device context entry for PASID if not enabled already */ ret = intel_iommu_enable_pasid(iommu, sdev->dev); if (ret) { dev_err_ratelimited(dev, "Failed to enable PASID capability\n"); kfree(sdev); goto out; } /* * PASID table is per device for better security. Therefore, for * each bind of a new device even with an existing PASID, we need to * call the nested mode setup function here. */ spin_lock_irqsave(&iommu->lock, iflags); ret = intel_pasid_setup_nested(iommu, dev, (pgd_t *)(uintptr_t)data->gpgd, data->hpasid, &data->vendor.vtd, dmar_domain, data->addr_width); spin_unlock_irqrestore(&iommu->lock, iflags); if (ret) { dev_err_ratelimited(dev, "Failed to set up PASID %llu in nested mode, Err %d\n", data->hpasid, ret); /* * PASID entry should be in cleared state if nested mode * set up failed. So we only need to clear IOASID tracking * data such that free call will succeed. */ kfree(sdev); goto out; } svm->flags |= SVM_FLAG_GUEST_MODE; init_rcu_head(&sdev->rcu); list_add_rcu(&sdev->list, &svm->devs); out: if (!IS_ERR_OR_NULL(svm) && list_empty(&svm->devs)) { pasid_private_remove(data->hpasid); kfree(svm); } mutex_unlock(&pasid_mutex); return ret; } int intel_svm_unbind_gpasid(struct device *dev, u32 pasid) { struct intel_iommu *iommu = device_to_iommu(dev, NULL, NULL); struct intel_svm_dev *sdev; struct intel_svm *svm; int ret; if (WARN_ON(!iommu)) return -EINVAL; mutex_lock(&pasid_mutex); ret = pasid_to_svm_sdev(dev, pasid, &svm, &sdev); if (ret) goto out; if (sdev) { if (iommu_dev_feature_enabled(dev, IOMMU_DEV_FEAT_AUX)) sdev->users--; if (!sdev->users) { list_del_rcu(&sdev->list); intel_pasid_tear_down_entry(iommu, dev, svm->pasid, false); intel_svm_drain_prq(dev, svm->pasid); kfree_rcu(sdev, rcu); if (list_empty(&svm->devs)) { /* * We do not free the IOASID here in that * IOMMU driver did not allocate it. * Unlike native SVM, IOASID for guest use was * allocated prior to the bind call. * In any case, if the free call comes before * the unbind, IOMMU driver will get notified * and perform cleanup. */ pasid_private_remove(pasid); kfree(svm); } } } out: mutex_unlock(&pasid_mutex); return ret; } static void _load_pasid(void *unused) { update_pasid(); } static void load_pasid(struct mm_struct *mm, u32 pasid) { mutex_lock(&mm->context.lock); /* Update PASID MSR on all CPUs running the mm's tasks. */ on_each_cpu_mask(mm_cpumask(mm), _load_pasid, NULL, true); mutex_unlock(&mm->context.lock); } static int intel_svm_alloc_pasid(struct device *dev, struct mm_struct *mm, unsigned int flags) { ioasid_t max_pasid = dev_is_pci(dev) ? pci_max_pasids(to_pci_dev(dev)) : intel_pasid_max_id; return iommu_sva_alloc_pasid(mm, PASID_MIN, max_pasid - 1); } static void intel_svm_free_pasid(struct mm_struct *mm) { iommu_sva_free_pasid(mm); } static struct iommu_sva *intel_svm_bind_mm(struct intel_iommu *iommu, struct device *dev, struct mm_struct *mm, unsigned int flags) { struct device_domain_info *info = get_domain_info(dev); unsigned long iflags, sflags; struct intel_svm_dev *sdev; struct intel_svm *svm; int ret = 0; svm = pasid_private_find(mm->pasid); if (!svm) { svm = kzalloc(sizeof(*svm), GFP_KERNEL); if (!svm) return ERR_PTR(-ENOMEM); svm->pasid = mm->pasid; svm->mm = mm; svm->flags = flags; INIT_LIST_HEAD_RCU(&svm->devs); if (!