/* * Copyright (c) 2016 Hisilicon Limited. * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/vmalloc.h> #include <rdma/ib_umem.h> #include "hns_roce_device.h" #include "hns_roce_cmd.h" #include "hns_roce_hem.h" static u32 hw_index_to_key(int ind) { return ((u32)ind >> 24) | ((u32)ind << 8); } unsigned long key_to_hw_index(u32 key) { return (key << 24) | (key >> 8); } static int alloc_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr) { struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida; struct ib_device *ibdev = &hr_dev->ib_dev; int err; int id; /* Allocate a key for mr from mr_table */ id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max, GFP_KERNEL); if (id < 0) { ibdev_err(ibdev, "failed to alloc id for MR key, id(%d)\n", id); return -ENOMEM; } mr->key = hw_index_to_key(id); /* MR key */ err = hns_roce_table_get(hr_dev, &hr_dev->mr_table.mtpt_table, (unsigned long)id); if (err) { ibdev_err(ibdev, "failed to alloc mtpt, ret = %d.\n", err); goto err_free_bitmap; } return 0; err_free_bitmap: ida_free(&mtpt_ida->ida, id); return err; } static void free_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr) { unsigned long obj = key_to_hw_index(mr->key); hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table, obj); ida_free(&hr_dev->mr_table.mtpt_ida.ida, (int)obj); } static int alloc_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr, struct ib_udata *udata, u64 start) { struct ib_device *ibdev = &hr_dev->ib_dev; bool is_fast = mr->type == MR_TYPE_FRMR; struct hns_roce_buf_attr buf_attr = {}; int err; mr->pbl_hop_num = is_fast ? 1 : hr_dev->caps.pbl_hop_num; buf_attr.page_shift = is_fast ? PAGE_SHIFT : hr_dev->caps.pbl_buf_pg_sz + PAGE_SHIFT; buf_attr.region[0].size = mr->size; buf_attr.region[0].hopnum = mr->pbl_hop_num; buf_attr.region_count = 1; buf_attr.user_access = mr->access; /* fast MR's buffer is alloced before mapping, not at creation */ buf_attr.mtt_only = is_fast; err = hns_roce_mtr_create(hr_dev, &mr->pbl_mtr, &buf_attr, hr_dev->caps.pbl_ba_pg_sz + PAGE_SHIFT, udata, start); if (err) ibdev_err(ibdev, "failed to alloc pbl mtr, ret = %d.\n", err); else mr->npages = mr->pbl_mtr.hem_cfg.buf_pg_count; return err; } static void free_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr) { hns_roce_mtr_destroy(hr_dev, &mr->pbl_mtr); } static void hns_roce_mr_free(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr) { struct ib_device *ibdev = &hr_dev->ib_dev; int ret; if (mr->enabled) { ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT, key_to_hw_index(mr->key) & (hr_dev->caps.num_mtpts - 1)); if (ret) ibdev_warn(ibdev, "failed to destroy mpt, ret = %d.\n", ret); } free_mr_pbl(hr_dev, mr); free_mr_key(hr_dev, mr); } static int hns_roce_mr_enable(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr) { unsigned long mtpt_idx = key_to_hw_index(mr->key); struct hns_roce_cmd_mailbox *mailbox; struct device *dev = hr_dev->dev; int ret; /* Allocate mailbox memory */ mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); if (IS_ERR(mailbox)) return PTR_ERR(mailbox); if (mr->type != MR_TYPE_FRMR) ret = hr_dev->hw->write_mtpt(hr_dev, mailbox->buf, mr); else ret = hr_dev->hw->frmr_write_mtpt(hr_dev, mailbox->buf, mr); if (ret) { dev_err(dev, "failed to write mtpt, ret = %d.