/* * Copyright (c) 2005 Cisco Systems. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #define pr_fmt(fmt) PFX fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ib_srp.h" #define DRV_NAME "ib_srp" #define PFX DRV_NAME ": " #define DRV_VERSION "1.0" #define DRV_RELDATE "July 1, 2013" MODULE_AUTHOR("Roland Dreier"); MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol initiator " "v" DRV_VERSION " (" DRV_RELDATE ")"); MODULE_LICENSE("Dual BSD/GPL"); static unsigned int srp_sg_tablesize; static unsigned int cmd_sg_entries; static unsigned int indirect_sg_entries; static bool allow_ext_sg; static int topspin_workarounds = 1; module_param(srp_sg_tablesize, uint, 0444); MODULE_PARM_DESC(srp_sg_tablesize, "Deprecated name for cmd_sg_entries"); module_param(cmd_sg_entries, uint, 0444); MODULE_PARM_DESC(cmd_sg_entries, "Default number of gather/scatter entries in the SRP command (default is 12, max 255)"); module_param(indirect_sg_entries, uint, 0444); MODULE_PARM_DESC(indirect_sg_entries, "Default max number of gather/scatter entries (default is 12, max is " __stringify(SCSI_MAX_SG_CHAIN_SEGMENTS) ")"); module_param(allow_ext_sg, bool, 0444); MODULE_PARM_DESC(allow_ext_sg, "Default behavior when there are more than cmd_sg_entries S/G entries after mapping; fails the request when false (default false)"); module_param(topspin_workarounds, int, 0444); MODULE_PARM_DESC(topspin_workarounds, "Enable workarounds for Topspin/Cisco SRP target bugs if != 0"); static struct kernel_param_ops srp_tmo_ops; static int srp_reconnect_delay = 10; module_param_cb(reconnect_delay, &srp_tmo_ops, &srp_reconnect_delay, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(reconnect_delay, "Time between successive reconnect attempts"); static int srp_fast_io_fail_tmo = 15; module_param_cb(fast_io_fail_tmo, &srp_tmo_ops, &srp_fast_io_fail_tmo, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(fast_io_fail_tmo, "Number of seconds between the observation of a transport" " layer error and failing all I/O. \"off\" means that this" " functionality is disabled."); static int srp_dev_loss_tmo = 600; module_param_cb(dev_loss_tmo, &srp_tmo_ops, &srp_dev_loss_tmo, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(dev_loss_tmo, "Maximum number of seconds that the SRP transport should" " insulate transport layer errors. After this time has been" " exceeded the SCSI host is removed. Should be" " between 1 and " __stringify(SCSI_DEVICE_BLOCK_MAX_TIMEOUT) " if fast_io_fail_tmo has not been set. \"off\" means that" " this functionality is disabled."); static void srp_add_one(struct ib_device *device); static void srp_remove_one(struct ib_device *device); static void srp_recv_completion(struct ib_cq *cq, void *target_ptr); static void srp_send_completion(struct ib_cq *cq, void *target_ptr); static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event); static struct scsi_transport_template *ib_srp_transport_template; static struct ib_client srp_client = { .name = "srp", .add = srp_add_one, .remove = srp_remove_one }; static struct ib_sa_client srp_sa_client; static int srp_tmo_get(char *buffer, const struct kernel_param *kp) { int tmo = *(int *)kp->arg; if (tmo >= 0) return sprintf(buffer, "%d", tmo); else return sprintf(buffer, "off"); } static int srp_tmo_set(const char *val, const struct kernel_param *kp) { int tmo, res; if (strncmp(val, "off", 3) != 0) { res = kstrtoint(val, 0, &tmo); if (res) goto out; } else { tmo = -1; } if (kp->arg == &srp_reconnect_delay) res = srp_tmo_valid(tmo, srp_fast_io_fail_tmo, srp_dev_loss_tmo); else if (kp->arg == &srp_fast_io_fail_tmo) res = srp_tmo_valid(srp_reconnect_delay, tmo, srp_dev_loss_tmo); else res = srp_tmo_valid(srp_reconnect_delay, srp_fast_io_fail_tmo, tmo); if (res) goto out; *(int *)kp->arg = tmo; out: return res; } static struct kernel_param_ops srp_tmo_ops = { .get = srp_tmo_get, .set = srp_tmo_set, }; static inline struct srp_target_port *host_to_target(struct Scsi_Host *host) { return (struct srp_target_port *) host->hostdata; } static const char *srp_target_info(struct Scsi_Host *host) { return host_to_target(host)->target_name; } static int srp_target_is_topspin(struct srp_target_port *target) { static const u8 topspin_oui[3] = { 0x00, 0x05, 0xad }; static const u8 cisco_oui[3] = { 0x00, 0x1b, 0x0d }; return topspin_workarounds && (!memcmp(&target->ioc_guid, topspin_oui, sizeof topspin_oui) || !memcmp(&target->ioc_guid, cisco_oui, sizeof cisco_oui)); } static struct srp_iu *srp_alloc_iu(struct srp_host *host, size_t size, gfp_t gfp_mask, enum dma_data_direction direction) { struct srp_iu *iu; iu = kmalloc(sizeof *iu, gfp_mask); if (!iu) goto out; iu->buf = kzalloc(size, gfp_mask); if (!iu->buf) goto out_free_iu; iu->dma = ib_dma_map_single(host->srp_dev->dev, iu->buf, size, direction); if (ib_dma_mapping_error(host->srp_dev->dev, iu->dma)) goto out_free_buf; iu->size = size; iu->direction = direction; return iu; out_free_buf: kfree(iu->buf); out_free_iu: kfree(iu); out: return NULL; } static void srp_free_iu(struct srp_host *host, struct srp_iu *iu) { if (!iu) return; ib_dma_unmap_single(host->srp_dev->dev, iu->dma, iu->size, iu->direction); kfree(iu->buf); kfree(iu); } static void srp_qp_event(struct ib_event *event, void *context) { pr_debug("QP event %d\n", event->event); } static int srp_init_qp(struct srp_target_port *target, struct ib_qp *qp) { struct ib_qp_attr *attr; int ret; attr = kmalloc(sizeof *attr, GFP_KERNEL); if (!attr) return -ENOMEM; ret = ib_find_pkey(target->srp_host->srp_dev->dev, target->srp_host->port, be16_to_cpu(target->path.pkey), &attr->pkey_index); if (ret) goto out; attr->qp_state = IB_QPS_INIT; attr->qp_access_flags = (IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE); attr->port_num = target->srp_host->port; ret = ib_modify_qp(qp, attr, IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_ACCESS_FLAGS | IB_QP_PORT); out: kfree(attr); return ret; } static int srp_new_cm_id(struct srp_target_port *target) { struct ib_cm_id *new_cm_id; new_cm_id = ib_create_cm_id(target->srp_host->srp_dev->dev, srp_cm_handler, target); if (IS_ERR(new_cm_id)) return PTR_ERR(new_cm_id); if (target->cm_id) ib_destroy_cm_id(target->cm_id); target->cm_id = new_cm_id; return 0; } static int srp_create_target_ib(struct srp_target_port *target) { struct ib_qp_init_attr *init_attr; struct ib_cq *recv_cq, *send_cq; struct ib_qp *qp; int ret; init_attr = kzalloc(sizeof *init_attr, GFP_KERNEL); if (!init_attr) return -ENOMEM; recv_cq = ib_create_cq(target->srp_host->srp_dev->dev, srp_recv_completion, NULL, target, target->queue_size, target->comp_vector); if (IS_ERR(recv_cq)) { ret = PTR_ERR(recv_cq); goto err; } send_cq = ib_create_cq(target->srp_host->srp_dev->dev, srp_send_completion, NULL, target, target->queue_size, target->comp_vector); if (IS_ERR(send_cq)) { ret = PTR_ERR(send_cq); goto err_recv_cq; } ib_req_notify_cq(recv_cq, IB_CQ_NEXT_COMP); init_attr->event_handler = srp_qp_event; init_attr->cap.max_send_wr = target->queue_size; init_attr->cap.max_recv_wr = target->queue_size; init_attr->cap.max_recv_sge = 1; init_attr->cap.max_send_sge = 1; init_attr->sq_sig_type = IB_SIGNAL_ALL_WR; init_attr->qp_type = IB_QPT_RC; init_attr->send_cq = send_cq; init_attr->recv_cq = recv_cq; qp = ib_create_qp(target->srp_host->srp_dev->pd, init_attr); if (IS_ERR(qp)) { ret = PTR_ERR(qp); goto err_send_cq; } ret = srp_init_qp(target, qp); if (ret) goto err_qp; if (target->qp) ib_destroy_qp(target->qp); if (target->recv_cq) ib_destroy_cq(target->recv_cq); if (target->send_cq) ib_destroy_cq(target->send_cq); target->qp = qp; target->recv_cq = recv_cq; target->send_cq = send_cq; kfree(init_attr); return 0; err_qp: ib_destroy_qp(qp); err_send_cq: ib_destroy_cq(send_cq); err_recv_cq: ib_destroy_cq(recv_cq); err: kfree(init_attr); return ret; } /* * Note: this function may be called without srp_alloc_iu_bufs() having been * invoked. Hence the target->[rt]x_ring checks. */ static void srp_free_target_ib(struct srp_target_port *target) { int i; ib_destroy_qp(target->qp); ib_destroy_cq(target->send_cq); ib_destroy_cq(target->recv_cq); target->qp = NULL; target->send_cq = target->recv_cq = NULL; if (target->rx_ring) { for (i = 0; i < target->queue_size; ++i) srp_free_iu(target->srp_host, target->rx_ring[i]); kfree(target->rx_ring); target->rx_ring = NULL; } if (target->tx_ring) { for (i = 0; i < target->queue_size; ++i) srp_free_iu(target->srp_host, target->tx_ring[i]); kfree(target->tx_ring); target->tx_ring = NULL; } } static void srp_path_rec_completion(int status, struct ib_sa_path_rec *pathrec, void *target_ptr) { struct srp_target_port *target = target_ptr; target->status = status; if (status) shost_printk(KERN_ERR, target->scsi_host, PFX "Got failed path rec status %d\n", status); else target->path = *pathrec; complete(&target->done); } static int srp_lookup_path(struct srp_target_port *target) { int ret; target->path.numb_path = 1; init_completion(&target->done); target->path_query_id = ib_sa_path_rec_get(&srp_sa_client, target->srp_host->srp_dev->dev, target->srp_host->port, &target->path, IB_SA_PATH_REC_SERVICE_ID | IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID | IB_SA_PATH_REC_NUMB_PATH | IB_SA_PATH_REC_PKEY, SRP_PATH_REC_TIMEOUT_MS, GFP_KERNEL, srp_path_rec_completion, target, &target->path_query); if (target->path_query_id < 0) return target->path_query_id; ret = wait_for_completion_interruptible(&target->done); if (ret < 0) return ret; if (target->status < 0) shost_printk(KERN_WARNING, target->scsi_host, PFX "Path record query failed\n"); return target->status; } static int srp_send_req(struct srp_target_port *target) { struct { struct ib_cm_req_param param; struct srp_login_req priv; } *req = NULL; int status; req = kzalloc(sizeof *req, GFP_KERNEL); if (!req) return -ENOMEM; req->param.primary_path = &target->path; req->param.alternate_path = NULL; req->param.service_id = target->service_id; req->param.qp_num = target->qp->qp_num; req->param.qp_type = target->qp->qp_type; req->param.private_data = &req->priv; req->param.private_data_len = sizeof req->priv; req->param.flow_control = 1; get_random_bytes(&req->param.starting_psn, 4); req->param.starting_psn &= 0xffffff; /* * Pick some arbitrary defaults here; we could make these * module parameters if anyone cared about setting them. */ req->param.responder_resources = 4; req->param.remote_cm_response_timeout = 20; req->param.local_cm_response_timeout = 20; req->param.retry_count = target->tl_retry_count; req->param.rnr_retry_count = 7; req->param.max_cm_retries = 15; req->priv.opcode = SRP_LOGIN_REQ; req->priv.tag = 0; req->priv.req_it_iu_len = cpu_to_be32(target->max_iu_len); req->priv.req_buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT | SRP_BUF_FORMAT_INDIRECT); /* * In the published SRP specification (draft rev. 16a), the * port identifier format is 8 bytes of ID extension followed * by 8 bytes of GUID. Older drafts put the two halves in the * opposite order, so that the GUID comes first. * * Targets conforming to these obsolete drafts can be * recognized by the I/O Class they report. */ if (target->io_class == SRP_REV10_IB_IO_CLASS) { memcpy(req->priv.initiator_port_id, &target->path.sgid.global.interface_id, 8); memcpy(req->priv.initiator_port_id + 8, &target->initiator_ext, 8); memcpy(req->priv.target_port_id, &target->ioc_guid, 8); memcpy(req->priv.target_port_id + 8, &target->id_ext, 8); } else { memcpy(req->priv.initiator_port_id, &target->initiator_ext, 8); memcpy(req->priv.initiator_port_id + 8, &target->path.sgid.global.interface_id, 8); memcpy(req->priv.target_port_id, &target->id_ext, 8); memcpy(req->priv.target_port_id + 8, &target->ioc_guid, 8); } /* * Topspin/Cisco SRP targets will reject our login unless we * zero out the first 8 bytes of our initiator port ID and set * the second 8 bytes to the local node GUID. */ if (srp_target_is_topspin(target)) { shost_printk(KERN_DEBUG, target->scsi_host, PFX "Topspin/Cisco initiator port ID workaround " "activated for target GUID %016llx\n", (unsigned long long) be64_to_cpu(target->ioc_guid)); memset(req->priv.initiator_port_id, 0, 8); memcpy(req->priv.initiator_port_id + 8, &target->srp_host->srp_dev->dev->node_guid, 8); } status = ib_send_cm_req(target->cm_id, &req->param); kfree(req); return status; } static bool srp_queue_remove_work(struct srp_target_port *target) { bool changed = false; spin_lock_irq(&target->lock); if (target->state != SRP_TARGET_REMOVED) { target->state = SRP_TARGET_REMOVED; changed = true; } spin_unlock_irq(&target->lock); if (changed) queue_work(system_long_wq, &target->remove_work); return changed; } static bool srp_change_conn_state(struct srp_target_port *target, bool connected) { bool changed = false; spin_lock_irq(&target->lock); if (target->connected != connected) { target->connected = connected; changed = true; } spin_unlock_irq(&target->lock); return changed; } static void srp_disconnect_target(struct srp_target_port *target) { if (srp_change_conn_state(target, false)) { /* XXX should send SRP_I_LOGOUT request */ if (ib_send_cm_dreq(target->cm_id, NULL, 0)) { shost_printk(KERN_DEBUG, target->scsi_host, PFX "Sending CM DREQ failed\n"); } } } static void srp_free_req_data(struct srp_target_port *target) { struct ib_device *ibdev = target->srp_host->srp_dev->dev; struct srp_request *req; int i; if (!target->req_ring) return; for (i = 0; i < target->req_ring_size; ++i) { req = &target->req_ring[i]; kfree(req->fmr_list); kfree(req->map_page); if (req->indirect_dma_addr) { ib_dma_unmap_single(ibdev, req->indirect_dma_addr, target->indirect_size, DMA_TO_DEVICE); } kfree(req->indirect_desc); } kfree(target->req_ring); target->req_ring = NULL; } static int srp_alloc_req_data(struct srp_target_port *target) { struct srp_device *srp_dev = target->srp_host->srp_dev; struct ib_device *ibdev = srp_dev->dev; struct srp_request *req; dma_addr_t dma_addr; int i, ret = -ENOMEM; INIT_LIST_HEAD(&target->free_reqs); target->req_ring = kzalloc(target->req_ring_size * sizeof(*target->req_ring), GFP_KERNEL); if (!target->req_ring) goto out; for (i = 0; i < target->req_ring_size; ++i) { req = &target->req_ring[i]; req->fmr_list = kmalloc(target->cmd_sg_cnt * sizeof(void *), GFP_KERNEL); req->map_page = kmalloc(SRP_FMR_SIZE * sizeof(void *), GFP_KERNEL); req->indirect_desc = kmalloc(target->indirect_size, GFP_KERNEL); if (!req->fmr_list || !req->map_page || !req->indirect_desc) goto out; dma_addr = ib_dma_map_single(ibdev, req->indirect_desc, target->indirect_size, DMA_TO_DEVICE); if (ib_dma_mapping_error(ibdev, dma_addr)) goto out; req->indirect_dma_addr = dma_addr; req->index = i; list_add_tail(&req->list, &target->free_reqs); } ret = 0; out: return ret; } /** * srp_del_scsi_host_attr() - Remove attributes defined in the host template. * @shost: SCSI host whose attributes to remove from sysfs. * * Note: Any attributes defined in the host template and that did not exist * before invocation of this function will be ignored. */ static void srp_del_scsi_host_attr(struct Scsi_Host *shost) { struct device_attribute **attr; for (attr = shost->hostt->shost_attrs; attr && *attr; ++attr) device_remove_file(&shost->shost_dev, *attr); } static void srp_remove_target(struct srp_target_port *target) { WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED); srp_del_scsi_host_attr(target->scsi_host); srp_rport_get(target->rport); srp_remove_host(target->scsi_host); scsi_remove_host(target->scsi_host); srp_stop_rport_timers(target->rport); srp_disconnect_target(target); ib_destroy_cm_id(target->cm_id); srp_free_target_ib(target); cancel_work_sync(&target->tl_err_work); srp_rport_put(target->rport); srp_free_req_data(target); spin_lock(&target->srp_host->target_lock); list_del(&target->list); spin_unlock(&target->srp_host->target_lock); scsi_host_put(target->scsi_host); } static void srp_remove_work(struct work_struct *work) { struct srp_target_port *target = container_of(work, struct srp_target_port, remove_work); WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED); srp_remove_target(target); } static void srp_rport_delete(struct srp_rport *rport) { struct srp_target_port *target = rport->lld_data; srp_queue_remove_work(target); } static int srp_connect_target(struct srp_target_port *target) { int retries = 3; int ret; WARN_ON_ONCE(target->connected); target->qp_in_error = false; ret = srp_lookup_path(target); if (ret) return ret; while (1) { init_completion(&target->done); ret = srp_send_req(target); if (ret) return ret; ret = wait_for_completion_interruptible(&target->done); if (ret < 0) return ret; /* * The CM event handling code will set status to * SRP_PORT_REDIRECT if we get a port redirect REJ * back, or SRP_DLID_REDIRECT if we get a lid/qp * redirect REJ back. */ switch (target->status) { case 0: srp_change_conn_state(target, true); return 0; case SRP_PORT_REDIRECT: ret = srp_lookup_path(target); if (ret) return ret; break; case SRP_DLID_REDIRECT: break; case SRP_STALE_CONN: /* Our current CM id was stale, and is now in timewait. * Try to reconnect with a new one. */ if (!retries-- || srp_new_cm_id(target)) { shost_printk(KERN_ERR, target->scsi_host, PFX "giving up on stale connection\n"); target->status = -ECONNRESET; return target->status; } shost_printk(KERN_ERR, target->scsi_host, PFX "retrying stale connection\n"); break; default: return target->status; } } } static void srp_unmap_data(struct scsi_cmnd *scmnd, struct srp_target_port *target, struct srp_request *req) { struct ib_device *ibdev = target->srp_host->srp_dev->dev; struct ib_pool_fmr **pfmr; if (!scsi_sglist(scmnd) || (scmnd->sc_data_direction != DMA_TO_DEVICE && scmnd->sc_data_direction != DMA_FROM_DEVICE)) return; pfmr = req->fmr_list; while (req->nfmr--) ib_fmr_pool_unmap(*pfmr++); ib_dma_unmap_sg(ibdev, scsi_sglist(scmnd), scsi_sg_count(scmnd), scmnd->sc_data_direction); } /** * srp_claim_req - Take ownership of the scmnd associated with a request. * @target: SRP target port. * @req: SRP request. * @sdev: If not NULL, only take ownership for this SCSI device. * @scmnd: If NULL, take ownership of @req->scmnd. If not NULL, only take * ownership of @req->scmnd if it equals @scmnd. * * Return value: * Either NULL or a pointer to the SCSI command the caller became