/* * Copyright(c) 2016 - 2018 Intel Corporation. * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include #include "cq.h" #include "vt.h" #include "trace.h" static struct workqueue_struct *comp_vector_wq; /** * rvt_cq_enter - add a new entry to the completion queue * @cq: completion queue * @entry: work completion entry to add * @solicited: true if @entry is solicited * * This may be called with qp->s_lock held. * * Return: return true on success, else return * false if cq is full. */ bool rvt_cq_enter(struct rvt_cq *cq, struct ib_wc *entry, bool solicited) { struct ib_uverbs_wc *uqueue = NULL; struct ib_wc *kqueue = NULL; struct rvt_cq_wc *u_wc = NULL; struct rvt_k_cq_wc *k_wc = NULL; unsigned long flags; u32 head; u32 next; u32 tail; spin_lock_irqsave(&cq->lock, flags); if (cq->ip) { u_wc = cq->queue; uqueue = &u_wc->uqueue[0]; head = RDMA_READ_UAPI_ATOMIC(u_wc->head); tail = RDMA_READ_UAPI_ATOMIC(u_wc->tail); } else { k_wc = cq->kqueue; kqueue = &k_wc->kqueue[0]; head = k_wc->head; tail = k_wc->tail; } /* * Note that the head pointer might be writable by * user processes.Take care to verify it is a sane value. */ if (head >= (unsigned)cq->ibcq.cqe) { head = cq->ibcq.cqe; next = 0; } else { next = head + 1; } if (unlikely(next == tail || cq->cq_full)) { struct rvt_dev_info *rdi = cq->rdi; if (!cq->cq_full) rvt_pr_err_ratelimited(rdi, "CQ is full!\n"); cq->cq_full = true; spin_unlock_irqrestore(&cq->lock, flags); if (cq->ibcq.event_handler) { struct ib_event ev; ev.device = cq->ibcq.device; ev.element.cq = &cq->ibcq; ev.event = IB_EVENT_CQ_ERR; cq->ibcq.event_handler(&ev, cq->ibcq.cq_context); } return false; } trace_rvt_cq_enter(cq, entry, head); if (uqueue) { uqueue[head].wr_id = entry->wr_id; uqueue[head].status = entry->status; uqueue[head].opcode = entry->opcode; uqueue[head].vendor_err = entry->vendor_err; uqueue[head].byte_len = entry->byte_len; uqueue[head].ex.imm_data = entry->ex.imm_data; uqueue[head].qp_num = entry->qp->qp_num; uqueue[head].src_qp = entry->src_qp; uqueue[head].wc_flags = entry->wc_flags; uqueue[head].pkey_index = entry->pkey_index; uqueue[head].slid = ib_lid_cpu16(entry->slid); uqueue[head].sl = entry->sl; uqueue[head].dlid_path_bits = entry->dlid_path_bits; uqueue[head].port_num = entry->port_num; /* Make sure entry is written before the head index. */ RDMA_WRITE_UAPI_ATOMIC(u_wc->head, next); } else { kqueue[head] = *entry; k_wc->head = next; } if (cq->notify == IB_CQ_NEXT_COMP || (cq->notify == IB_CQ_SOLICITED && (solicited || entry->status != IB_WC_SUCCESS))) { /* * This will cause send_complete() to be called in * another thread. */ cq->notify = RVT_CQ_NONE; cq->triggered++; queue_work_on(cq->comp_vector_cpu, comp_vector_wq, &cq->comptask); } spin_unlock_irqrestore(&cq->lock, flags); return true; } EXPORT_SYMBOL(rvt_cq_enter); static void send_complete(struct work_struct *work) { struct rvt_cq *cq = container_of(work, struct rvt_cq, comptask); /* * The completion handler will most likely rearm the notification * and