// SPDX-License-Identifier: GPL-2.0 /* * Implementation of the IOMMU SVA API for the ARM SMMUv3 */ #include #include #include #include "arm-smmu-v3.h" #include "../../io-pgtable-arm.h" static DEFINE_MUTEX(sva_lock); /* * Check if the CPU ASID is available on the SMMU side. If a private context * descriptor is using it, try to replace it. */ static struct arm_smmu_ctx_desc * arm_smmu_share_asid(struct mm_struct *mm, u16 asid) { int ret; u32 new_asid; struct arm_smmu_ctx_desc *cd; struct arm_smmu_device *smmu; struct arm_smmu_domain *smmu_domain; cd = xa_load(&arm_smmu_asid_xa, asid); if (!cd) return NULL; if (cd->mm) { if (WARN_ON(cd->mm != mm)) return ERR_PTR(-EINVAL); /* All devices bound to this mm use the same cd struct. */ refcount_inc(&cd->refs); return cd; } smmu_domain = container_of(cd, struct arm_smmu_domain, s1_cfg.cd); smmu = smmu_domain->smmu; ret = xa_alloc(&arm_smmu_asid_xa, &new_asid, cd, XA_LIMIT(1, (1 << smmu->asid_bits) - 1), GFP_KERNEL); if (ret) return ERR_PTR(-ENOSPC); /* * Race with unmap: TLB invalidations will start targeting the new ASID, * which isn't assigned yet. We'll do an invalidate-all on the old ASID * later, so it doesn't matter. */ cd->asid = new_asid; /* * Update ASID and invalidate CD in all associated masters. There will * be some overlap between use of both ASIDs, until we invalidate the * TLB. */ arm_smmu_write_ctx_desc(smmu_domain, 0, cd); /* Invalidate TLB entries previously associated with that context */ arm_smmu_tlb_inv_asid(smmu, asid); xa_erase(&arm_smmu_asid_xa, asid); return NULL; } __maybe_unused static struct arm_smmu_ctx_desc *arm_smmu_alloc_shared_cd(struct mm_struct *mm) { u16 asid; int err = 0; u64 tcr, par, reg; struct arm_smmu_ctx_desc *cd; struct arm_smmu_ctx_desc *ret = NULL; asid = arm64_mm_context_get(mm); if (!asid) return ERR_PTR(-ESRCH); cd = kzalloc(sizeof(*cd), GFP_KERNEL); if (!cd) { err = -ENOMEM; goto out_put_context; } refcount_set(&cd->refs, 1); mutex_lock(&arm_smmu_asid_lock); ret = arm_smmu_share_asid(mm, asid); if (ret) { mutex_unlock(&arm_smmu_asid_lock); goto out_free_cd; } err = xa_insert(&arm_smmu_asid_xa, asid, cd, GFP_KERNEL); mutex_unlock(&arm_smmu_asid_lock); if (err) goto out_free_asid; tcr = FIELD_PREP(CTXDESC_CD_0_TCR_T0SZ, 64ULL - vabits_actual) | FIELD_PREP(CTXDESC_CD_0_TCR_IRGN0, ARM_LPAE_TCR_RGN_WBWA) | FIELD_PREP(CTXDESC_CD_0_TCR_ORGN0, ARM_LPAE_TCR_RGN_WBWA) | FIELD_PREP(CTXDESC_CD_0_TCR_SH0, ARM_LPAE_TCR_SH_IS) | CTXDESC_CD_0_TCR_EPD1 | CTXDESC_CD_0_AA64; switch (PAGE_SIZE) { case SZ_4K: tcr |= FIELD_PREP(CTXDESC_CD_0_TCR_TG0, ARM_LPAE_TCR_TG0_4K); break; case SZ_16K: tcr |= FIELD_PREP(CTXDESC_CD_0_TCR_TG0, ARM_LPAE_TCR_TG0_16K); break; case SZ_64K: tcr |= FIELD_PREP(CTXDESC_CD_0_TCR_TG0, ARM_LPAE_TCR_TG0_64K); break; default: WARN_ON(1); err = -EINVAL; goto out_free_asid; } reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); par = cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR0_PARANGE_SHIFT); tcr |= FIELD_PREP(CTXDESC_CD_0_TCR_IPS, par); cd->ttbr = virt_to_phys(mm->pgd); cd->tcr = tcr; /* * MAIR value is pretty much constant and global, so we can just get it * from the current CPU register */ cd->mair = read_sysreg(mair_el1); cd->asid = asid; cd->mm = mm; return cd; out_free_asid: arm_smmu_free_asid(cd); out_free_cd: kfree(cd); out_put_context: arm64_mm_context_put(mm); return err < 0 ? ERR_PTR(err) : ret; } __maybe_unused static void arm_smmu_free_shared_cd(struct arm_smmu_ctx_desc *cd) { if (arm_smmu_free_asid(cd)) { /* Unpin ASID */ arm64_mm_context_put(cd->mm); kfree(cd); } } bool arm_smmu_sva_supported(struct arm_smmu_device *smmu) { unsigned long reg, fld; unsigned long oas; unsigned long asid_bits; u32 feat_mask = ARM_SMMU_FEAT_BTM | ARM_SMMU_FEAT_COHERENCY; if (vabits_actual == 52) feat_mask |= ARM_SMMU_FEAT_VAX; if ((smmu->features & feat_mask) != feat_mask) return false; if (!(smmu->pgsize_bitmap & PAGE_SIZE)) return false; /* * Get the smallest PA size of all CPUs (sanitized by cpufeature). We're * not even pretending to support AArch32 here. Abort if the MMU outputs * addresses larger than what we support. */ reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); fld = cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR0_PARANGE_SHIFT); oas = id_aa64mmfr0_parange_to_phys_shift(fld); if (smmu->oas < oas) return false; /* We can support bigger ASIDs than the CPU, but not smaller */ fld = cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR0_ASID_SHIFT); asid_bits = fld ? 16 : 8; if (smmu->asid_bits < asid_bits) return false; /* * See max_pinned_asids in arch/arm64/mm/context.c. The following is * generally the maximum number of bindable processes. */ if (arm64_kernel_unmapped_at_el0()) asid_bits--; dev_dbg(smmu->dev, "%d shared contexts\n", (1 << asid_bits) - num_possible_cpus() - 2); return true; } static bool arm_smmu_iopf_supported(struct arm_smmu_master *master) { return false; } bool arm_smmu_master_sva_supported(struct arm_smmu_master *master) { if (!(master->smmu->features & ARM_SMMU_FEAT_SVA)) return false; /* SSID and IOPF support are mandatory for the moment */ return master->ssid_bits && arm_smmu_iopf_supported(master); } bool arm_smmu_master_sva_enabled(struct arm_smmu_master *master) { bool enabled; mutex_lock(&sva_lock); enabled = master->sva_enabled; mutex_unlock(&sva_lock); return enabled; } int arm_smmu_master_enable_sva(struct arm_smmu_master *master) { mutex_lock(&sva_lock); master->sva_enabled = true; mutex_unlock(&sva_lock); return 0; } int arm_smmu_master_disable_sva(struct arm_smmu_master *master) { mutex_lock(&sva_lock); if (!list_empty(&master->bonds)) { dev_err(master->dev, "cannot disable SVA, device is bound\n"); mutex_unlock(&sva_lock); return -EBUSY; } master->sva_enabled = false; mutex_unlock(&sva_lock); return 0; }