owner of. */ static struct scsi_cmnd *srp_claim_req(struct srp_target_port *target, struct srp_request *req, struct scsi_device *sdev, struct scsi_cmnd *scmnd) { unsigned long flags; spin_lock_irqsave(&target->lock, flags); if (req->scmnd && (!sdev || req->scmnd->device == sdev) && (!scmnd || req->scmnd == scmnd)) { scmnd = req->scmnd; req->scmnd = NULL; } else { scmnd = NULL; } spin_unlock_irqrestore(&target->lock, flags); return scmnd; } /** * srp_free_req() - Unmap data and add request to the free request list. */ static void srp_free_req(struct srp_target_port *target, struct srp_request *req, struct scsi_cmnd *scmnd, s32 req_lim_delta) { unsigned long flags; srp_unmap_data(scmnd, target, req); spin_lock_irqsave(&target->lock, flags); target->req_lim += req_lim_delta; list_add_tail(&req->list, &target->free_reqs); spin_unlock_irqrestore(&target->lock, flags); } static void srp_finish_req(struct srp_target_port *target, struct srp_request *req, struct scsi_device *sdev, int result) { struct scsi_cmnd *scmnd = srp_claim_req(target, req, sdev, NULL); if (scmnd) { srp_free_req(target, req, scmnd, 0); scmnd->result = result; scmnd->scsi_done(scmnd); } } static void srp_terminate_io(struct srp_rport *rport) { struct srp_target_port *target = rport->lld_data; struct Scsi_Host *shost = target->scsi_host; struct scsi_device *sdev; int i; /* * Invoking srp_terminate_io() while srp_queuecommand() is running * is not safe. Hence the warning statement below. */ shost_for_each_device(sdev, shost) WARN_ON_ONCE(sdev->request_queue->request_fn_active); for (i = 0; i < target->req_ring_size; ++i) { struct srp_request *req = &target->req_ring[i]; srp_finish_req(target, req, NULL, DID_TRANSPORT_FAILFAST << 16); } } /* * It is up to the caller to ensure that srp_rport_reconnect() calls are * serialized and that no concurrent srp_queuecommand(), srp_abort(), * srp_reset_device() or srp_reset_host() calls will occur while this function * is in progress. One way to realize that is not to call this function * directly but to call srp_reconnect_rport() instead since that last function * serializes calls of this function via rport->mutex and also blocks * srp_queuecommand() calls before invoking this function. */ static int srp_rport_reconnect(struct srp_rport *rport) { struct srp_target_port *target = rport->lld_data; int i, ret; srp_disconnect_target(target); /* * Now get a new local CM ID so that we avoid confusing the target in * case things are really fouled up. Doing so also ensures that all CM * callbacks will have finished before a new QP is allocated. */ ret = srp_new_cm_id(target); /* * Whether or not creating a new CM ID succeeded, create a new * QP. This guarantees that all completion callback function * invocations have finished before request resetting starts. */ if (ret == 0) ret = srp_create_target_ib(target); else srp_create_target_ib(target); for (i = 0; i < target->req_ring_size; ++i) { struct srp_request *req = &target->req_ring[i]; srp_finish_req(target, req, NULL, DID_RESET << 16); } INIT_LIST_HEAD(&target->free_tx); for (i = 0; i < target->queue_size; ++i) list_add(&target->tx_ring[i]->list, &target->free_tx); if (ret == 0) ret = srp_connect_target(target); if (ret == 0) shost_printk(KERN_INFO, target->scsi_host, PFX "reconnect succeeded\n"); return ret; } static void srp_map_desc(struct srp_map_state *state, dma_addr_t dma_addr, unsigned int dma_len, u32 rkey) { struct srp_direct_buf *desc = state->desc; desc->va = cpu_to_be64(dma_addr); desc->key = cpu_to_be32(rkey); desc->len = cpu_to_be32(dma_len); state->total_len += dma_len; state->desc++; state->ndesc++; } static int srp_map_finish_fmr(struct srp_map_state *state, struct srp_target_port *target) { struct srp_device *dev = target->srp_host->srp_dev; struct ib_pool_fmr *fmr; u64 io_addr = 0; if (!state->npages) return 0; if (state->npages == 1) { srp_map_desc(state, state->base_dma_addr, state->fmr_len, target->rkey); state->npages = state->fmr_len = 0; return 0; } fmr = ib_fmr_pool_map_phys(dev->fmr_pool, state->pages, state->npages, io_addr); if (IS_ERR(fmr)) return PTR_ERR(fmr); *state->next_fmr++ = fmr; state->nfmr++; srp_map_desc(state, 0, state->fmr_len, fmr->fmr->rkey); state->npages = state->fmr_len = 0; return 0; } static void srp_map_update_start(struct srp_map_state *state, struct scatterlist *sg, int sg_index, dma_addr_t dma_addr) { state->unmapped_sg = sg; state->unmapped_index = sg_index; state->unmapped_addr = dma_addr; } static int srp_map_sg_entry(struct srp_map_state *state, struct srp_target_port *target, struct scatterlist *sg, int sg_index, int use_fmr) { struct srp_device *dev = target->srp_host->srp_dev; struct ib_device *ibdev = dev->dev; dma_addr_t dma_addr = ib_sg_dma_address(ibdev, sg); unsigned int dma_len = ib_sg_dma_len(ibdev, sg); unsigned int len; int ret; if (!dma_len) return 0; if (use_fmr == SRP_MAP_NO_FMR) { /* Once we're in direct map mode for a request, we don't * go back to FMR mode, so no need to update anything * other than the descriptor. */ srp_map_desc(state, dma_addr, dma_len, target->rkey); return 0; } /* If we start at an offset into the FMR page, don't merge into * the current FMR. Finish it out, and use the kernel's MR for this * sg entry. This is to avoid potential bugs on some SRP targets * that were never quite defined, but went away when the initiator * avoided using FMR on such page fragments. */ if (dma_addr & ~dev->fmr_page_mask || dma_len > dev->fmr_max_size) { ret = srp_map_finish_fmr(state, target); if (ret) return ret; srp_map_desc(state, dma_addr, dma_len, target->rkey); srp_map_update_start(state, NULL, 0, 0); return 0; } /* If this is the first sg to go into the FMR, save our position. * We need to know the first unmapped entry, its index, and the * first unmapped address within that entry to be able to restart * mapping after an error. */ if (!state->unmapped_sg) srp_map_update_start(state, sg, sg_index, dma_addr); while (dma_len) { if (state->npages == SRP_FMR_SIZE) { ret = srp_map_finish_fmr(state, target); if (ret) return ret; srp_map_update_start(state, sg, sg_index, dma_addr); } len = min_t(unsigned int, dma_len, dev->fmr_page_size); if (!state->npages) state->base_dma_addr = dma_addr; state->pages[state->npages++] = dma_addr; state->fmr_len += len; dma_addr += len; dma_len -= len; } /* If the last entry of the FMR wasn't a full page, then we need to * close it out and start a new one -- we can only merge at page * boundries. */ ret = 0; if (len != dev->fmr_page_size) { ret = srp_map_finish_fmr(state, target); if (!ret) srp_map_update_start(state, NULL, 0, 0); } return ret; } static int srp_map_data(struct scsi_cmnd *scmnd, struct srp_target_port *target, struct srp_request *req) { struct scatterlist *scat, *sg; struct srp_cmd *cmd = req->cmd->buf; int i, len, nents, count, use_fmr; struct srp_device *dev; struct ib_device *ibdev; struct srp_map_state state; struct srp_indirect_buf *indirect_hdr; u32 table_len; u8 fmt; if (!scsi_sglist(scmnd) || scmnd->sc_data_direction == DMA_NONE) return sizeof (struct srp_cmd); if (scmnd->sc_data_direction != DMA_FROM_DEVICE && scmnd->sc_data_direction != DMA_TO_DEVICE) { shost_printk(KERN_WARNING, target->scsi_host, PFX "Unhandled data direction %d\n", scmnd->sc_data_direction); return -EINVAL; } nents = scsi_sg_count(scmnd); scat = scsi_sglist(scmnd); dev = target->srp_host->srp_dev; ibdev = dev->dev; count = ib_dma_map_sg(ibdev, scat, nents, scmnd->sc_data_direction); if (unlikely(count == 0)) return -EIO; fmt = SRP_DATA_DESC_DIRECT; len = sizeof (struct srp_cmd) + sizeof (struct srp_direct_buf); if (count == 1) { /* * The midlayer only generated a single gather/scatter * entry, or DMA mapping coalesced everything to a * single entry. So a direct descriptor along with * the DMA MR suffices. */ struct srp_direct_buf *buf = (void *) cmd->add_data; buf->va = cpu_to_be64(ib_sg_dma_address(ibdev, scat)); buf->key = cpu_to_be32(target->rkey); buf->len = cpu_to_be32(ib_sg_dma_len(ibdev, scat)); req->nfmr = 0; goto map_complete; } /* We have more than one scatter/gather entry, so build our indirect * descriptor table, trying to merge as many entries with FMR as we * can. */ indirect_hdr = (void *) cmd->add_data; ib_dma_sync_single_for_cpu(ibdev, req->indirect_dma_addr, target->indirect_size, DMA_TO_DEVICE); memset(&state, 0, sizeof(state)); state.desc = req->indirect_desc; state.pages = req->map_page; state.next_fmr = req->fmr_list; use_fmr = dev->fmr_pool ? SRP_MAP_ALLOW_FMR : SRP_MAP_NO_FMR; for_each_sg(scat, sg, count, i) { if (srp_map_sg_entry(&state, target, sg, i, use_fmr)) { /* FMR mapping failed, so backtrack to the first * unmapped entry and continue on without using FMR. */ dma_addr_t dma_addr; unsigned int dma_len; backtrack: sg = state.unmapped_sg; i = state.unmapped_index; dma_addr = ib_sg_dma_address(ibdev, sg); dma_len = ib_sg_dma_len(ibdev, sg); dma_len -= (state.unmapped_addr - dma_addr); dma_addr = state.unmapped_addr; use_fmr = SRP_MAP_NO_FMR; srp_map_desc(&state, dma_addr, dma_len, target->rkey); } } if (use_fmr == SRP_MAP_ALLOW_FMR && srp_map_finish_fmr(&state, target)) goto