\n", ret); goto err_page; } ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT, mtpt_idx & (hr_dev->caps.num_mtpts - 1)); if (ret) { dev_err(dev, "failed to create mpt, ret = %d.\n", ret); goto err_page; } mr->enabled = 1; err_page: hns_roce_free_cmd_mailbox(hr_dev, mailbox); return ret; } void hns_roce_init_mr_table(struct hns_roce_dev *hr_dev) { struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida; ida_init(&mtpt_ida->ida); mtpt_ida->max = hr_dev->caps.num_mtpts - 1; mtpt_ida->min = hr_dev->caps.reserved_mrws; } struct ib_mr *hns_roce_get_dma_mr(struct ib_pd *pd, int acc) { struct hns_roce_dev *hr_dev = to_hr_dev(pd->device); struct hns_roce_mr *mr; int ret; mr = kzalloc(sizeof(*mr), GFP_KERNEL); if (mr == NULL) return ERR_PTR(-ENOMEM); mr->type = MR_TYPE_DMA; mr->pd = to_hr_pd(pd)->pdn; mr->access = acc; /* Allocate memory region key */ hns_roce_hem_list_init(&mr->pbl_mtr.hem_list); ret = alloc_mr_key(hr_dev, mr); if (ret) goto err_free; ret = hns_roce_mr_enable(hr_dev, mr); if (ret) goto err_mr; mr->ibmr.rkey = mr->ibmr.lkey = mr->key; return &mr->ibmr; err_mr: free_mr_key(hr_dev, mr); err_free: kfree(mr); return ERR_PTR(ret); } struct ib_mr *hns_roce_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, u64 virt_addr, int access_flags, struct ib_udata *udata) { struct hns_roce_dev *hr_dev = to_hr_dev(pd->device); struct hns_roce_mr *mr; int ret; mr = kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) return ERR_PTR(-ENOMEM); mr->iova = virt_addr; mr->size = length; mr->pd = to_hr_pd(pd)->pdn; mr->access = access_flags; mr->type = MR_TYPE_MR; ret = alloc_mr_key(hr_dev, mr); if (ret) goto err_alloc_mr; ret = alloc_mr_pbl(hr_dev, mr, udata, start); if (ret) goto err_alloc_key; ret = hns_roce_mr_enable(hr_dev, mr); if (ret) goto err_alloc_pbl; mr->ibmr.rkey = mr->ibmr.lkey = mr->key; mr->ibmr.length = length; return &mr->ibmr; err_alloc_pbl: free_mr_pbl(hr_dev, mr); err_alloc_key: free_mr_key(hr_dev, mr); err_alloc_mr: kfree(mr); return ERR_PTR(ret); } struct ib_mr *hns_roce_rereg_user_mr(struct ib_mr *ibmr, int flags, u64 start, u64 length, u64 virt_addr, int mr_access_flags, struct ib_pd *pd, struct ib_udata *udata) { struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device); struct ib_device *ib_dev = &hr_dev->ib_dev; struct hns_roce_mr *mr = to_hr_mr(ibmr); struct hns_roce_cmd_mailbox *mailbox; unsigned long mtpt_idx; int ret; if (!mr->enabled) return ERR_PTR(-EINVAL); mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); if (IS_ERR(mailbox)) return ERR_CAST(mailbox); mtpt_idx = key_to_hw_index(mr->key) & (hr_dev->caps.num_mtpts - 1); ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, HNS_ROCE_CMD_QUERY_MPT, mtpt_idx); if (ret) goto free_cmd_mbox; ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT, mtpt_idx); if (ret) ibdev_warn(ib_dev, "failed to destroy MPT, ret = %d.\n", ret); mr->enabled = 0; mr->iova = virt_addr; mr->size = length; if (flags & IB_MR_REREG_PD) mr->pd = to_hr_pd(pd)->pdn; if (flags & IB_MR_REREG_ACCESS) mr->access = mr_access_flags; if (flags & IB_MR_REREG_TRANS) { free_mr_pbl(hr_dev, mr); ret = alloc_mr_pbl(hr_dev, mr, udata, start); if (ret) { ibdev_err(ib_dev, "failed to alloc mr PBL, ret = %d.