/* * Copyright (c) 2016 Hisilicon Limited. * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "hns_roce_device.h" #include "hns_roce_hem.h" #include "hns_roce_common.h" #define HEM_INDEX_BUF BIT(0) #define HEM_INDEX_L0 BIT(1) #define HEM_INDEX_L1 BIT(2) struct hns_roce_hem_index { u64 buf; u64 l0; u64 l1; u32 inited; /* indicate which index is available */ }; bool hns_roce_check_whether_mhop(struct hns_roce_dev *hr_dev, u32 type) { int hop_num = 0; switch (type) { case HEM_TYPE_QPC: hop_num = hr_dev->caps.qpc_hop_num; break; case HEM_TYPE_MTPT: hop_num = hr_dev->caps.mpt_hop_num; break; case HEM_TYPE_CQC: hop_num = hr_dev->caps.cqc_hop_num; break; case HEM_TYPE_SRQC: hop_num = hr_dev->caps.srqc_hop_num; break; case HEM_TYPE_SCCC: hop_num = hr_dev->caps.sccc_hop_num; break; case HEM_TYPE_QPC_TIMER: hop_num = hr_dev->caps.qpc_timer_hop_num; break; case HEM_TYPE_CQC_TIMER: hop_num = hr_dev->caps.cqc_timer_hop_num; break; case HEM_TYPE_GMV: hop_num = hr_dev->caps.gmv_hop_num; break; default: return false; } return hop_num ? true : false; } static bool hns_roce_check_hem_null(struct hns_roce_hem **hem, u64 hem_idx, u32 bt_chunk_num, u64 hem_max_num) { u64 start_idx = round_down(hem_idx, bt_chunk_num); u64 check_max_num = start_idx + bt_chunk_num; u64 i; for (i = start_idx; (i < check_max_num) && (i < hem_max_num); i++) if (i != hem_idx && hem[i]) return false; return true; } static bool hns_roce_check_bt_null(u64 **bt, u64 ba_idx, u32 bt_chunk_num) { u64 start_idx = round_down(ba_idx, bt_chunk_num); int i; for (i = 0; i < bt_chunk_num; i++) if (i != ba_idx && bt[start_idx + i]) return false; return true; } static int hns_roce_get_bt_num(u32 table_type, u32 hop_num) { if (check_whether_bt_num_3(table_type, hop_num)) return 3; else if (check_whether_bt_num_2(table_type, hop_num)) return 2; else if (check_whether_bt_num_1(table_type, hop_num)) return 1; else return 0; } static int get_hem_table_config(struct hns_roce_dev *hr_dev, struct hns_roce_hem_mhop *mhop, u32 type) { struct device *dev = hr_dev->dev; switch (type) { case HEM_TYPE_QPC: mhop->buf_chunk_size = 1 << (hr_dev->caps.qpc_buf_pg_sz + PAGE_SHIFT); mhop->bt_chunk_size = 1 << (hr_dev->caps.qpc_ba_pg_sz + PAGE_SHIFT); mhop->ba_l0_num = hr_dev->caps.qpc_bt_num; mhop->hop_num = hr_dev->caps.qpc_hop_num; break; case HEM_TYPE_MTPT: mhop->buf_chunk_size = 1 << (hr_dev->caps.mpt_buf_pg_sz + PAGE_SHIFT); mhop->bt_chunk_size = 1 << (hr_dev->caps.mpt_ba_pg_sz + PAGE_SHIFT); mhop->ba_l0_num = hr_dev->caps.mpt_bt_num; mhop->hop_num = hr_dev->caps.mpt_hop_num; break; case HEM_TYPE_CQC: mhop->buf_chunk_size = 1 << (hr_dev->caps.cqc_buf_pg_sz + PAGE_SHIFT); mhop->bt_chunk_size = 1 << (hr_dev->caps.cqc_ba_pg_sz + PAGE_SHIFT); mhop->ba_l0_num = hr_dev->caps.cqc_bt_num; mhop->hop_num = hr_dev->caps.cqc_hop_num; break; case HEM_TYPE_SCCC: mhop->buf_chunk_size = 1 << (hr_dev->caps.sccc_buf_pg_sz + PAGE_SHIFT); mhop->bt_chunk_size = 1 << (hr_dev->caps.sccc_ba_pg_sz + PAGE_SHIFT); mhop->ba_l0_num = hr_dev->caps.sccc_bt_num; mhop->hop_num = hr_dev->caps.sccc_hop_num; break; case HEM_TYPE_QPC_TIMER: mhop->buf_chunk_size = 1 << (hr_dev->caps.qpc_timer_buf_pg_sz + PAGE_SHIFT); mhop->bt_chunk_size = 