backtrack; /* We've mapped the request, now pull as much of the indirect * descriptor table as we can into the command buffer. If this * target is not using an external indirect table, we are * guaranteed to fit into the command, as the SCSI layer won't * give us more S/G entries than we allow. */ req->nfmr = state.nfmr; if (state.ndesc == 1) { /* FMR mapping was able to collapse this to one entry, * so use a direct descriptor. */ struct srp_direct_buf *buf = (void *) cmd->add_data; *buf = req->indirect_desc[0]; goto map_complete; } if (unlikely(target->cmd_sg_cnt < state.ndesc && !target->allow_ext_sg)) { shost_printk(KERN_ERR, target->scsi_host, "Could not fit S/G list into SRP_CMD\n"); return -EIO; } count = min(state.ndesc, target->cmd_sg_cnt); table_len = state.ndesc * sizeof (struct srp_direct_buf); fmt = SRP_DATA_DESC_INDIRECT; len = sizeof(struct srp_cmd) + sizeof (struct srp_indirect_buf); len += count * sizeof (struct srp_direct_buf); memcpy(indirect_hdr->desc_list, req->indirect_desc, count * sizeof (struct srp_direct_buf)); indirect_hdr->table_desc.va = cpu_to_be64(req->indirect_dma_addr); indirect_hdr->table_desc.key = cpu_to_be32(target->rkey); indirect_hdr->table_desc.len = cpu_to_be32(table_len); indirect_hdr->len = cpu_to_be32(state.total_len); if (scmnd->sc_data_direction == DMA_TO_DEVICE) cmd->data_out_desc_cnt = count; else cmd->data_in_desc_cnt = count; ib_dma_sync_single_for_device(ibdev, req->indirect_dma_addr, table_len, DMA_TO_DEVICE); map_complete: if (scmnd->sc_data_direction == DMA_TO_DEVICE) cmd->buf_fmt = fmt << 4; else cmd->buf_fmt = fmt; return len; } /* * Return an IU and possible credit to the free pool */ static void srp_put_tx_iu(struct srp_target_port *target, struct srp_iu *iu, enum srp_iu_type iu_type) { unsigned long flags; spin_lock_irqsave(&target->lock, flags); list_add(&iu->list, &target->free_tx); if (iu_type != SRP_IU_RSP) ++target->req_lim; spin_unlock_irqrestore(&target->lock, flags); } /* * Must be called with target->lock held to protect req_lim and free_tx. * If IU is not sent, it must be returned using srp_put_tx_iu(). * * Note: * An upper limit for the number of allocated information units for each * request type is: * - SRP_IU_CMD: SRP_CMD_SQ_SIZE, since the SCSI mid-layer never queues * more than Scsi_Host.can_queue requests. * - SRP_IU_TSK_MGMT: SRP_TSK_MGMT_SQ_SIZE. * - SRP_IU_RSP: 1, since a conforming SRP target never sends more than * one unanswered SRP request to an initiator. */ static struct srp_iu *__srp_get_tx_iu(struct srp_target_port *target, enum srp_iu_type iu_type) { s32 rsv = (iu_type == SRP_IU_TSK_MGMT) ? 0 : SRP_TSK_MGMT_SQ_SIZE; struct srp_iu *iu; srp_send_completion(target->send_cq, target); if (list_empty(&target->free_tx)) return NULL; /* Initiator responses to target requests do not consume credits */ if (iu_type != SRP_IU_RSP) { if (target->req_lim <= rsv) { ++target->zero_req_lim; return NULL; } --target->req_lim; } iu = list_first_entry(&target->free_tx, struct srp_iu, list); list_del(&iu->list); return iu; } static int srp_post_send(struct srp_target_port *target, struct srp_iu *iu, int len) { struct ib_sge list; struct ib_send_wr wr, *bad_wr; list.addr = iu->dma; list.length = len; list.lkey = target->lkey; wr.next = NULL; wr.wr_id = (uintptr_t) iu; wr.sg_list = &list; wr.num_sge = 1; wr.opcode = IB_WR_SEND; wr.send_flags = IB_SEND_SIGNALED; return ib_post_send(target->qp, &wr, &bad_wr); } static int srp_post_recv(struct srp_target_port *target, struct srp_iu *iu) { struct ib_recv_wr wr, *bad_wr; struct ib_sge list; list.addr = iu->dma; list.length = iu->size; list.lkey = target->lkey; wr.next = NULL; wr.wr_id = (uintptr_t) iu; wr.sg_list = &list; wr.num_sge = 1; return ib_post_recv(target->qp, &wr, &bad_wr); } static void srp_process_rsp(struct srp_target_port *target, struct srp_rsp *rsp) { struct srp_request *req; struct scsi_cmnd *scmnd; unsigned long flags; if (unlikely(rsp->tag & SRP_TAG_TSK_MGMT)) { spin_lock_irqsave(&target->lock, flags); target->req_lim += be32_to_cpu(rsp->req_lim_delta); spin_unlock_irqrestore(&target->lock, flags); target->tsk_mgmt_status = -1; if (be32_to_cpu(rsp->resp_data_len) >= 4) target->tsk_mgmt_status = rsp->data[3]; complete(&target->tsk_mgmt_done); } else { req = &target->req_ring[rsp->tag]; scmnd = srp_claim_req(target, req, NULL, NULL); if (!scmnd) { shost_printk(KERN_ERR, target->scsi_host, "Null scmnd for RSP w/tag %016llx\n", (unsigned long long) rsp->tag); spin_lock_irqsave(&target->lock, flags); target->req_lim += be32_to_cpu(rsp->req_lim_delta); spin_unlock_irqrestore(&target->lock, flags); return; } scmnd->result = rsp->status; if (rsp->flags & SRP_RSP_FLAG_SNSVALID) { memcpy(scmnd->sense_buffer, rsp->data + be32_to_cpu(rsp->resp_data_len), min_t(int, be32_to_cpu(rsp->sense_data_len), SCSI_SENSE_BUFFERSIZE)); } if (rsp->flags & (SRP_RSP_FLAG_DOOVER | SRP_RSP_FLAG_DOUNDER)) scsi_set_resid(scmnd, be32_to_cpu(rsp->data_out_res_cnt)); else if (rsp->flags & (SRP_RSP_FLAG_DIOVER | SRP_RSP_FLAG_DIUNDER)) scsi_set_resid(scmnd, be32_to_cpu(rsp->data_in_res_cnt)); srp_free_req(target, req, scmnd, be32_to_cpu(rsp->req_lim_delta)); scmnd->host_scribble = NULL; scmnd->scsi_done(scmnd); } } static int srp_response_common(struct srp_target_port *target, s32 req_delta, void *rsp, int len) { struct ib_device *dev = target->srp_host->srp_dev->dev; unsigned long flags; struct srp_iu *iu; int err; spin_lock_irqsave(&target->lock, flags); target->req_lim += req_delta; iu = __srp_get_tx_iu(target, SRP_IU_RSP); spin_unlock_irqrestore(&target->lock, flags); if (!iu) { shost_printk(KERN_ERR, target->scsi_host, PFX "no IU available to send response\n"); return 1; } ib_dma_sync_single_for_cpu(dev, iu->dma, len, DMA_TO_DEVICE); memcpy(iu->buf, rsp, len); ib_dma_sync_single_for_device(dev, iu->dma, len, DMA_TO_DEVICE); err = srp_post_send(target, iu, len); if (err) { shost_printk(KERN_ERR, target->scsi_host, PFX "unable to post response: %d\n", err); srp_put_tx_iu(target, iu, SRP_IU_RSP); } return err; } static void srp_process_cred_req(struct srp_target_port *target, struct srp_cred_req *req) { struct srp_cred_rsp rsp = { .opcode = SRP_CRED_RSP, .tag = req->tag, }; s32 delta = be32_to_cpu(req->req_lim_delta); if (srp_response_common(target, delta, &rsp, sizeof rsp)) shost_printk(KERN_ERR, target->scsi_host, PFX "problems processing SRP_CRED_REQ\n"); } static void srp_process_aer_req(struct srp_target_port *target, struct srp_aer_req *req) { struct srp_aer_rsp rsp = { .opcode = SRP_AER_RSP, .tag = req->tag, }; s32 delta = be32_to_cpu(req->req_lim_delta); shost_printk(KERN_ERR, target->scsi_host, PFX "ignoring AER for LUN %llu\n", be64_to_cpu(req->lun)); if (srp_response_common(target, delta, &rsp, sizeof rsp)) shost_printk(KERN_ERR, target->scsi_host, PFX "problems processing SRP_AER_REQ\n"); } static void srp_handle_recv(struct srp_target_port *target, struct ib_wc *wc) { struct ib_device *dev = target->srp_host->srp_dev->dev; struct srp_iu *iu = (struct srp_iu *) (uintptr_t) wc->wr_id; int res; u8 opcode; ib_dma_sync_single_for_cpu(dev, iu->dma, target->max_ti_iu_len, DMA_FROM_DEVICE); opcode = *(u8 *) iu->buf; if (0) { shost_printk(KERN_ERR, target->scsi_host, PFX "recv completion, opcode 0x%02x\n", opcode); print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 8, 1, iu->buf, wc->byte_len, true); } switch (opcode) { case SRP_RSP: srp_process_rsp(target, iu->buf); break; case SRP_CRED_REQ: srp_process_cred_req(target, iu->buf); break; case SRP_AER_REQ: srp_process_aer_req(target, iu->buf); break; case SRP_T_LOGOUT: /* XXX Handle target logout */ shost_printk(KERN_WARNING, target->scsi_host, PFX "Got target logout request\n"); break; default: shost_printk(KERN_WARNING, target->scsi_host, PFX "Unhandled SRP opcode 0x%02x\n", opcode); break; } ib_dma_sync_single_for_device(dev, iu->dma, target->max_ti_iu_len, DMA_FROM_DEVICE); res = srp_post_recv(target, iu); if (res != 0) shost_printk(KERN_ERR, target->scsi_host, PFX "Recv failed with error code %d\n", res); } /** * srp_tl_err_work() - handle a transport layer error * * Note: This function may get invoked before the rport has been created, * hence the target->rport test. */ static void srp_tl_err_work(struct work_struct *work) { struct srp_target_port *target; target = container_of(work, struct srp_target_port, tl_err_work); if (target->rport) srp_start_tl_fail_timers(target->rport); } static void srp_handle_qp_err(enum ib_wc_status wc_status, bool send_err, struct srp_target_port *target) { if (target->connected && !target->qp_in_error) { shost_printk(KERN_ERR, target->scsi_host, PFX "failed %s status %d\n", send_err ? "send" : "receive", wc_status); queue_work(system_long_wq, &target->tl_err_work); } target->qp_in_error = true; } static void srp_recv_completion(struct ib_cq *cq, void *target_ptr) { struct srp_target_port *target = target_ptr; struct ib_wc wc; ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); while (ib_poll_cq(cq, 1, &wc) > 0) { if (likely(wc.status == IB_WC_SUCCESS)) { srp_handle_recv(target, &wc); } else { srp_handle_qp_err(wc.status, false, target); } } } static void