\n", ret); goto free_cmd_mbox; } } ret = hr_dev->hw->rereg_write_mtpt(hr_dev, mr, flags, mailbox->buf); if (ret) { ibdev_err(ib_dev, "failed to write mtpt, ret = %d.\n", ret); goto free_cmd_mbox; } ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT, mtpt_idx); if (ret) { ibdev_err(ib_dev, "failed to create MPT, ret = %d.\n", ret); goto free_cmd_mbox; } mr->enabled = 1; free_cmd_mbox: hns_roce_free_cmd_mailbox(hr_dev, mailbox); if (ret) return ERR_PTR(ret); return NULL; } int hns_roce_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata) { struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device); struct hns_roce_mr *mr = to_hr_mr(ibmr); if (hr_dev->hw->dereg_mr) hr_dev->hw->dereg_mr(hr_dev); hns_roce_mr_free(hr_dev, mr); kfree(mr); return 0; } struct ib_mr *hns_roce_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, u32 max_num_sg) { struct hns_roce_dev *hr_dev = to_hr_dev(pd->device); struct device *dev = hr_dev->dev; struct hns_roce_mr *mr; int ret; if (mr_type != IB_MR_TYPE_MEM_REG) return ERR_PTR(-EINVAL); if (max_num_sg > HNS_ROCE_FRMR_MAX_PA) { dev_err(dev, "max_num_sg larger than %d\n", HNS_ROCE_FRMR_MAX_PA); return ERR_PTR(-EINVAL); } mr = kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) return ERR_PTR(-ENOMEM); mr->type = MR_TYPE_FRMR; mr->pd = to_hr_pd(pd)->pdn; mr->size = max_num_sg * (1 << PAGE_SHIFT); /* Allocate memory region key */ ret = alloc_mr_key(hr_dev, mr); if (ret) goto err_free; ret = alloc_mr_pbl(hr_dev, mr, NULL, 0); if (ret) goto err_key; ret = hns_roce_mr_enable(hr_dev, mr); if (ret) goto err_pbl; mr->ibmr.rkey = mr->ibmr.lkey = mr->key; mr->ibmr.length = mr->size; return &mr->ibmr; err_key: free_mr_key(hr_dev, mr); err_pbl: free_mr_pbl(hr_dev, mr); err_free: kfree(mr); return ERR_PTR(ret); } static int hns_roce_set_page(struct ib_mr *ibmr, u64 addr) { struct hns_roce_mr *mr = to_hr_mr(ibmr); if (likely(mr->npages < mr->pbl_mtr.hem_cfg.buf_pg_count)) { mr->page_list[mr->npages++] = addr; return 0; } return -ENOBUFS; } int hns_roce_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents, unsigned int *sg_offset) { struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device); struct ib_device *ibdev = &hr_dev->ib_dev; struct hns_roce_mr *mr = to_hr_mr(ibmr); struct hns_roce_mtr *mtr = &mr->pbl_mtr; int ret = 0; mr->npages = 0; mr->page_list = kvcalloc(mr->pbl_mtr.hem_cfg.buf_pg_count, sizeof(dma_addr_t), GFP_KERNEL); if (!mr->page_list) return ret; ret = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, hns_roce_set_page); if (ret < 1) { ibdev_err(ibdev, "failed to store sg pages %u %u, cnt = %d.\n", mr->npages, mr->pbl_mtr.hem_cfg.buf_pg_count, ret); goto err_page_list; } mtr->hem_cfg.region[0].offset = 0; mtr->hem_cfg.region[0].count = mr->npages; mtr->hem_cfg.region[0].hopnum = mr->pbl_hop_num; mtr->hem_cfg.region_count = 1; ret = hns_roce_mtr_map(hr_dev, mtr, mr->page_list, mr->npages); if (ret) { ibdev_err(ibdev, "failed to map sg mtr, ret = %d.