poll for all pending entries. If a new completion entry * is added while we are in this routine, queue_work() * won't call us again until we return so we check triggered to * see if we need to call the handler again. */ for (;;) { u8 triggered = cq->triggered; /* * IPoIB connected mode assumes the callback is from a * soft IRQ. We simulate this by blocking "bottom halves". * See the implementation for ipoib_cm_handle_tx_wc(), * netif_tx_lock_bh() and netif_tx_lock(). */ local_bh_disable(); cq->ibcq.comp_handler(&cq->ibcq, cq->ibcq.cq_context); local_bh_enable(); if (cq->triggered == triggered) return; } } /** * rvt_create_cq - create a completion queue * @ibcq: Allocated CQ * @attr: creation attributes * @udata: user data for libibverbs.so * * Called by ib_create_cq() in the generic verbs code. * * Return: 0 on success */ int rvt_create_cq(struct ib_cq *ibcq, const struct ib_cq_init_attr *attr, struct ib_udata *udata) { struct ib_device *ibdev = ibcq->device; struct rvt_dev_info *rdi = ib_to_rvt(ibdev); struct rvt_cq *cq = ibcq_to_rvtcq(ibcq); struct rvt_cq_wc *u_wc = NULL; struct rvt_k_cq_wc *k_wc = NULL; u32 sz; unsigned int entries = attr->cqe; int comp_vector = attr->comp_vector; int err; if (attr->flags) return -EINVAL; if (entries < 1 || entries > rdi->dparms.props.max_cqe) return -EINVAL; if (comp_vector < 0) comp_vector = 0; comp_vector = comp_vector % rdi->ibdev.num_comp_vectors; /* * Allocate the completion queue entries and head/tail pointers. * This is allocated separately so that it can be resized and * also mapped into user space. * We need to use vmalloc() in order to support mmap and large * numbers of entries. */ if (udata && udata->outlen >= sizeof(__u64)) { sz = sizeof(struct ib_uverbs_wc) * (entries + 1); sz += sizeof(*u_wc); u_wc = vmalloc_user(sz); if (!u_wc) return -ENOMEM; } else { sz = sizeof(struct ib_wc) * (entries + 1); sz += sizeof(*k_wc); k_wc = vzalloc_node(sz, rdi->dparms.node); if (!k_wc) return -ENOMEM; } /* * Return the address of the WC as the offset to mmap. * See rvt_mmap() for details. */ if (udata && udata->outlen >= sizeof(__u64)) { cq->ip = rvt_create_mmap_info(rdi, sz, udata, u_wc); if (IS_ERR(cq->ip)) { err = PTR_ERR(cq->ip); goto bail_wc; } err = ib_copy_to_udata(udata, &cq->ip->offset, sizeof(cq->ip->offset)); if (err) goto bail_ip; } spin_lock_irq(&rdi->n_cqs_lock); if (rdi->n_cqs_allocated == rdi->dparms.props.max_cq) { spin_unlock_irq(&rdi->n_cqs_lock); err = -ENOMEM; goto bail_ip; } rdi->n_cqs_allocated++; spin_unlock_irq(&rdi->n_cqs_lock); if (cq->ip) { spin_lock_irq(&rdi->pending_lock); list_add(&cq->ip->pending_mmaps, &rdi->pending_mmaps); spin_unlock_irq(&rdi->pending_lock); } /* * ib_create_cq() will initialize cq->ibcq except for cq->ibcq.cqe. * The number of entries should be >= the number requested or return * an error. */ cq->rdi = rdi; if (rdi->driver_f.comp_vect_cpu_lookup) cq->comp_vector_cpu = rdi->driver_f.comp_vect_cpu_lookup(rdi, comp_vector); else cq->comp_vector_cpu = cpumask_first(cpumask_of_node(rdi->dparms.node)); cq->ibcq.cqe = entries; cq->notify = RVT_CQ_NONE; spin_lock_init(&cq->lock); INIT_WORK(&cq->comptask, send_complete); if (u_wc) cq->queue = u_wc; else cq->kqueue = k_wc; trace_rvt_create_cq(cq, attr); return 0; bail_ip: kfree(cq->ip); bail_wc: vfree(u_wc); vfree(k_wc); return err; } /** * rvt_destroy_cq - destroy a completion queue * @ibcq: the completion queue to destroy. * @udata: user data or NULL for kernel object * * Called by ib_destroy_cq() in the generic verbs code. */ void rvt_destroy_cq(struct ib_cq *ibcq, struct ib_udata *udata) { struct rvt_cq *cq = ibcq_to_rvtcq(ibcq); struct rvt_dev_info *rdi = cq->rdi; flush_work(&cq->comptask); spin_lock_irq(&rdi->n_cqs_lock); rdi->n_cqs_allocated--; spin_unlock_irq(&rdi->n_cqs_lock); if (cq->ip) kref_put(&cq->ip->ref, rvt_release_mmap_info); else vfree(cq->kqueue); } /** * rvt_req_notify_cq - change the notification type for a completion queue * @ibcq: the completion queue * @notify_flags: the type of notification to request * * This may be called from interrupt context. Also called by * ib_req_notify_cq() in the generic verbs code. * * Return: 0 for success. */ int rvt_req_notify_cq(struct ib_cq *ibcq, enum ib_cq_notify_flags notify_flags) { struct rvt_cq *cq = ibcq_to_rvtcq(ibcq); unsigned long flags; int ret = 0; spin_lock_irqsave(&cq->lock, flags); /* * Don't change IB_CQ_NEXT_COMP to IB_CQ_SOLICITED but allow * any other transitions (see C11-31 and C11-32 in ch. 11.4.2.2). */ if (cq->notify != IB_CQ_NEXT_COMP) cq->notify = notify_flags & IB_CQ_SOLICITED_MASK; if (notify_flags & IB_CQ_REPORT_MISSED_EVENTS) { if (cq->queue) { if (RDMA_READ_UAPI_ATOMIC(cq->queue->head) != RDMA_READ_UAPI_ATOMIC(cq->queue->tail)) ret = 1; } else { if (cq->kqueue->head != cq->kqueue->tail) ret = 1; } } spin_unlock_irqrestore(&cq->lock, flags); return ret; } /** * rvt_resize_cq - change the size of the CQ * @ibcq: the completion queue * * Return: 0 for success. */ int rvt_resize_cq(struct ib_cq *ibcq, int cqe, struct ib_udata *udata) { struct rvt_cq *cq = ibcq_to_rvtcq(ibcq); u32 head, tail, n; int ret; u32 sz; struct rvt_dev_info *rdi = cq->rdi; struct rvt_cq_wc *u_wc = NULL; struct rvt_cq_wc *old_u_wc = NULL; struct rvt_k_cq_wc *k_wc = NULL; struct rvt_k_cq_wc *old_k_wc = NULL; if (cqe < 1 || cqe > rdi->dparms.props.max_cqe) return -EINVAL; /* * Need to use vmalloc() if we want to support large #s of entries. */ if (udata && udata->outlen >= sizeof(__u64)) { sz = sizeof(struct ib_uverbs_wc) * (cqe + 1); sz += sizeof(*u_wc); u_wc = vmalloc_user(sz); if (!u_wc) return -ENOMEM; } else { sz = sizeof(struct ib_wc) * (cqe + 1); sz += sizeof(*k_wc); k_wc = vzalloc_node(sz, rdi->dparms.node); if (!k_wc) return -ENOMEM; } /* Check that we can write the offset to mmap. */ if (udata && udata->outlen >= sizeof(__u64)) { __u64 offset = 0; ret = ib_copy_to_udata(udata, &offset, sizeof(offset)); if (ret) goto bail_free; } spin_lock_irq(&cq->lock); /* * Make sure head and tail are sane since they * might