srp_send_completion(struct ib_cq *cq, void *target_ptr) { struct srp_target_port *target = target_ptr; struct ib_wc wc; struct srp_iu *iu; while (ib_poll_cq(cq, 1, &wc) > 0) { if (likely(wc.status == IB_WC_SUCCESS)) { iu = (struct srp_iu *) (uintptr_t) wc.wr_id; list_add(&iu->list, &target->free_tx); } else { srp_handle_qp_err(wc.status, true, target); } } } static int srp_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *scmnd) { struct srp_target_port *target = host_to_target(shost); struct srp_rport *rport = target->rport; struct srp_request *req; struct srp_iu *iu; struct srp_cmd *cmd; struct ib_device *dev; unsigned long flags; int len, result; const bool in_scsi_eh = !in_interrupt() && current == shost->ehandler; /* * The SCSI EH thread is the only context from which srp_queuecommand() * can get invoked for blocked devices (SDEV_BLOCK / * SDEV_CREATED_BLOCK). Avoid racing with srp_reconnect_rport() by * locking the rport mutex if invoked from inside the SCSI EH. */ if (in_scsi_eh) mutex_lock(&rport->mutex); result = srp_chkready(target->rport); if (unlikely(result)) { scmnd->result = result; scmnd->scsi_done(scmnd); goto unlock_rport; } spin_lock_irqsave(&target->lock, flags); iu = __srp_get_tx_iu(target, SRP_IU_CMD); if (!iu) goto err_unlock; req = list_first_entry(&target->free_reqs, struct srp_request, list); list_del(&req->list); spin_unlock_irqrestore(&target->lock, flags); dev = target->srp_host->srp_dev->dev; ib_dma_sync_single_for_cpu(dev, iu->dma, target->max_iu_len, DMA_TO_DEVICE); scmnd->result = 0; scmnd->host_scribble = (void *) req; cmd = iu->buf; memset(cmd, 0, sizeof *cmd); cmd->opcode = SRP_CMD; cmd->lun = cpu_to_be64((u64) scmnd->device->lun << 48); cmd->tag = req->index; memcpy(cmd->cdb, scmnd->cmnd, scmnd->cmd_len); req->scmnd = scmnd; req->cmd = iu; len = srp_map_data(scmnd, target, req); if (len < 0) { shost_printk(KERN_ERR, target->scsi_host, PFX "Failed to map data\n"); goto err_iu; } ib_dma_sync_single_for_device(dev, iu->dma, target->max_iu_len, DMA_TO_DEVICE); if (srp_post_send(target, iu, len)) { shost_printk(KERN_ERR, target->scsi_host, PFX "Send failed\n"); goto err_unmap; } unlock_rport: if (in_scsi_eh) mutex_unlock(&rport->mutex); return 0; err_unmap: srp_unmap_data(scmnd, target, req); err_iu: srp_put_tx_iu(target, iu, SRP_IU_CMD); spin_lock_irqsave(&target->lock, flags); list_add(&req->list, &target->free_reqs); err_unlock: spin_unlock_irqrestore(&target->lock, flags); if (in_scsi_eh) mutex_unlock(&rport->mutex); return SCSI_MLQUEUE_HOST_BUSY; } /* * Note: the resources allocated in this function are freed in * srp_free_target_ib(). */ static int srp_alloc_iu_bufs(struct srp_target_port *target) { int i; target->rx_ring = kzalloc(target->queue_size * sizeof(*target->rx_ring), GFP_KERNEL); if (!target->rx_ring) goto err_no_ring; target->tx_ring = kzalloc(target->queue_size * sizeof(*target->tx_ring), GFP_KERNEL); if (!target->tx_ring) goto err_no_ring; for (i = 0; i < target->queue_size; ++i) { target->rx_ring[i] = srp_alloc_iu(target->srp_host, target->max_ti_iu_len, GFP_KERNEL, DMA_FROM_DEVICE); if (!target->rx_ring[i]) goto err; } for (i = 0; i < target->queue_size; ++i) { target->tx_ring[i] = srp_alloc_iu(target->srp_host, target->max_iu_len, GFP_KERNEL, DMA_TO_DEVICE); if (!target->tx_ring[i]) goto err; list_add(&target->tx_ring[i]->list, &target->free_tx); } return 0; err: for (i = 0; i < target->queue_size; ++i) { srp_free_iu(target->srp_host, target->rx_ring[i]); srp_free_iu(target->srp_host, target->tx_ring[i]); } err_no_ring: kfree(target->tx_ring); target->tx_ring = NULL; kfree(target->rx_ring); target->rx_ring = NULL; return -ENOMEM; } static uint32_t srp_compute_rq_tmo(struct ib_qp_attr *qp_attr, int attr_mask) { uint64_t T_tr_ns, max_compl_time_ms; uint32_t rq_tmo_jiffies; /* * According to section 11.2.4.2 in the IBTA spec (Modify Queue Pair, * table 91), both the QP timeout and the retry count have to be set * for RC QP's during the RTR to RTS transition. */ WARN_ON_ONCE((attr_mask & (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)) != (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)); /* * Set target->rq_tmo_jiffies to one second more than the largest time * it can take before an error completion is generated. See also * C9-140..142 in the IBTA spec for more information about how to * convert the QP Local ACK Timeout value to nanoseconds. */ T_tr_ns = 4096 * (1ULL << qp_attr->timeout); max_compl_time_ms = qp_attr->retry_cnt * 4 * T_tr_ns; do_div(max_compl_time_ms, NSEC_PER_MSEC); rq_tmo_jiffies = msecs_to_jiffies(max_compl_time_ms + 1000); return rq_tmo_jiffies; } static void srp_cm_rep_handler(struct ib_cm_id *cm_id, struct srp_login_rsp *lrsp, struct srp_target_port *target) { struct ib_qp_attr *qp_attr = NULL; int attr_mask = 0; int ret; int i; if (lrsp->opcode == SRP_LOGIN_RSP) { target->max_ti_iu_len = be32_to_cpu(lrsp->max_ti_iu_len); target->req_lim = be32_to_cpu(lrsp->req_lim_delta); /* * Reserve credits for task management so we don't * bounce requests back to the SCSI mid-layer. */ target->scsi_host->can_queue = min(target->req_lim - SRP_TSK_MGMT_SQ_SIZE, target->scsi_host->can_queue); target->scsi_host->cmd_per_lun = min_t(int, target->scsi_host->can_queue, target->scsi_host->cmd_per_lun); } else { shost_printk(KERN_WARNING, target->scsi_host, PFX "Unhandled RSP opcode %#x\n", lrsp->opcode); ret = -ECONNRESET; goto error; } if (!target->rx_ring) { ret = srp_alloc_iu_bufs(target); if (ret) goto error; } ret = -ENOMEM; qp_attr = kmalloc(sizeof *qp_attr, GFP_KERNEL); if (!qp_attr) goto error; qp_attr->qp_state = IB_QPS_RTR; ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask); if (ret) goto error_free; ret = ib_modify_qp(target->qp, qp_attr, attr_mask); if (ret) goto error_free; for (i = 0; i < target->queue_size; i++) { struct srp_iu *iu = target->rx_ring[i]; ret = srp_post_recv(target, iu); if (ret) goto error_free; } qp_attr->qp_state = IB_QPS_RTS; ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask); if (ret) goto error_free; target->rq_tmo_jiffies = srp_compute_rq_tmo(qp_attr, attr_mask); ret = ib_modify_qp(target->qp, qp_attr, attr_mask); if (ret) goto error_free; ret = ib_send_cm_rtu(cm_id, NULL, 0); error_free: kfree(qp_attr); error: target->status = ret; } static void srp_cm_rej_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event, struct srp_target_port *target) { struct Scsi_Host *shost = target->scsi_host; struct ib_class_port_info *cpi; int opcode; switch (event->param.rej_rcvd.reason) { case IB_CM_REJ_PORT_CM_REDIRECT: cpi = event->param.rej_rcvd.ari; target->path.dlid = cpi->redirect_lid; target->path.pkey = cpi->redirect_pkey; cm_id->remote_cm_qpn = be32_to_cpu(cpi->redirect_qp) & 0x00ffffff; memcpy(target->path.dgid.raw, cpi->redirect_gid, 16); target->status = target->path.dlid ? SRP_DLID_REDIRECT : SRP_PORT_REDIRECT; break; case IB_CM_REJ_PORT_REDIRECT: if (srp_target_is_topspin(target)) { /* * Topspin/Cisco SRP gateways incorrectly send * reject reason code 25 when they mean 24 * (port redirect). */ memcpy(target->path.dgid.raw, event->param.rej_rcvd.ari, 16); shost_printk(KERN_DEBUG, shost, PFX "Topspin/Cisco redirect to target port GID %016llx%016llx\n", (unsigned long long) be64_to_cpu(target->path.dgid.global.subnet_prefix), (unsigned long long) be64_to_cpu(target->path.dgid.global.interface_id)); target->status = SRP_PORT_REDIRECT; } else { shost_printk(KERN_WARNING, shost, " REJ reason: IB_CM_REJ_PORT_REDIRECT\n"); target->status = -ECONNRESET; } break; case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID: shost_printk(KERN_WARNING, shost, " REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n"); target->status = -ECONNRESET; break; case IB_CM_REJ_CONSUMER_DEFINED: opcode = *(u8 *) event->private_data; if (opcode == SRP_LOGIN_REJ) { struct srp_login_rej *rej = event->private_data; u32 reason = be32_to_cpu(rej->reason); if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE) shost_printk(KERN_WARNING, shost, PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n"); else shost_printk(KERN_WARNING, shost, PFX "SRP LOGIN from %pI6 to %pI6 REJECTED, reason 0x%08x\n", target->path.sgid.raw, target->orig_dgid, reason); } else shost_printk(KERN_WARNING, shost, " REJ reason: IB_CM_REJ_CONSUMER_DEFINED," " opcode 0x%02x\n", opcode); target->status = -ECONNRESET; break; case IB_CM_REJ_STALE_CONN: shost_printk(KERN_WARNING, shost, " REJ reason: stale connection\n"); target->status = SRP_STALE_CONN; break; default: shost_printk(KERN_WARNING, shost, " REJ reason 0x%x\n", event->param.rej_rcvd.reason); target->status = -ECONNRESET; } } static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event) { struct srp_target_port *target = cm_id->context; int comp = 0; switch (event->event) { case IB_CM_REQ_ERROR: shost_printk(KERN_DEBUG, target->scsi_host, PFX "Sending CM REQ failed\n"); comp = 1; target->status = -ECONNRESET; break; case IB_CM_REP_RECEIVED: comp = 1; srp_cm_rep_handler(cm_id, event->private_data, target); break; case IB_CM_REJ_RECEIVED: shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n"); comp = 