\n", ret); ret = 0; } else { mr->pbl_mtr.hem_cfg.buf_pg_shift = (u32)ilog2(ibmr->page_size); ret = mr->npages; } err_page_list: kvfree(mr->page_list); mr->page_list = NULL; return ret; } static void hns_roce_mw_free(struct hns_roce_dev *hr_dev, struct hns_roce_mw *mw) { struct device *dev = hr_dev->dev; int ret; if (mw->enabled) { ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT, key_to_hw_index(mw->rkey) & (hr_dev->caps.num_mtpts - 1)); if (ret) dev_warn(dev, "MW DESTROY_MPT failed (%d)\n", ret); hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table, key_to_hw_index(mw->rkey)); } ida_free(&hr_dev->mr_table.mtpt_ida.ida, (int)key_to_hw_index(mw->rkey)); } static int hns_roce_mw_enable(struct hns_roce_dev *hr_dev, struct hns_roce_mw *mw) { struct hns_roce_mr_table *mr_table = &hr_dev->mr_table; struct hns_roce_cmd_mailbox *mailbox; struct device *dev = hr_dev->dev; unsigned long mtpt_idx = key_to_hw_index(mw->rkey); int ret; /* prepare HEM entry memory */ ret = hns_roce_table_get(hr_dev, &mr_table->mtpt_table, mtpt_idx); if (ret) return ret; mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); if (IS_ERR(mailbox)) { ret = PTR_ERR(mailbox); goto err_table; } ret = hr_dev->hw->mw_write_mtpt(mailbox->buf, mw); if (ret) { dev_err(dev, "MW write mtpt fail!\n"); goto err_page; } ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT, mtpt_idx & (hr_dev->caps.num_mtpts - 1)); if (ret) { dev_err(dev, "MW CREATE_MPT failed (%d)\n", ret); goto err_page; } mw->enabled = 1; hns_roce_free_cmd_mailbox(hr_dev, mailbox); return 0; err_page: hns_roce_free_cmd_mailbox(hr_dev, mailbox); err_table: hns_roce_table_put(hr_dev, &mr_table->mtpt_table, mtpt_idx); return ret; } int hns_roce_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata) { struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device); struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida; struct ib_device *ibdev = &hr_dev->ib_dev; struct hns_roce_mw *mw = to_hr_mw(ibmw); int ret; int id; /* Allocate a key for mw from mr_table */ id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max, GFP_KERNEL); if (id < 0) { ibdev_err(ibdev, "failed to alloc id for MW key, id(%d)\n", id); return -ENOMEM; } mw->rkey = hw_index_to_key(id); ibmw->rkey = mw->rkey; mw->pdn = to_hr_pd(ibmw->pd)->pdn; mw->pbl_hop_num = hr_dev->caps.pbl_hop_num; mw->pbl_ba_pg_sz = hr_dev->caps.pbl_ba_pg_sz; mw->pbl_buf_pg_sz = hr_dev->caps.pbl_buf_pg_sz; ret = hns_roce_mw_enable(hr_dev, mw); if (ret) goto err_mw; return 0; err_mw: hns_roce_mw_free(hr_dev, mw); return ret; } int hns_roce_dealloc_mw(struct ib_mw *ibmw) { struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device); struct hns_roce_mw *mw = to_hr_mw(ibmw); hns_roce_mw_free(hr_dev, mw); return 0; } static int mtr_map_region(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, struct hns_roce_buf_region *region, dma_addr_t *pages, int max_count) { int count, npage; int offset, end; __le64 *mtts; u64 addr; int i; offset = region->offset; end = offset + region->count; npage = 0; while (offset < end && npage < max_count) { count = 0; mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list, offset, &count, NULL); if (!mtts) return -ENOBUFS; for (i = 0; i < count && npage < max_count; i++) { addr = pages[npage]; mtts[i] = cpu_to_le64(addr); npage++; } offset += count; } return npage; } static inline bool mtr_has_mtt(struct hns_roce_buf_attr *attr) { int i; for (i = 0; i < attr->region_count; i++) if (attr->region[i].hopnum != HNS_ROCE_HOP_NUM_0 && attr->region[i].hopnum > 0) return true; /* because the mtr only one root base address, when hopnum is 0 means * root base address equals the first buffer address, thus all alloced * memory must in a continuous space accessed by direct mode. */ return false; } static inline size_t mtr_bufs_size(struct hns_roce_buf_attr *attr) { size_t size = 0; int i; for (i = 0; i < attr->region_count; i++) size += attr->region[i].size; return size; } /* * check the given pages in continuous address space * Returns 0 on success, or the error page num. */ static inline int mtr_check_direct_pages(dma_addr_t *pages, int page_count, unsigned int page_shift) { size_t page_size = 1 << page_shift; int i; for (i = 1; i < page_count; i++) if (pages[i] - pages[i - 1] != page_size) return i; return 0; } static void mtr_free_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr) { /* release user buffers */ if (mtr->umem) { ib_umem_release(mtr->umem); mtr->umem = NULL; } /* release kernel buffers */ if (mtr->kmem) { hns_roce_buf_free(hr_dev, mtr->kmem); mtr->kmem = NULL; } } static int mtr_alloc_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, struct hns_roce_buf_attr *buf_attr, struct ib_udata *udata, unsigned long user_addr) { struct ib_device *ibdev = &hr_dev->ib_dev; size_t total_size; total_size = mtr_bufs_size(buf_attr); if (udata) { mtr->kmem = NULL; mtr->umem = ib_umem_get(ibdev, user_addr, total_size, buf_attr->user_access); if (IS_ERR_OR_NULL(mtr->umem)) { ibdev_err(ibdev, "failed to get umem, ret = %ld.\n", PTR_ERR(mtr->umem)); return -ENOMEM; } } else { mtr->umem = NULL; mtr->kmem = hns_roce_buf_alloc(hr_dev, total_size, buf_attr->page_shift, mtr->hem_cfg.is_direct ? HNS_ROCE_BUF_DIRECT : 0); if (IS_ERR(mtr->kmem)) { ibdev_err(ibdev, "failed to alloc kmem, ret = %ld.\n", PTR_ERR(mtr->kmem)); return PTR_ERR(mtr->kmem); } } return 0; } static int mtr_map_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, int page_count, unsigned int page_shift) { struct ib_device *ibdev = &hr_dev->ib_dev; dma_addr_t *pages; int npage; int ret; /* alloc a tmp array to store buffer's dma address */ pages = kvcalloc(page_count, sizeof(dma_addr_t), GFP_KERNEL); if (!pages) return -ENOMEM; if (mtr->umem) npage = hns_roce_get_umem_bufs(hr_dev, pages, page_count, mtr->umem, page_shift); else npage = hns_roce_get_kmem_bufs(hr_dev, pages, page_count, mtr->kmem, page_shift); if (npage != page_count) { ibdev_err(ibdev, "failed to get mtr page %d != %d.\n", npage, page_count); ret = -ENOBUFS; goto err_alloc_list; } if (mtr->hem_cfg.is_direct && npage > 1) { ret = mtr_check_direct_pages(pages, npage, page_shift); if (ret) { ibdev_err(ibdev, "failed to check %s page: %d / %d.\n", mtr->umem ? "umtr" : "kmtr", ret, npage); ret = -ENOBUFS; goto err_alloc_list; } } ret = hns_roce_mtr_map(hr_dev, mtr, pages, page_count); if (ret) ibdev_err(ibdev, "failed to map mtr pages, ret = %d.