be user writable. */ if (u_wc) { old_u_wc = cq->queue; head = RDMA_READ_UAPI_ATOMIC(old_u_wc->head); tail = RDMA_READ_UAPI_ATOMIC(old_u_wc->tail); } else { old_k_wc = cq->kqueue; head = old_k_wc->head; tail = old_k_wc->tail; } if (head > (u32)cq->ibcq.cqe) head = (u32)cq->ibcq.cqe; if (tail > (u32)cq->ibcq.cqe) tail = (u32)cq->ibcq.cqe; if (head < tail) n = cq->ibcq.cqe + 1 + head - tail; else n = head - tail; if (unlikely((u32)cqe < n)) { ret = -EINVAL; goto bail_unlock; } for (n = 0; tail != head; n++) { if (u_wc) u_wc->uqueue[n] = old_u_wc->uqueue[tail]; else k_wc->kqueue[n] = old_k_wc->kqueue[tail]; if (tail == (u32)cq->ibcq.cqe) tail = 0; else tail++; } cq->ibcq.cqe = cqe; if (u_wc) { RDMA_WRITE_UAPI_ATOMIC(u_wc->head, n); RDMA_WRITE_UAPI_ATOMIC(u_wc->tail, 0); cq->queue = u_wc; } else { k_wc->head = n; k_wc->tail = 0; cq->kqueue = k_wc; } spin_unlock_irq(&cq->lock); if (u_wc) vfree(old_u_wc); else vfree(old_k_wc); if (cq->ip) { struct rvt_mmap_info *ip = cq->ip; rvt_update_mmap_info(rdi, ip, sz, u_wc); /* * Return the offset to mmap. * See rvt_mmap() for details. */ if (udata && udata->outlen >= sizeof(__u64)) { ret = ib_copy_to_udata(udata, &ip->offset, sizeof(ip->offset)); if (ret) return ret; } spin_lock_irq(&rdi->pending_lock); if (list_empty(&ip->pending_mmaps)) list_add(&ip->pending_mmaps, &rdi->pending_mmaps); spin_unlock_irq(&rdi->pending_lock); } return 0; bail_unlock: spin_unlock_irq(&cq->lock); bail_free: vfree(u_wc); vfree(k_wc); return ret; } /** * rvt_poll_cq - poll for work completion entries * @ibcq: the completion queue to poll * @num_entries: the maximum number of entries to return * @entry: pointer to array where work completions are placed * * This may be called from interrupt context. Also called by ib_poll_cq() * in the generic verbs code. * * Return: the number of completion entries polled. */ int rvt_poll_cq(struct ib_cq *ibcq, int num_entries, struct ib_wc *entry) { struct rvt_cq *cq = ibcq_to_rvtcq(ibcq); struct rvt_k_cq_wc *wc; unsigned long flags; int npolled; u32 tail; /* The kernel can only poll a kernel completion queue */ if (cq->ip) return -EINVAL; spin_lock_irqsave(&cq->lock, flags); wc = cq->kqueue; tail = wc->tail; if (tail > (u32)cq->ibcq.cqe) tail = (u32)cq->ibcq.cqe; for (npolled = 0; npolled < num_entries; ++npolled, ++entry) { if (tail == wc->head) break; /* The kernel doesn't need a RMB since it has the lock. */ trace_rvt_cq_poll(cq, &wc->kqueue[tail], npolled); *entry = wc->kqueue[tail]; if (tail >= cq->ibcq.cqe) tail = 0; else tail++; } wc->tail = tail; spin_unlock_irqrestore(&cq->lock, flags); return npolled; } /** * rvt_driver_cq_init - Init cq resources on behalf of driver * * Return: 0 on success */ int rvt_driver_cq_init(void) { comp_vector_wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_CPU_INTENSIVE, 0, "rdmavt_cq"); if (!comp_vector_wq) return -ENOMEM; return 0; } /** * rvt_cq_exit - tear down cq reources */ void rvt_cq_exit(void) { destroy_workqueue(comp_vector_wq); comp_vector_wq = NULL; }