1; srp_cm_rej_handler(cm_id, event, target); break; case IB_CM_DREQ_RECEIVED: shost_printk(KERN_WARNING, target->scsi_host, PFX "DREQ received - connection closed\n"); srp_change_conn_state(target, false); if (ib_send_cm_drep(cm_id, NULL, 0)) shost_printk(KERN_ERR, target->scsi_host, PFX "Sending CM DREP failed\n"); queue_work(system_long_wq, &target->tl_err_work); break; case IB_CM_TIMEWAIT_EXIT: shost_printk(KERN_ERR, target->scsi_host, PFX "connection closed\n"); comp = 1; target->status = 0; break; case IB_CM_MRA_RECEIVED: case IB_CM_DREQ_ERROR: case IB_CM_DREP_RECEIVED: break; default: shost_printk(KERN_WARNING, target->scsi_host, PFX "Unhandled CM event %d\n", event->event); break; } if (comp) complete(&target->done); return 0; } /** * srp_change_queue_type - changing device queue tag type * @sdev: scsi device struct * @tag_type: requested tag type * * Returns queue tag type. */ static int srp_change_queue_type(struct scsi_device *sdev, int tag_type) { if (sdev->tagged_supported) { scsi_set_tag_type(sdev, tag_type); if (tag_type) scsi_activate_tcq(sdev, sdev->queue_depth); else scsi_deactivate_tcq(sdev, sdev->queue_depth); } else tag_type = 0; return tag_type; } /** * srp_change_queue_depth - setting device queue depth * @sdev: scsi device struct * @qdepth: requested queue depth * @reason: SCSI_QDEPTH_DEFAULT/SCSI_QDEPTH_QFULL/SCSI_QDEPTH_RAMP_UP * (see include/scsi/scsi_host.h for definition) * * Returns queue depth. */ static int srp_change_queue_depth(struct scsi_device *sdev, int qdepth, int reason) { struct Scsi_Host *shost = sdev->host; int max_depth; if (reason == SCSI_QDEPTH_DEFAULT || reason == SCSI_QDEPTH_RAMP_UP) { max_depth = shost->can_queue; if (!sdev->tagged_supported) max_depth = 1; if (qdepth > max_depth) qdepth = max_depth; scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth); } else if (reason == SCSI_QDEPTH_QFULL) scsi_track_queue_full(sdev, qdepth); else return -EOPNOTSUPP; return sdev->queue_depth; } static int srp_send_tsk_mgmt(struct srp_target_port *target, u64 req_tag, unsigned int lun, u8 func) { struct srp_rport *rport = target->rport; struct ib_device *dev = target->srp_host->srp_dev->dev; struct srp_iu *iu; struct srp_tsk_mgmt *tsk_mgmt; if (!target->connected || target->qp_in_error) return -1; init_completion(&target->tsk_mgmt_done); /* * Lock the rport mutex to avoid that srp_create_target_ib() is * invoked while a task management function is being sent. */ mutex_lock(&rport->mutex); spin_lock_irq(&target->lock); iu = __srp_get_tx_iu(target, SRP_IU_TSK_MGMT); spin_unlock_irq(&target->lock); if (!iu) { mutex_unlock(&rport->mutex); return -1; } ib_dma_sync_single_for_cpu(dev, iu->dma, sizeof *tsk_mgmt, DMA_TO_DEVICE); tsk_mgmt = iu->buf; memset(tsk_mgmt, 0, sizeof *tsk_mgmt); tsk_mgmt->opcode = SRP_TSK_MGMT; tsk_mgmt->lun = cpu_to_be64((u64) lun << 48); tsk_mgmt->tag = req_tag | SRP_TAG_TSK_MGMT; tsk_mgmt->tsk_mgmt_func = func; tsk_mgmt->task_tag = req_tag; ib_dma_sync_single_for_device(dev, iu->dma, sizeof *tsk_mgmt, DMA_TO_DEVICE); if (srp_post_send(target, iu, sizeof *tsk_mgmt)) { srp_put_tx_iu(target, iu, SRP_IU_TSK_MGMT); mutex_unlock(&rport->mutex); return -1; } mutex_unlock(&rport->mutex); if (!wait_for_completion_timeout(&target->tsk_mgmt_done, msecs_to_jiffies(SRP_ABORT_TIMEOUT_MS))) return -1; return 0; } static int srp_abort(struct scsi_cmnd *scmnd) { struct srp_target_port *target = host_to_target(scmnd->device->host); struct srp_request *req = (struct srp_request *) scmnd->host_scribble; int ret; shost_printk(KERN_ERR, target->scsi_host, "SRP abort called\n"); if (!req || !srp_claim_req(target, req, NULL, scmnd)) return SUCCESS; if (srp_send_tsk_mgmt(target, req->index, scmnd->device->lun, SRP_TSK_ABORT_TASK) == 0) ret = SUCCESS; else if (target->rport->state == SRP_RPORT_LOST) ret = FAST_IO_FAIL; else ret = FAILED; srp_free_req(target, req, scmnd, 0); scmnd->result = DID_ABORT << 16; scmnd->scsi_done(scmnd); return ret; } static int srp_reset_device(struct scsi_cmnd *scmnd) { struct srp_target_port *target = host_to_target(scmnd->device->host); int i; shost_printk(KERN_ERR, target->scsi_host, "SRP reset_device called\n"); if (srp_send_tsk_mgmt(target, SRP_TAG_NO_REQ, scmnd->device->lun, SRP_TSK_LUN_RESET)) return FAILED; if (target->tsk_mgmt_status) return FAILED; for (i = 0; i < target->req_ring_size; ++i) { struct srp_request *req = &target->req_ring[i]; srp_finish_req(target, req, scmnd->device, DID_RESET << 16); } return SUCCESS; } static int srp_reset_host(struct scsi_cmnd *scmnd) { struct srp_target_port *target = host_to_target(scmnd->device->host); shost_printk(KERN_ERR, target->scsi_host, PFX "SRP reset_host called\n"); return srp_reconnect_rport(target->rport) == 0 ? SUCCESS : FAILED; } static int srp_slave_configure(struct scsi_device *sdev) { struct Scsi_Host *shost = sdev->host; struct srp_target_port *target = host_to_target(shost); struct request_queue *q = sdev->request_queue; unsigned long timeout; if (sdev->type == TYPE_DISK) { timeout = max_t(unsigned, 30 * HZ, target->rq_tmo_jiffies); blk_queue_rq_timeout(q, timeout); } return 0; } static ssize_t show_id_ext(struct device *dev, struct device_attribute *attr, char *buf) { struct srp_target_port *target = host_to_target(class_to_shost(dev)); return sprintf(buf, "0x%016llx\n", (unsigned long long) be64_to_cpu(target->id_ext)); } static ssize_t show_ioc_guid(struct device *dev, struct device_attribute *attr, char *buf) { struct srp_target_port *target = host_to_target(class_to_shost(dev)); return sprintf(buf, "0x%016llx\n", (unsigned long long) be64_to_cpu(target->ioc_guid)); } static ssize_t show_service_id(struct device *dev, struct device_attribute *attr, char *buf) { struct srp_target_port *target = host_to_target(class_to_shost(dev)); return sprintf(buf, "0x%016llx\n", (unsigned long long) be64_to_cpu(target->service_id)); } static ssize_t show_pkey(struct device *dev, struct device_attribute *attr, char *buf) { struct srp_target_port *target = host_to_target(class_to_shost(dev)); return sprintf(buf, "0x%04x\n", be16_to_cpu(target->path.pkey)); } static ssize_t show_sgid(struct device *dev, struct device_attribute *attr, char *buf) { struct srp_target_port *target = host_to_target(class_to_shost(dev)); return sprintf(buf, "%pI6\n", target->path.sgid.raw); } static ssize_t show_dgid(struct device *dev, struct device_attribute *attr, char *buf) { struct srp_target_port *target = host_to_target(class_to_shost(dev)); return sprintf(buf, "%pI6\n", target->path.dgid.raw); } static ssize_t show_orig_dgid(struct device *dev, struct device_attribute *attr, char *buf) { struct srp_target_port *target = host_to_target(class_to_shost(dev)); return sprintf(buf, "%pI6\n", target->orig_dgid); } static ssize_t show_req_lim(struct device *dev, struct device_attribute *attr, char *buf) { struct srp_target_port *target = host_to_target(class_to_shost(dev)); return sprintf(buf, "%d\n", target->req_lim); } static ssize_t show_zero_req_lim(struct device *dev, struct device_attribute *attr, char *buf) { struct srp_target_port *target = host_to_target(class_to_shost(dev)); return sprintf(buf, "%d\n", target->zero_req_lim); } static ssize_t show_local_ib_port(struct device *dev, struct device_attribute *attr, char *buf) { struct srp_target_port *target = host_to_target(class_to_shost(dev)); return sprintf(buf, "%d\n", target->srp_host->port); } static ssize_t show_local_ib_device(struct device *dev, struct device_attribute *attr, char *buf) { struct srp_target_port *target = host_to_target(class_to_shost(dev)); return sprintf(buf, "%s\n", target->srp_host->srp_dev->dev->name); } static ssize_t show_comp_vector(struct device *dev, struct device_attribute *attr, char *buf) { struct srp_target_port *target = host_to_target(class_to_shost(dev)); return sprintf(buf, "%d\n", target->comp_vector); } static ssize_t show_tl_retry_count(struct device *dev, struct device_attribute *attr, char *buf) { struct srp_target_port *target = host_to_target(class_to_shost(dev)); return sprintf(buf, "%d\n", target->tl_retry_count); } static ssize_t show_cmd_sg_entries(struct device *dev, struct device_attribute *attr, char *buf) { struct srp_target_port *target = host_to_target(class_to_shost(dev)); return sprintf(buf, "%u\n", target->cmd_sg_cnt); } static ssize_t show_allow_ext_sg(struct device *dev, struct device_attribute *attr, char *buf) { struct srp_target_port *target = host_to_target(class_to_shost(dev)); return sprintf(buf, "%s\n", target->allow_ext_sg ? "true" : "false"); } static DEVICE_ATTR(id_ext, S_IRUGO, show_id_ext, NULL); static DEVICE_ATTR(ioc_guid, S_IRUGO, show_ioc_guid, NULL); static DEVICE_ATTR(service_id, S_IRUGO, show_service_id, NULL); static DEVICE_ATTR(pkey, S_IRUGO, show_pkey, NULL); static DEVICE_ATTR(sgid, S_IRUGO, show_sgid, NULL); static DEVICE_ATTR(dgid, S_IRUGO, show_dgid, NULL); static DEVICE_ATTR(orig_dgid, S_IRUGO, show_orig_dgid, NULL); static DEVICE_ATTR(req_lim, S_IRUGO, show_req_lim, NULL); static DEVICE_ATTR(zero_req_lim, S_IRUGO, show_zero_req_lim, NULL); static DEVICE_ATTR(local_ib_port, S_IRUGO, show_local_ib_port, NULL); static