(flags & SVM_FLAG_SUPERVISOR_MODE)) { svm->notifier.ops = &intel_mmuops; ret = mmu_notifier_register(&svm->notifier, mm); if (ret) { kfree(svm); return ERR_PTR(ret); } } ret = pasid_private_add(svm->pasid, svm); if (ret) { if (svm->notifier.ops) mmu_notifier_unregister(&svm->notifier, mm); kfree(svm); return ERR_PTR(ret); } } /* Find the matching device in svm list */ sdev = svm_lookup_device_by_dev(svm, dev); if (sdev) { sdev->users++; goto success; } sdev = kzalloc(sizeof(*sdev), GFP_KERNEL); if (!sdev) { ret = -ENOMEM; goto free_svm; } sdev->dev = dev; sdev->iommu = iommu; sdev->did = FLPT_DEFAULT_DID; sdev->sid = PCI_DEVID(info->bus, info->devfn); sdev->users = 1; sdev->pasid = svm->pasid; sdev->sva.dev = dev; init_rcu_head(&sdev->rcu); if (info->ats_enabled) { sdev->dev_iotlb = 1; sdev->qdep = info->ats_qdep; if (sdev->qdep >= QI_DEV_EIOTLB_MAX_INVS) sdev->qdep = 0; } /* Setup the pasid table: */ sflags = (flags & SVM_FLAG_SUPERVISOR_MODE) ? PASID_FLAG_SUPERVISOR_MODE : 0; sflags |= cpu_feature_enabled(X86_FEATURE_LA57) ? PASID_FLAG_FL5LP : 0; spin_lock_irqsave(&iommu->lock, iflags); ret = intel_pasid_setup_first_level(iommu, dev, mm->pgd, mm->pasid, FLPT_DEFAULT_DID, sflags); spin_unlock_irqrestore(&iommu->lock, iflags); if (ret) goto free_sdev; /* The newly allocated pasid is loaded to the mm. */ if (!(flags & SVM_FLAG_SUPERVISOR_MODE) && list_empty(&svm->devs)) load_pasid(mm, svm->pasid); list_add_rcu(&sdev->list, &svm->devs); success: return &sdev->sva; free_sdev: kfree(sdev); free_svm: if (list_empty(&svm->devs)) { if (svm->notifier.ops) mmu_notifier_unregister(&svm->notifier, mm); pasid_private_remove(mm->pasid); kfree(svm); } return ERR_PTR(ret); } /* Caller must hold pasid_mutex */ static int intel_svm_unbind_mm(struct device *dev, u32 pasid) { struct intel_svm_dev *sdev; struct intel_iommu *iommu; struct intel_svm *svm; struct mm_struct *mm; int ret = -EINVAL; iommu = device_to_iommu(dev, NULL, NULL); if (!iommu) goto out; ret = pasid_to_svm_sdev(dev, pasid, &svm, &sdev); if (ret) goto out; mm = svm->mm; if (sdev) { sdev->users--; if (!sdev->users) { list_del_rcu(&sdev->list); /* Flush the PASID cache and IOTLB for this device. * Note that we do depend on the hardware *not* using * the PASID any more. Just as we depend on other * devices never using PASIDs that they have no right * to use. We have a *shared* PASID table, because it's * large and has to be physically contiguous. So it's * hard to be as defensive as we might like. */ intel_pasid_tear_down_entry(iommu, dev, svm->pasid, false); intel_svm_drain_prq(dev, svm->pasid); kfree_rcu(sdev, rcu); if (list_empty(&svm->devs)) { if (svm->notifier.ops) { mmu_notifier_unregister(&svm->notifier, mm); /* Clear mm's pasid. */ load_pasid(mm, PASID_DISABLED); } pasid_private_remove(svm->pasid); /* We mandate that no page faults may be outstanding * for the PASID when intel_svm_unbind_mm() is called. * If that is not obeyed, subtle errors will happen. * Let's make them less subtle... */ memset(svm, 0x6b, sizeof(*svm)); kfree(svm); } } /* Drop a PASID reference and free it if no reference. */ intel_svm_free_pasid(mm); } out: return ret; } /* Page request queue descriptor */ struct page_req_dsc { union { struct { u64 type:8; u64 pasid_present:1; u64 priv_data_present:1; u64 rsvd:6; u64 rid:16; u64 pasid:20; u64 exe_req:1; u64 pm_req:1; u64 rsvd2:10; }; u64 qw_0; }; union { struct { u64 rd_req:1; u64 wr_req:1; u64 lpig:1; u64 prg_index:9; u64 addr:52; }; u64 qw_1; }; u64 priv_data[2]; }; static bool is_canonical_address(u64 addr) { int shift = 64 - (__VIRTUAL_MASK_SHIFT + 1); long saddr = (long) addr; return (((saddr << shift) >> shift) == saddr); } /** * intel_svm_drain_prq - Drain page requests and responses for a pasid * @dev: target device * @pasid: pasid for draining * * Drain all pending page requests and responses related to @pasid in both * software and hardware. This is supposed to be called after the device * driver has stopped DMA, the pasid entry has been cleared, and both IOTLB * and DevTLB have been invalidated. * * It waits until all pending page requests for @pasid in the page fault * queue are completed by the prq handling thread. Then follow the steps * described in VT-d spec CH7.10 to drain all page requests and page * responses pending in the hardware. */ static void intel_svm_drain_prq(struct device *dev, u32 pasid) { struct device_domain_info *info; struct dmar_domain *domain; struct intel_iommu *iommu; struct qi_desc desc[3]; struct pci_dev *pdev; int head, tail; u16 sid, did; int qdep; info = get_domain_info(dev); if (WARN_ON(!info || !dev_is_pci(dev))) return; if (!info->pri_enabled) return; iommu = info->iommu; domain = info->domain; pdev = to_pci_dev(dev); sid = PCI_DEVID(info->bus, info->devfn); did = domain->iommu_did[iommu->seq_id]; qdep = pci_ats_queue_depth(pdev); /* * Check and wait until all pending page requests in the queue are * handled by the prq handling thread. */ prq_retry: reinit_completion(&iommu->prq_complete); tail = dmar_readq(iommu->reg + DMAR_PQT_REG) & PRQ_RING_MASK; head = dmar_readq(iommu->reg + DMAR_PQH_REG) & PRQ_RING_MASK; while (head != tail) { struct page_req_dsc *req; req = &iommu->prq[head / sizeof(*req)]; if (!req->pasid_present || req->pasid != pasid) { head = (head + sizeof(*req)) & PRQ_RING_MASK; continue; } wait_for_completion(&iommu->prq_complete); goto prq_retry; } /* * A work in IO page fault workqueue may try to lock pasid_mutex now. * Holding pasid_mutex while waiting in iopf_queue_flush_dev() for * all works in the workqueue to finish may cause deadlock. * * It's unnecessary to hold pasid_mutex in iopf_queue_flush_dev(). * Unlock it to allow the works to be handled while waiting for * them to finish. */ lockdep_assert_held(&pasid_mutex); mutex_unlock(&pasid_mutex); iopf_queue_flush_dev(dev); mutex_lock(&pasid_mutex); /* * Perform steps described in VT-d spec CH7.10 to drain page * requests and responses in hardware. */ memset(desc, 0, sizeof(desc)); desc[0].qw0 = QI_IWD_STATUS_DATA(QI_DONE) | QI_IWD_FENCE | QI_IWD_TYPE; desc[1].qw0 = QI_EIOTLB_PASID(pasid) | QI_EIOTLB_DID(did) | QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) | QI_EIOTLB_TYPE; desc[2].qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) | QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE | QI_DEV_IOTLB_PFSID(info->pfsid); qi_retry: reinit_completion(&iommu->prq_complete); qi_submit_sync(iommu, desc, 3, QI_OPT_WAIT_DRAIN); if (readl(iommu->reg + DMAR_PRS_REG) & DMA_PRS_PRO) { wait_for_completion(&iommu->prq_complete); goto qi_retry; } } static int prq_to_iommu_prot(struct page_req_dsc *req) { int prot = 0; if (req->rd_req) prot |= IOMMU_FAULT_PERM_READ; if (req->wr_req) prot |= IOMMU_FAULT_PERM_WRITE; if (req->exe_req) prot |= IOMMU_FAULT_PERM_EXEC; if (req->pm_req) prot |= IOMMU_FAULT_PERM_PRIV; return prot; } static int intel_svm_prq_report(struct intel_iommu *iommu, struct device *dev, struct page_req_dsc *desc) { struct iommu_fault_event event; if (!dev || !dev_is_pci(dev)) return -ENODEV; /* Fill in event data for device specific processing */ memset(&event, 0, sizeof(struct iommu_fault_event)); event.fault.type = IOMMU_FAULT_PAGE_REQ; event.fault.prm.addr = (u64)desc->addr << VTD_PAGE_SHIFT; event.fault.prm.pasid = desc->pasid; event.fault.prm.grpid = desc->prg_index; event.fault.prm.perm = prq_to_iommu_prot(desc); if (desc->lpig) event.fault.prm.flags |= IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE; if (desc->pasid_present) { event.fault.prm.flags |= IOMMU_FAULT_PAGE_REQUEST_PASID_VALID; event.fault.prm.flags |= IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID; } if (desc->priv_data_present) { /* * Set last page in group bit if private data is present, * page response is required as it does for LPIG. * iommu_report_device_fault() doesn't understand this vendor * specific requirement thus we set last_page as a workaround. */ event.fault.prm.flags |= IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE; event.fault.prm.flags |= IOMMU_FAULT_PAGE_REQUEST_PRIV_DATA; event.fault.prm.private_data[0] = desc->priv_data[0]; event.fault.prm.private_data[1] = desc->priv_data[1]; } else if (dmar_latency_enabled(iommu, DMAR_LATENCY_PRQ)) { /* * If the private data fields are not used by hardware, use it * to monitor the prq handle latency. */ event.fault.prm.private_data[0] = ktime_to_ns(ktime_get()); } return iommu_report_device_fault(dev, &event); } static void handle_bad_prq_event(struct intel_iommu *iommu, struct page_req_dsc *req, int result) { struct qi_desc desc; pr_err("%s: Invalid page request: %08llx %08llx\n", iommu->name, ((unsigned long long *)req)[0], ((unsigned long long *)req)[1]); /* * Per VT-d spec. v3.0 ch7.7, system software must * respond with page group response if private data * is present (PDP) or last page in group (LPIG) bit * is set. This is an additional VT-d feature beyond * PCI ATS spec. */ if (!req->lpig && !req->priv_data_present) return; desc.qw0 = QI_PGRP_PASID(req->pasid) | QI_PGRP_DID(req->rid) | QI_PGRP_PASID_P(req->pasid_present) | QI_PGRP_PDP(req->priv_data_present) | QI_PGRP_RESP_CODE(result) | QI_PGRP_RESP_TYPE; desc.qw1 = QI_PGRP_IDX(req->prg_index) | QI_PGRP_LPIG(req->lpig); if (req->priv_data_present) { desc.qw2 = req->priv_data[0]; desc.qw3 = req->priv_data[1]; } else { desc.qw2 = 0; desc.qw3 = 0; } qi_submit_sync(iommu, &desc, 1, 0); } static irqreturn_t prq_event_thread(int irq, void *d) { struct intel_svm_dev *sdev = NULL; struct intel_iommu *iommu = d; struct intel_svm *svm = NULL; struct page_req_dsc *req; int head, tail, handled; u64 address; /* * Clear PPR bit before reading head/tail registers, to ensure that * we get a new interrupt if needed. */ writel(DMA_PRS_PPR, iommu->reg + DMAR_PRS_REG); tail = dmar_readq(iommu->reg + DMAR_PQT_REG) & PRQ_RING_MASK; head = dmar_readq(iommu->reg + DMAR_PQH_REG) & PRQ_RING_MASK; handled = (head != tail); while (head != tail) { req = &iommu->prq[head / sizeof(*req)]; address = (u64)req->addr << VTD_PAGE_SHIFT; if (unlikely(!req->pasid_present)) { pr_err("IOMMU: %s: Page request without PASID\n", iommu->name); bad_req: svm = NULL; sdev = NULL; handle_bad_prq_event(iommu, req, QI_RESP_INVALID); goto prq_advance; } if (unlikely(!is_canonical_address(address))) { pr_err("IOMMU: %s: Address is not canonical\n", iommu->name); goto bad_req; } if (unlikely(req->pm_req && (req->rd_req | req->wr_req))) { pr_err("IOMMU: %s: Page request in Privilege Mode\n", iommu->name); goto bad_req; } if (unlikely(req->exe_req && req->rd_req)) { pr_err("IOMMU: %s: Execution request not supported\n", iommu->name); goto bad_req; } if (!svm || svm->pasid != req->pasid) { /* * It can't go away, because the driver is not permitted * to unbind the mm while any page faults are outstanding. */ svm = pasid_private_find(req->pasid); if (IS_ERR_OR_NULL(svm) || (svm->flags & SVM_FLAG_SUPERVISOR_MODE)) goto bad_req; } if (!sdev || sdev->sid != req->rid) { sdev = svm_lookup_device_by_sid(svm, req->rid); if (!sdev) goto bad_req; } sdev->prq_seq_number++; /* * If prq is to be handled outside iommu driver via receiver of * the fault notifiers, we skip the page response here. */ if (intel_svm_prq_report(iommu, sdev->dev, req)) handle_bad_prq_event(iommu, req, QI_RESP_INVALID); trace_prq_report(iommu, sdev->dev, req->qw_0, req->qw_1, req->priv_data[0], req->priv_data[1], sdev->prq_seq_number); prq_advance: head = (head + sizeof(*req)) & PRQ_RING_MASK; } dmar_writeq(iommu->reg + DMAR_PQH_REG, tail); /* * Clear the page request overflow bit and wake up all threads that * are waiting for the completion of this handling. */ if (readl(iommu->reg + DMAR_PRS_REG) & DMA_PRS_PRO) { pr_info_ratelimited("IOMMU: %s: PRQ overflow detected\n", iommu->name); head = dmar_readq(iommu->reg + DMAR_PQH_REG) & PRQ_RING_MASK; tail = dmar_readq(iommu->reg + DMAR_PQT_REG) & PRQ_RING_MASK; if (head == tail) { iopf_queue_discard_partial(iommu->iopf_queue); writel(DMA_PRS_PRO, iommu->reg + DMAR_PRS_REG); pr_info_ratelimited("IOMMU: %s: PRQ overflow cleared", iommu->name); } } if (!completion_done(&iommu->prq_complete)) complete(&iommu->prq_complete); return IRQ_RETVAL(handled); } struct iommu_sva *intel_svm_bind(struct device *dev, struct mm_struct *mm, void *drvdata) { struct intel_iommu *iommu = device_to_iommu(dev, NULL, NULL); unsigned int flags = 0; struct iommu_sva *sva; int ret; if (drvdata) flags = *(unsigned int *)drvdata; if (flags & SVM_FLAG_SUPERVISOR_MODE) { if (!ecap_srs(iommu->ecap)) { dev_err(dev, "%s: Supervisor PASID not supported\n", iommu->name); return ERR_PTR(-EOPNOTSUPP); } if (mm) { dev_err(dev, "%s: Supervisor PASID with user provided mm\n", iommu->name); return ERR_PTR(-EINVAL); } mm = &init_mm; } mutex_lock(&pasid_mutex); ret = intel_svm_alloc_pasid(dev, mm, flags); if (ret) { mutex_unlock(&pasid_mutex); return ERR_PTR(ret); } sva = intel_svm_bind_mm(iommu, dev, mm, flags); if (IS_ERR_OR_NULL(sva)) intel_svm_free_pasid(mm); mutex_unlock(&pasid_mutex); return sva; } void intel_svm_unbind(struct iommu_sva *sva) { struct intel_svm_dev *sdev = to_intel_svm_dev(sva); mutex_lock(&pasid_mutex); intel_svm_unbind_mm(sdev->dev, sdev->pasid); mutex_unlock(&pasid_mutex); } u32 intel_svm_get_pasid(struct iommu_sva *sva) { struct intel_svm_dev *sdev; u32 pasid; mutex_lock(&pasid_mutex); sdev = to_intel_svm_dev(sva); pasid = sdev->pasid; mutex_unlock(&pasid_mutex); return pasid; } int intel_svm_page_response(struct device *dev, struct iommu_fault_event *evt, struct iommu_page_response *msg) { struct iommu_fault_page_request *prm; struct intel_svm_dev *sdev = NULL; struct intel_svm *svm = NULL; struct intel_iommu *iommu; bool private_present; bool pasid_present; bool last_page; u8 bus, devfn; int ret = 0; u16 sid; if (!dev || !dev_is_pci(dev)) return -ENODEV; iommu = device_to_iommu(dev, &bus, &devfn); if (!iommu) return -ENODEV; if (!msg || !evt) return -EINVAL; mutex_lock(&pasid_mutex); prm = &evt->fault.prm; sid = PCI_DEVID(bus, devfn); pasid_present = prm->flags & IOMMU_FAULT_PAGE_REQUEST_PASID_VALID; private_present = prm->flags & IOMMU_FAULT_PAGE_REQUEST_PRIV_DATA; last_page = prm->flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE; if (!pasid_present) { ret = -EINVAL; goto out; } if (prm->pasid == 0 || prm->pasid >= PASID_MAX) { ret = -EINVAL; goto out; } ret = pasid_to_svm_sdev(dev, prm->pasid, &svm, &sdev); if (ret || !sdev) { ret = -ENODEV; goto out; } /* * For responses from userspace, need to make sure that the * pasid has been bound to its mm. */ if (svm->flags & SVM_FLAG_GUEST_MODE) { struct mm_struct *mm; mm = get_task_mm(current); if (!mm) { ret = -EINVAL; goto out; } if (mm != svm->mm) { ret = -ENODEV; mmput(mm); goto out; } mmput(mm); } /* * Per VT-d spec. v3.0 ch7.7, system software must respond * with page group response if private data is present (PDP) * or last page in group (LPIG) bit is set. This is an * additional VT-d requirement beyond PCI ATS spec. */ if (last_page || private_present) { struct qi_desc desc; desc.qw0 = QI_PGRP_PASID(prm->pasid) | QI_PGRP_DID(sid) | QI_PGRP_PASID_P(pasid_present) | QI_PGRP_PDP(private_present) | QI_PGRP_RESP_CODE(msg->code) | QI_PGRP_RESP_TYPE; desc.qw1 = QI_PGRP_IDX(prm->grpid) | QI_PGRP_LPIG(last_page); desc.qw2 = 0; desc.qw3 = 0; if (private_present) { desc.qw2 = prm->private_data[0]; desc.qw3 = prm->private_data[1]; } else if (prm->private_data[0]) { dmar_latency_update(iommu, DMAR_LATENCY_PRQ, ktime_to_ns(ktime_get()) - prm->private_data[0]); } qi_submit_sync(iommu, &desc, 1, 0); } out: mutex_unlock(&pasid_mutex); return ret; }