\n", ret); err_alloc_list: kvfree(pages); return ret; } int hns_roce_mtr_map(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, dma_addr_t *pages, unsigned int page_cnt) { struct ib_device *ibdev = &hr_dev->ib_dev; struct hns_roce_buf_region *r; unsigned int i, mapped_cnt; int ret = 0; /* * Only use the first page address as root ba when hopnum is 0, this * is because the addresses of all pages are consecutive in this case. */ if (mtr->hem_cfg.is_direct) { mtr->hem_cfg.root_ba = pages[0]; return 0; } for (i = 0, mapped_cnt = 0; i < mtr->hem_cfg.region_count && mapped_cnt < page_cnt; i++) { r = &mtr->hem_cfg.region[i]; /* if hopnum is 0, no need to map pages in this region */ if (!r->hopnum) { mapped_cnt += r->count; continue; } if (r->offset + r->count > page_cnt) { ret = -EINVAL; ibdev_err(ibdev, "failed to check mtr%u count %u + %u > %u.\n", i, r->offset, r->count, page_cnt); return ret; } ret = mtr_map_region(hr_dev, mtr, r, &pages[r->offset], page_cnt - mapped_cnt); if (ret < 0) { ibdev_err(ibdev, "failed to map mtr%u offset %u, ret = %d.\n", i, r->offset, ret); return ret; } mapped_cnt += ret; ret = 0; } if (mapped_cnt < page_cnt) { ret = -ENOBUFS; ibdev_err(ibdev, "failed to map mtr pages count: %u < %u.\n", mapped_cnt, page_cnt); } return ret; } int hns_roce_mtr_find(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, u32 offset, u64 *mtt_buf, int mtt_max, u64 *base_addr) { struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg; int mtt_count, left; u32 start_index; int total = 0; __le64 *mtts; u32 npage; u64 addr; if (!mtt_buf || mtt_max < 1) goto done; /* no mtt memory in direct mode, so just return the buffer address */ if (cfg->is_direct) { start_index = offset >> HNS_HW_PAGE_SHIFT; for (mtt_count = 0; mtt_count < cfg->region_count && total < mtt_max; mtt_count++) { npage = cfg->region[mtt_count].offset; if (npage < start_index) continue; addr = cfg->root_ba + (npage << HNS_HW_PAGE_SHIFT); mtt_buf[total] = addr; total++; } goto done; } start_index = offset >> cfg->buf_pg_shift; left = mtt_max; while (left > 0) { mtt_count = 0; mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list, start_index + total, &mtt_count, NULL); if (!mtts || !mtt_count) goto done; npage = min(mtt_count, left); left -= npage; for (mtt_count = 0; mtt_count < npage; mtt_count++) mtt_buf[total++] = le64_to_cpu(mtts[mtt_count]); } done: if (base_addr) *base_addr = cfg->root_ba; return total; } static int mtr_init_buf_cfg(struct hns_roce_dev *hr_dev, struct hns_roce_buf_attr *attr, struct hns_roce_hem_cfg *cfg, unsigned int *buf_page_shift, u64 unalinged_size) { struct hns_roce_buf_region *r; u64 first_region_padding; int page_cnt, region_cnt; unsigned int page_shift; size_t buf_size; /* If mtt is disabled, all pages must be within a continuous range */ cfg->is_direct = !mtr_has_mtt(attr); buf_size = mtr_bufs_size(attr); if (cfg->is_direct) { /* When HEM buffer uses 0-level addressing, the page size is * equal to the whole buffer size, and we split the buffer into * small pages which is used to check whether the adjacent * units are in the continuous space and its size is fixed to * 4K based on hns ROCEE's requirement. */ page_shift = HNS_HW_PAGE_SHIFT; /* The ROCEE requires the page size to be 4K * 2 ^ N. */ cfg->buf_pg_count = 1; cfg->buf_pg_shift = HNS_HW_PAGE_SHIFT + order_base_2(DIV_ROUND_UP(buf_size, HNS_HW_PAGE_SIZE)); first_region_padding = 0; } else { page_shift = attr->page_shift; cfg->buf_pg_count = DIV_ROUND_UP(buf_size + unalinged_size, 1 << page_shift); cfg->buf_pg_shift = page_shift; first_region_padding = unalinged_size; } /* Convert buffer size to page index and page count for each region and * the buffer's offset needs to be appended to the first region. */ for (page_cnt = 0, region_cnt = 0; region_cnt < attr->region_count && region_cnt < ARRAY_SIZE(cfg->region); region_cnt++) { r = &cfg->region[region_cnt]; r->offset = page_cnt; buf_size = hr_hw_page_align(attr->region[region_cnt].size + first_region_padding); r->count = DIV_ROUND_UP(buf_size, 1 << page_shift); first_region_padding = 0; page_cnt += r->count; r->hopnum = to_hr_hem_hopnum(attr->region[region_cnt].hopnum, r->count); } cfg->region_count = region_cnt; *buf_page_shift = page_shift; return page_cnt; } static int mtr_alloc_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, unsigned int ba_page_shift) { struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg; int ret; hns_roce_hem_list_init(&mtr->hem_list); if (!cfg->is_direct) { ret = hns_roce_hem_list_request(hr_dev, &mtr->hem_list, cfg->region, cfg->region_count, ba_page_shift); if (ret) return ret; cfg->root_ba = mtr->hem_list.root_ba; cfg->ba_pg_shift = ba_page_shift; } else { cfg->ba_pg_shift = cfg->buf_pg_shift; } return 0; } static void mtr_free_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr) { hns_roce_hem_list_release(hr_dev, &mtr->hem_list); } /** * hns_roce_mtr_create - Create hns memory translate region. * * @hr_dev: RoCE device struct pointer * @mtr: memory translate region * @buf_attr: buffer attribute for creating mtr * @ba_page_shift: page shift for multi-hop base address table * @udata: user space context, if it's NULL, means kernel space * @user_addr: userspace virtual address to start at */ int hns_roce_mtr_create(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, struct hns_roce_buf_attr *buf_attr, unsigned int ba_page_shift, struct ib_udata *udata, unsigned long user_addr) { struct ib_device *ibdev = &hr_dev->ib_dev; unsigned int buf_page_shift = 0; int buf_page_cnt; int ret; buf_page_cnt = mtr_init_buf_cfg(hr_dev, buf_attr, &mtr->hem_cfg, &buf_page_shift, udata ? user_addr & ~PAGE_MASK : 0); if (buf_page_cnt < 1 || buf_page_shift < HNS_HW_PAGE_SHIFT) { ibdev_err(ibdev, "failed to init mtr cfg, count %d shift %u.\n", buf_page_cnt, buf_page_shift); return -EINVAL; } ret = mtr_alloc_mtt(hr_dev, mtr, ba_page_shift); if (ret) { ibdev_err(ibdev, "failed to alloc mtr mtt, ret = %d.\n", ret); return ret; } /* The caller has its own buffer list and invokes the hns_roce_mtr_map() * to finish the MTT configuration. */ if (buf_attr->mtt_only) { mtr->umem = NULL; mtr->kmem = NULL; return 0; } ret = mtr_alloc_bufs(hr_dev, mtr, buf_attr, udata, user_addr); if (ret) { ibdev_err(ibdev, "failed to alloc mtr bufs, ret = %d.\n", ret); goto err_alloc_mtt; } /* Write buffer's dma address to MTT */ ret = mtr_map_bufs(hr_dev, mtr, buf_page_cnt, buf_page_shift); if (ret) ibdev_err(ibdev, "failed to map mtr bufs, ret = %d.\n", ret); else return 0; mtr_free_bufs(hr_dev, mtr); err_alloc_mtt: mtr_free_mtt(hr_dev, mtr); return ret; } void hns_roce_mtr_destroy(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr) { /* release multi-hop addressing resource */ hns_roce_hem_list_release(hr_dev, &mtr->hem_list); /* free buffers */ mtr_free_bufs(hr_dev, mtr); }