DEVICE_ATTR(local_ib_device, S_IRUGO, show_local_ib_device, NULL); static DEVICE_ATTR(comp_vector, S_IRUGO, show_comp_vector, NULL); static DEVICE_ATTR(tl_retry_count, S_IRUGO, show_tl_retry_count, NULL); static DEVICE_ATTR(cmd_sg_entries, S_IRUGO, show_cmd_sg_entries, NULL); static DEVICE_ATTR(allow_ext_sg, S_IRUGO, show_allow_ext_sg, NULL); static struct device_attribute *srp_host_attrs[] = { &dev_attr_id_ext, &dev_attr_ioc_guid, &dev_attr_service_id, &dev_attr_pkey, &dev_attr_sgid, &dev_attr_dgid, &dev_attr_orig_dgid, &dev_attr_req_lim, &dev_attr_zero_req_lim, &dev_attr_local_ib_port, &dev_attr_local_ib_device, &dev_attr_comp_vector, &dev_attr_tl_retry_count, &dev_attr_cmd_sg_entries, &dev_attr_allow_ext_sg, NULL }; static struct scsi_host_template srp_template = { .module = THIS_MODULE, .name = "InfiniBand SRP initiator", .proc_name = DRV_NAME, .slave_configure = srp_slave_configure, .info = srp_target_info, .queuecommand = srp_queuecommand, .change_queue_depth = srp_change_queue_depth, .change_queue_type = srp_change_queue_type, .eh_abort_handler = srp_abort, .eh_device_reset_handler = srp_reset_device, .eh_host_reset_handler = srp_reset_host, .skip_settle_delay = true, .sg_tablesize = SRP_DEF_SG_TABLESIZE, .can_queue = SRP_DEFAULT_CMD_SQ_SIZE, .this_id = -1, .cmd_per_lun = SRP_DEFAULT_CMD_SQ_SIZE, .use_clustering = ENABLE_CLUSTERING, .shost_attrs = srp_host_attrs }; static int srp_add_target(struct srp_host *host, struct srp_target_port *target) { struct srp_rport_identifiers ids; struct srp_rport *rport; sprintf(target->target_name, "SRP.T10:%016llX", (unsigned long long) be64_to_cpu(target->id_ext)); if (scsi_add_host(target->scsi_host, host->srp_dev->dev->dma_device)) return -ENODEV; memcpy(ids.port_id, &target->id_ext, 8); memcpy(ids.port_id + 8, &target->ioc_guid, 8); ids.roles = SRP_RPORT_ROLE_TARGET; rport = srp_rport_add(target->scsi_host, &ids); if (IS_ERR(rport)) { scsi_remove_host(target->scsi_host); return PTR_ERR(rport); } rport->lld_data = target; target->rport = rport; spin_lock(&host->target_lock); list_add_tail(&target->list, &host->target_list); spin_unlock(&host->target_lock); target->state = SRP_TARGET_LIVE; scsi_scan_target(&target->scsi_host->shost_gendev, 0, target->scsi_id, SCAN_WILD_CARD, 0); return 0; } static void srp_release_dev(struct device *dev) { struct srp_host *host = container_of(dev, struct srp_host, dev); complete(&host->released); } static struct class srp_class = { .name = "infiniband_srp", .dev_release = srp_release_dev }; /** * srp_conn_unique() - check whether the connection to a target is unique */ static bool srp_conn_unique(struct srp_host *host, struct srp_target_port *target) { struct srp_target_port *t; bool ret = false; if (target->state == SRP_TARGET_REMOVED) goto out; ret = true; spin_lock(&host->target_lock); list_for_each_entry(t, &host->target_list, list) { if (t != target && target->id_ext == t->id_ext && target->ioc_guid == t->ioc_guid && target->initiator_ext == t->initiator_ext) { ret = false; break; } } spin_unlock(&host->target_lock); out: return ret; } /* * Target ports are added by writing * * id_ext=,ioc_guid=,dgid=, * pkey=,service_id= * * to the add_target sysfs attribute. */ enum { SRP_OPT_ERR = 0, SRP_OPT_ID_EXT = 1 << 0, SRP_OPT_IOC_GUID = 1 << 1, SRP_OPT_DGID = 1 << 2, SRP_OPT_PKEY = 1 << 3, SRP_OPT_SERVICE_ID = 1 << 4, SRP_OPT_MAX_SECT = 1 << 5, SRP_OPT_MAX_CMD_PER_LUN = 1 << 6, SRP_OPT_IO_CLASS = 1 << 7, SRP_OPT_INITIATOR_EXT = 1 << 8, SRP_OPT_CMD_SG_ENTRIES = 1 << 9, SRP_OPT_ALLOW_EXT_SG = 1 << 10, SRP_OPT_SG_TABLESIZE = 1 << 11, SRP_OPT_COMP_VECTOR = 1 << 12, SRP_OPT_TL_RETRY_COUNT = 1 << 13, SRP_OPT_QUEUE_SIZE = 1 << 14, SRP_OPT_ALL = (SRP_OPT_ID_EXT | SRP_OPT_IOC_GUID | SRP_OPT_DGID | SRP_OPT_PKEY | SRP_OPT_SERVICE_ID), }; static const match_table_t srp_opt_tokens = { { SRP_OPT_ID_EXT, "id_ext=%s" }, { SRP_OPT_IOC_GUID, "ioc_guid=%s" }, { SRP_OPT_DGID, "dgid=%s" }, { SRP_OPT_PKEY, "pkey=%x" }, { SRP_OPT_SERVICE_ID, "service_id=%s" }, { SRP_OPT_MAX_SECT, "max_sect=%d" }, { SRP_OPT_MAX_CMD_PER_LUN, "max_cmd_per_lun=%d" }, { SRP_OPT_IO_CLASS, "io_class=%x" }, { SRP_OPT_INITIATOR_EXT, "initiator_ext=%s" }, { SRP_OPT_CMD_SG_ENTRIES, "cmd_sg_entries=%u" }, { SRP_OPT_ALLOW_EXT_SG, "allow_ext_sg=%u" }, { SRP_OPT_SG_TABLESIZE, "sg_tablesize=%u" }, { SRP_OPT_COMP_VECTOR, "comp_vector=%u" }, { SRP_OPT_TL_RETRY_COUNT, "tl_retry_count=%u" }, { SRP_OPT_QUEUE_SIZE, "queue_size=%d" }, { SRP_OPT_ERR, NULL } }; static int srp_parse_options(const char *buf, struct srp_target_port *target) { char *options, *sep_opt; char *p; char dgid[3]; substring_t args[MAX_OPT_ARGS]; int opt_mask = 0; int token; int ret = -EINVAL; int i; options = kstrdup(buf, GFP_KERNEL); if (!options) return -ENOMEM; sep_opt = options; while ((p = strsep(&sep_opt, ",")) != NULL) { if (!*p) continue; token = match_token(p, srp_opt_tokens, args); opt_mask |= token; switch (token) { case SRP_OPT_ID_EXT: p = match_strdup(args); if (!p) { ret = -ENOMEM; goto out; } target->id_ext = cpu_to_be64(simple_strtoull(p, NULL, 16)); kfree(p); break; case SRP_OPT_IOC_GUID: p = match_strdup(args); if (!p) { ret = -ENOMEM; goto out; } target->ioc_guid = cpu_to_be64(simple_strtoull(p, NULL, 16)); kfree(p); break; case SRP_OPT_DGID: p = match_strdup(args); if (!p) { ret = -ENOMEM; goto out; } if (strlen(p) != 32) { pr_warn("bad dest GID parameter '%s'\n", p); kfree(p); goto out; } for (i = 0; i < 16; ++i) { strlcpy(dgid, p + i * 2, 3); target->path.dgid.raw[i] = simple_strtoul(dgid, NULL, 16); } kfree(p); memcpy(target->orig_dgid, target->path.dgid.raw, 16); break; case SRP_OPT_PKEY: if (match_hex(args, &token)) { pr_warn("bad P_Key parameter '%s'\n", p); goto out; } target->path.pkey = cpu_to_be16(token); break; case SRP_OPT_SERVICE_ID: p = match_strdup(args); if (!p) { ret = -ENOMEM; goto out; } target->service_id = cpu_to_be64(simple_strtoull(p, NULL, 16)); target->path.service_id = target->service_id; kfree(p); break; case SRP_OPT_MAX_SECT: if (match_int(args, &token)) { pr_warn("bad max sect parameter '%s'\n", p); goto out; } target->scsi_host->max_sectors = token; break; case SRP_OPT_QUEUE_SIZE: if (match_int(args, &token) || token < 1) { pr_warn("bad queue_size parameter '%s'\n", p); goto out; } target->scsi_host->can_queue = token; target->queue_size = token + SRP_RSP_SQ_SIZE + SRP_TSK_MGMT_SQ_SIZE; if (!(opt_mask & SRP_OPT_MAX_CMD_PER_LUN)) target->scsi_host->cmd_per_lun = token; break; case SRP_OPT_MAX_CMD_PER_LUN: if (match_int(args, &token) || token < 1) { pr_warn("bad max cmd_per_lun parameter '%s'\n", p); goto out; } target->scsi_host->cmd_per_lun = token; break; case SRP_OPT_IO_CLASS: if (match_hex(args, &token)) { pr_warn("bad IO class parameter '%s'\n", p); goto out; } if (token != SRP_REV10_IB_IO_CLASS && token != SRP_REV16A_IB_IO_CLASS) { pr_warn("unknown IO class parameter value %x specified (use %x or %x).\n", token, SRP_REV10_IB_IO_CLASS, SRP_REV16A_IB_IO_CLASS); goto out; } target->io_class = token; break; case SRP_OPT_INITIATOR_EXT: p = match_strdup(args); if (!p) { ret = -ENOMEM; goto out; } target->initiator_ext = cpu_to_be64(simple_strtoull(p, NULL, 16)); kfree(p); break; case SRP_OPT_CMD_SG_ENTRIES: if (match_int(args, &token) || token < 1 || token > 255) { pr_warn("bad max cmd_sg_entries parameter '%s'\n", p); goto out; } target->cmd_sg_cnt = token; break; case SRP_OPT_ALLOW_EXT_SG: if (match_int(args, &token)) { pr_warn("bad allow_ext_sg parameter '%s'\n", p); goto out; } target->allow_ext_sg = !!token; break; case SRP_OPT_SG_TABLESIZE: if (match_int(args, &token) || token < 1 || token > SCSI_MAX_SG_CHAIN_SEGMENTS) { pr_warn("bad max sg_tablesize parameter '%s'\n", p); goto out; } target->sg_tablesize = token; break; case SRP_OPT_COMP_VECTOR: if (match_int(args, &token) || token < 0) { pr_warn("bad comp_vector parameter '%s'\n", p); goto out; } target->comp_vector = token; break; case SRP_OPT_TL_RETRY_COUNT: if (match_int(args, &token) || token < 2 || token > 7) { pr_warn("bad tl_retry_count parameter '%s' (must be a number between 2 and 7)\n", p); goto out; } target->tl_retry_count = token; break; default: pr_warn("unknown parameter or missing value '%s' in target creation request\n", p); goto out; } } if ((opt_mask & SRP_OPT_ALL) == SRP_OPT_ALL) ret = 0; else for (i = 0; i < ARRAY_SIZE(srp_opt_tokens); ++i) if ((srp_opt_tokens[i].token & SRP_OPT_ALL) && !(srp_opt_tokens[i].token & opt_mask)) pr_warn("target creation request is missing parameter '%s'\n", srp_opt_tokens[i].pattern); if (target->scsi_host->cmd_per_lun > target->scsi_host->can_queue && (opt_mask & SRP_OPT_MAX_CMD_PER_LUN)) pr_warn("cmd_per_lun = %d > queue_size = %d\n", target->scsi_host->cmd_per_lun, target->scsi_host->can_queue); out: kfree(options); return ret; } static ssize_t srp_create_target(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct srp_host *host = container_of(dev, struct srp_host, dev); struct Scsi_Host *target_host; struct srp_target_port *target; struct ib_device *ibdev = host->srp_dev->dev; int ret; target_host = scsi_host_alloc(&srp_template, sizeof (struct srp_target_port)); if (!target_host) return -ENOMEM; target_host->transportt = ib_srp_transport_template; target_host->max_channel = 0; target_host->max_id = 1; target_host->max_lun = SRP_MAX_LUN; target_host->max_cmd_len = sizeof ((struct srp_cmd *) (void *) 0L)->cdb; target = host_to_target(target_host); target->io_class = SRP_REV16A_IB_IO_CLASS; target->scsi_host = target_host; target->srp_host = host; target->lkey = host->srp_dev->mr->lkey; target->rkey = host->srp_dev->mr->rkey; target->cmd_sg_cnt = cmd_sg_entries; target->sg_tablesize = indirect_sg_entries ? : cmd_sg_entries; target->allow_ext_sg = allow_ext_sg; target->tl_retry_count = 7; target->queue_size = SRP_DEFAULT_QUEUE_SIZE; mutex_lock(&host->add_target_mutex); ret = srp_parse_options(buf, target); if (ret) goto err; target->req_ring_size = target->queue_size - SRP_TSK_MGMT_SQ_SIZE; if (!srp_conn_unique(target->srp_host, target)) { shost_printk(KERN_INFO, target->scsi_host, PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;initiator_ext=%016llx\n", be64_to_cpu(target->id_ext), be64_to_cpu(target->ioc_guid), be64_to_cpu(target->initiator_ext)); ret = -EEXIST; goto err; } if (!host->srp_dev->fmr_pool && !target->allow_ext_sg && target->cmd_sg_cnt < target->sg_tablesize) { pr_warn("No FMR pool and no external indirect descriptors, limiting sg_tablesize to cmd_sg_cnt\n"); target->sg_tablesize = target->cmd_sg_cnt; } target_host->sg_tablesize = target->sg_tablesize; target->indirect_size = target->sg_tablesize * sizeof (struct srp_direct_buf); target->max_iu_len = sizeof (struct srp_cmd) + sizeof (struct srp_indirect_buf) + target->cmd_sg_cnt * sizeof (struct srp_direct_buf); INIT_WORK(&target->tl_err_work, srp_tl_err_work); INIT_WORK(&target->remove_work, srp_remove_work); spin_lock_init(&target->lock); INIT_LIST_HEAD(&target->free_tx); ret = srp_alloc_req_data(target); if (ret) goto err_free_mem; ret = ib_query_gid(ibdev, host->port, 0, &target->path.sgid); if (ret) goto err_free_mem; ret = srp_create_target_ib(target); if (ret) goto err_free_mem; ret = srp_new_cm_id(target); if (ret) goto err_free_ib; ret = srp_connect_target(target); if (ret) { shost_printk(KERN_ERR, target->scsi_host, PFX "Connection failed\n"); goto err_cm_id; } ret = srp_add_target(host, target); if (ret) goto err_disconnect; shost_printk(KERN_DEBUG, target->scsi_host, PFX "new target: id_ext %016llx ioc_guid %016llx pkey %04x service_id %016llx sgid %pI6 dgid %pI6\n", be64_to_cpu(target->id_ext), be64_to_cpu(target->ioc_guid), be16_to_cpu(target->path.pkey), be64_to_cpu(target->service_id), target->path.sgid.raw, target->path.dgid.raw); ret = count; out: mutex_unlock(&host->add_target_mutex); return ret; err_disconnect: srp_disconnect_target(target); err_cm_id: ib_destroy_cm_id(target->cm_id); err_free_ib: srp_free_target_ib(target); err_free_mem: srp_free_req_data(target); err: scsi_host_put(target_host); goto out; } static DEVICE_ATTR(add_target, S_IWUSR, NULL, srp_create_target); static ssize_t show_ibdev(struct device *dev, struct device_attribute *attr, char *buf) { struct srp_host *host = container_of(dev, struct srp_host, dev); return sprintf(buf, "%s\n", host->srp_dev->dev->name); } static DEVICE_ATTR(ibdev, S_IRUGO, show_ibdev, NULL); static ssize_t show_port(struct device *dev, struct device_attribute *attr, char *buf) { struct srp_host *host = container_of(dev, struct srp_host, dev); return sprintf(buf, "%d\n", host->port); } static DEVICE_ATTR(port, S_IRUGO, show_port, NULL); static struct srp_host *srp_add_port(struct srp_device *device, u8 port) { struct srp_host *host; host = kzalloc(sizeof *host, GFP_KERNEL); if (!host) return NULL; INIT_LIST_HEAD(&host->target_list); spin_lock_init(&host->target_lock); init_completion(&host->released); mutex_init(&host->add_target_mutex); host->srp_dev = device; host->port = port; host->dev.class = &srp_class; host->dev.parent = device->dev->dma_device; dev_set_name(&host->dev, "srp-%s-%d", device->dev->name, port); if (device_register(&host->dev)) goto free_host; if (device_create_file(&host->dev, &dev_attr_add_target)) goto err_class; if (device_create_file(&host->dev, &dev_attr_ibdev)) goto err_class; if (device_create_file(&host->dev, &dev_attr_port)) goto err_class; return host; err_class: device_unregister(&host->dev); free_host: kfree(host); return NULL; } static void srp_add_one(struct ib_device *device) { struct srp_device *srp_dev; struct ib_device_attr *dev_attr; struct ib_fmr_pool_param fmr_param; struct srp_host *host; int max_pages_per_fmr, fmr_page_shift, s, e, p; dev_attr = kmalloc(sizeof *dev_attr, GFP_KERNEL); if (!dev_attr) return; if (ib_query_device(device, dev_attr)) { pr_warn("Query device failed for %s\n", device->name); goto free_attr; } srp_dev = kmalloc(sizeof *srp_dev, GFP_KERNEL); if (!srp_dev) goto free_attr; /* * Use the smallest page size supported by the HCA, down to a * minimum of 4096 bytes. We're unlikely to build large sglists * out of smaller entries. */ fmr_page_shift = max(12, ffs(dev_attr->page_size_cap) - 1); srp_dev->fmr_page_size = 1 << fmr_page_shift; srp_dev->fmr_page_mask = ~((u64) srp_dev->fmr_page_size - 1); srp_dev->fmr_max_size = srp_dev->fmr_page_size * SRP_FMR_SIZE; INIT_LIST_HEAD(&srp_dev->dev_list); srp_dev->dev = device; srp_dev->pd = ib_alloc_pd(device); if (IS_ERR(srp_dev->pd)) goto free_dev; srp_dev->mr = ib_get_dma_mr(srp_dev->pd, IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE); if (IS_ERR(srp_dev->mr)) goto err_pd; for (max_pages_per_fmr = SRP_FMR_SIZE; max_pages_per_fmr >= SRP_FMR_MIN_SIZE; max_pages_per_fmr /= 2, srp_dev->fmr_max_size /= 2) { memset(&fmr_param, 0, sizeof fmr_param); fmr_param.pool_size = SRP_FMR_POOL_SIZE; fmr_param.dirty_watermark = SRP_FMR_DIRTY_SIZE; fmr_param.cache = 1; fmr_param.max_pages_per_fmr = max_pages_per_fmr; fmr_param.page_shift = fmr_page_shift; fmr_param.access = (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | IB_ACCESS_REMOTE_READ); srp_dev->fmr_pool = ib_create_fmr_pool(srp_dev->pd, &fmr_param); if (!IS_ERR(srp_dev->fmr_pool)) break; } if (IS_ERR(srp_dev->fmr_pool)) srp_dev->fmr_pool = NULL; if (device->node_type == RDMA_NODE_IB_SWITCH) { s = 0; e = 0; } else { s = 1; e = device->phys_port_cnt; } for (p = s; p <= e; ++p) { host = srp_add_port(srp_dev, p); if (host) list_add_tail(&host->list, &srp_dev->dev_list); } ib_set_client_data(device, &srp_client, srp_dev); goto free_attr; err_pd: ib_dealloc_pd(srp_dev->pd); free_dev: kfree(srp_dev); free_attr: kfree(dev_attr); } static void srp_remove_one(struct ib_device *device) { struct srp_device *srp_dev; struct srp_host *host, *tmp_host; struct srp_target_port *target; srp_dev = ib_get_client_data(device, &srp_client); if (!srp_dev) return; list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) { device_unregister(&host->dev); /* * Wait for the sysfs entry to go away, so that no new * target ports can be created. */ wait_for_completion(&host->released); /* * Remove all target ports. */ spin_lock(&host->target_lock); list_for_each_entry(target, &host->target_list, list) srp_queue_remove_work(target); spin_unlock(&host->target_lock); /* * Wait for target port removal tasks. */ flush_workqueue(system_long_wq); kfree(host); } if (srp_dev->fmr_pool) ib_destroy_fmr_pool(srp_dev->fmr_pool); ib_dereg_mr(srp_dev->mr); ib_dealloc_pd(srp_dev->pd); kfree(srp_dev); } static struct srp_function_template ib_srp_transport_functions = { .has_rport_state = true, .reset_timer_if_blocked = true, .reconnect_delay = &srp_reconnect_delay, .fast_io_fail_tmo = &srp_fast_io_fail_tmo, .dev_loss_tmo = &srp_dev_loss_tmo, .reconnect = srp_rport_reconnect, .rport_delete = srp_rport_delete, .terminate_rport_io = srp_terminate_io, }; static int __init srp_init_module(void) { int ret; BUILD_BUG_ON(FIELD_SIZEOF(struct ib_wc, wr_id) < sizeof(void *)); if (srp_sg_tablesize) { pr_warn("srp_sg_tablesize is deprecated, please use cmd_sg_entries\n"); if (!cmd_sg_entries) cmd_sg_entries = srp_sg_tablesize; } if (!cmd_sg_entries) cmd_sg_entries = SRP_DEF_SG_TABLESIZE; if (cmd_sg_entries > 255) { pr_warn("Clamping cmd_sg_entries to 255\n"); cmd_sg_entries = 255; } if (!indirect_sg_entries) indirect_sg_entries = cmd_sg_entries; else if (indirect_sg_entries < cmd_sg_entries) { pr_warn("Bumping up indirect_sg_entries to match cmd_sg_entries (%u)\n", cmd_sg_entries); indirect_sg_entries = cmd_sg_entries; } ib_srp_transport_template = srp_attach_transport(&ib_srp_transport_functions); if (!ib_srp_transport_template) return -ENOMEM; ret = class_register(&srp_class); if (ret) { pr_err("couldn't register class infiniband_srp\n"); srp_release_transport(ib_srp_transport_template); return ret; } ib_sa_register_client(&srp_sa_client); ret = ib_register_client(&srp_client); if (ret) { pr_err("couldn't register IB client\n"); srp_release_transport(ib_srp_transport_template); ib_sa_unregister_client(&srp_sa_client); class_unregister(&srp_class); return ret; } return 0; } static void __exit srp_cleanup_module(void) { ib_unregister_client(&srp_client); ib_sa_unregister_client(&srp_sa_client); class_unregister(&srp_class); srp_release_transport(ib_srp_transport_template); } module_init(srp_init_module); module_exit(srp_cleanup_module);