1 << (hr_dev->caps.qpc_timer_ba_pg_sz + PAGE_SHIFT); mhop->ba_l0_num = hr_dev->caps.qpc_timer_bt_num; mhop->hop_num = hr_dev->caps.qpc_timer_hop_num; break; case HEM_TYPE_CQC_TIMER: mhop->buf_chunk_size = 1 << (hr_dev->caps.cqc_timer_buf_pg_sz + PAGE_SHIFT); mhop->bt_chunk_size = 1 << (hr_dev->caps.cqc_timer_ba_pg_sz + PAGE_SHIFT); mhop->ba_l0_num = hr_dev->caps.cqc_timer_bt_num; mhop->hop_num = hr_dev->caps.cqc_timer_hop_num; break; case HEM_TYPE_SRQC: mhop->buf_chunk_size = 1 << (hr_dev->caps.srqc_buf_pg_sz + PAGE_SHIFT); mhop->bt_chunk_size = 1 << (hr_dev->caps.srqc_ba_pg_sz + PAGE_SHIFT); mhop->ba_l0_num = hr_dev->caps.srqc_bt_num; mhop->hop_num = hr_dev->caps.srqc_hop_num; break; case HEM_TYPE_GMV: mhop->buf_chunk_size = 1 << (hr_dev->caps.gmv_buf_pg_sz + PAGE_SHIFT); mhop->bt_chunk_size = 1 << (hr_dev->caps.gmv_ba_pg_sz + PAGE_SHIFT); mhop->ba_l0_num = hr_dev->caps.gmv_bt_num; mhop->hop_num = hr_dev->caps.gmv_hop_num; break; default: dev_err(dev, "table %u not support multi-hop addressing!\n", type); return -EINVAL; } return 0; } int hns_roce_calc_hem_mhop(struct hns_roce_dev *hr_dev, struct hns_roce_hem_table *table, unsigned long *obj, struct hns_roce_hem_mhop *mhop) { struct device *dev = hr_dev->dev; u32 chunk_ba_num; u32 chunk_size; u32 table_idx; u32 bt_num; if (get_hem_table_config(hr_dev, mhop, table->type)) return -EINVAL; if (!obj) return 0; /* * QPC/MTPT/CQC/SRQC/SCCC alloc hem for buffer pages. * MTT/CQE alloc hem for bt pages. */ bt_num = hns_roce_get_bt_num(table->type, mhop->hop_num); chunk_ba_num = mhop->bt_chunk_size / BA_BYTE_LEN; chunk_size = table->type < HEM_TYPE_MTT ? mhop->buf_chunk_size : mhop->bt_chunk_size; table_idx = *obj / (chunk_size / table->obj_size); switch (bt_num) { case 3: mhop->l2_idx = table_idx & (chunk_ba_num - 1); mhop->l1_idx = table_idx / chunk_ba_num & (chunk_ba_num - 1); mhop->l0_idx = (table_idx / chunk_ba_num) / chunk_ba_num; break; case 2: mhop->l1_idx = table_idx & (chunk_ba_num - 1); mhop->l0_idx = table_idx / chunk_ba_num; break; case 1: mhop->l0_idx = table_idx; break; default: dev_err(dev, "table %u not support hop_num = %u!\n", table->type, mhop->hop_num); return -EINVAL; } if (mhop->l0_idx >= mhop->ba_l0_num) mhop->l0_idx %= mhop->ba_l0_num; return 0; } static struct hns_roce_hem *hns_roce_alloc_hem(struct hns_roce_dev *hr_dev, int npages, unsigned long hem_alloc_size, gfp_t gfp_mask) { struct hns_roce_hem_chunk *chunk = NULL; struct hns_roce_hem *hem; struct scatterlist *mem; int order; void *buf; WARN_ON(gfp_mask & __GFP_HIGHMEM); hem = kmalloc(sizeof(*hem), gfp_mask & ~(__GFP_HIGHMEM | __GFP_NOWARN)); if (!hem) return NULL; INIT_LIST_HEAD(&hem->chunk_list); order = get_order(hem_alloc_size); while (npages > 0) { if (!chunk) { chunk = kmalloc(sizeof(*chunk), gfp_mask & ~(__GFP_HIGHMEM | __GFP_NOWARN)); if (!chunk) goto fail; sg_init_table(chunk->mem, HNS_ROCE_HEM_CHUNK_LEN); chunk->npages = 0; chunk->nsg = 0; memset(chunk->buf, 0, sizeof(chunk->buf)); list_add_tail(&chunk->list, &hem->chunk_list); } while (1 << order > npages) --order; /* * Alloc memory one time. If failed, don't alloc small block * memory, directly return fail. */ mem = &chunk->mem[chunk->npages]; buf = dma_alloc_coherent(hr_dev->dev, PAGE_SIZE << order, &sg_dma_address(mem), gfp_mask); if (!buf) goto fail; chunk->buf[chunk->npages] = buf; sg_dma_len(mem) = PAGE_SIZE << order; ++chunk->npages; ++chunk->nsg; npages -= 1 << order; } return hem; fail: hns_roce_free_hem(hr_dev, hem); return NULL; } void hns_roce_free_hem(struct hns_roce_dev *hr_dev, struct hns_roce_hem *hem) { struct hns_roce_hem_chunk *chunk, *tmp; int i; if (!hem) return; list_for_each_entry_safe(chunk, tmp, &hem->chunk_list, list) { for (i = 0; i < chunk->npages; ++i) dma_free_coherent(hr_dev->dev, sg_dma_len(&chunk->mem[i]), chunk->buf[i], sg_dma_address(&chunk->mem[i])); kfree(chunk); } kfree(hem); } static int calc_hem_config(struct hns_roce_dev *hr_dev, struct hns_roce_hem_table *table, unsigned long obj, struct hns_roce_hem_mhop *mhop, struct hns_roce_hem_index *index) { struct ib_device *ibdev = &hr_dev->ib_dev; unsigned long mhop_obj = obj; u32 l0_idx, l1_idx, l2_idx; u32 chunk_ba_num; u32 bt_num; int ret; ret = hns_roce_calc_hem_mhop(hr_dev, table, &mhop_obj, mhop); if (ret) return ret; l0_idx = mhop->l0_idx; l1_idx = mhop->l1_idx; l2_idx = mhop->l2_idx; chunk_ba_num = mhop->bt_chunk_size / BA_BYTE_LEN; bt_num = hns_roce_get_bt_num(table->type, mhop->hop_num); switch (bt_num) { case 3: index->l1 = l0_idx * chunk_ba_num + l1_idx; index->l0 = l0_idx; index->buf = l0_idx * chunk_ba_num * chunk_ba_num + l1_idx * chunk_ba_num + l2_idx; break; case 2: index->l0 = l0_idx; index->buf = l0_idx * chunk_ba_num + l1_idx; break; case 1: index->buf = l0_idx; break; default: ibdev_err(ibdev, "table %u not support mhop.hop_num = %u!\n", table->type, mhop->hop_num); return -EINVAL; } if (unlikely(index->buf >= table->num_hem)) { ibdev_err(ibdev, "table %u exceed hem limt idx %llu, max %lu!\n", table->type, index->buf, table->num_hem); return -EINVAL; } return 0; } static void free_mhop_hem(struct hns_roce_dev *hr_dev, struct hns_roce_hem_table *table, struct hns_roce_hem_mhop *mhop, struct hns_roce_hem_index *index) { u32 bt_size = mhop->bt_chunk_size; struct device *dev = hr_dev->dev; if (index->inited & HEM_INDEX_BUF) { hns_roce_free_hem(hr_dev, table->hem[index->buf]); table->hem[index->buf] = NULL; } if (index->inited & HEM_INDEX_L1) { dma_free_coherent(dev, bt_size, table->bt_l1[index->l1], table->bt_l1_dma_addr[index->l1]); table->bt_l1[index->l1] = NULL; } if (index->inited & HEM_INDEX_L0) { dma_free_coherent(dev, bt_size, table->bt_l0[index->l0], table->bt_l0_dma_addr[index->l0]); table->bt_l0[index->l0] = NULL; } } static int alloc_mhop_hem(struct hns_roce_dev *hr_dev, struct hns_roce_hem_table *table, struct hns_roce_hem_mhop *mhop, struct hns_roce_hem_index *index) { u32 bt_size = mhop->bt_chunk_size; struct device *dev = hr_dev->dev; struct hns_roce_hem_iter iter; gfp_t flag; u64 bt_ba; u32 size; int ret; /* alloc L1 BA's chunk */ if ((check_whether_bt_num_3(table->type, mhop->hop_num) || check_whether_bt_num_2(table->type, mhop->hop_num)) && !table->bt_l0[index->l0]) { table->bt_l0[index->l0] = dma_alloc_coherent(dev, bt_size, &table->bt_l0_dma_addr[index->l0], GFP_KERNEL); if (!table->bt_l0[index->l0]) { ret = -ENOMEM; goto out; } index->inited |= HEM_INDEX_L0; } /* alloc L2 BA's chunk */ if (check_whether_bt_num_3(table->type, mhop->hop_num) && !table->bt_l1[index->l1]) { table->bt_l1[index->l1] = dma_alloc_coherent(dev, bt_size, &table->bt_l1_dma_addr[index->l1], GFP_KERNEL); if (!table->bt_l1[index->l1]) { ret = -ENOMEM; goto err_alloc_hem; } index->inited |= HEM_INDEX_L1; *(table->bt_l0[index->l0] + mhop->l1_idx) = table->bt_l1_dma_addr[index->l1]; } /* * alloc buffer space chunk for QPC/MTPT/CQC/SRQC/SCCC. * alloc bt space chunk for MTT/CQE. */ size = table->type < HEM_TYPE_MTT ? mhop->buf_chunk_size : bt_size; flag = (table->lowmem ? GFP_KERNEL : GFP_HIGHUSER) | __GFP_NOWARN; table->hem[index->buf] = hns_roce_alloc_hem(hr_dev, size >> PAGE_SHIFT, size, flag); if (!table->hem[index->buf]) { ret = -ENOMEM; goto err_alloc_hem; } index->inited |= HEM_INDEX_BUF; hns_roce_hem_first(table->hem[index->buf], &iter); bt_ba = hns_roce_hem_addr(&iter); if (table->type < HEM_TYPE_MTT) { if (mhop->hop_num == 2) *(table->bt_l1[index->l1] + mhop->l2_idx) = bt_ba; else if (mhop->hop_num == 1) *(table->bt_l0[index->l0] + mhop->l1_idx) = bt_ba; } else if (mhop->hop_num == 2) { *(table->bt_l0[index->l0] + mhop->l1_idx) = bt_ba; } return 0; err_alloc_hem: free_mhop_hem(hr_dev, table, mhop, index); out: return ret; } static int set_mhop_hem(struct hns_roce_dev *hr_dev, struct hns_roce_hem_table *table, unsigned long obj, struct hns_roce_hem_mhop *mhop, struct hns_roce_hem_index *index) { struct ib_device *ibdev = &hr_dev->ib_dev; int step_idx; int ret = 0; if (index->inited & HEM_INDEX_L0) { ret = hr_dev->hw->set_hem(hr_dev, table, obj, 0); if (ret) { ibdev_err(ibdev, "set HEM step 0 failed!\n"); goto out; } } if (index->inited & HEM_INDEX_L1) { ret = hr_dev->hw->set_hem(hr_dev, table, obj, 1); if (ret) { ibdev_err(ibdev, "set HEM step 1 failed!\n"); goto out; } } if (index->inited & HEM_INDEX_BUF) { if (mhop->hop_num == HNS_ROCE_HOP_NUM_0) step_idx = 0; else step_idx = mhop->hop_num; ret = hr_dev->hw->set_hem(hr_dev, table, obj, step_idx); if (ret) ibdev_err(ibdev, "set HEM step last failed!\n"); } out: return ret; } static int hns_roce_table_mhop_get(struct hns_roce_dev *hr_dev, struct hns_roce_hem_table *table, unsigned long obj) { struct ib_device *ibdev = &hr_dev->ib_dev; struct hns_roce_hem_index index = {}; struct hns_roce_hem_mhop mhop = {}; int ret; ret = calc_hem_config(hr_dev, table, obj, &mhop, &index); if (ret) { ibdev_err(ibdev, "calc hem config failed!\n"); return ret; } mutex_lock(&table->mutex); if (table->hem[index.buf]) { refcount_inc(&table->hem[index.buf]->refcount); goto out; } ret = alloc_mhop_hem(hr_dev, table, &mhop, &index); if (ret) { ibdev_err(ibdev, "alloc mhop hem failed!\n"); goto out; } /* set HEM base address to hardware */ if (table->type < HEM_TYPE_MTT) { ret = set_mhop_hem(hr_dev, table, obj, &mhop, &index); if (ret) { ibdev_err(ibdev, "set HEM address to HW failed!\n"); goto err_alloc; } } refcount_set(&table->hem[index.buf]->refcount, 1); goto out; err_alloc: free_mhop_hem(hr_dev, table, &mhop, &index); out: mutex_unlock(&table->mutex); return ret; } int hns_roce_table_get(struct hns_roce_dev *hr_dev, struct hns_roce_hem_table *table, unsigned long obj) { struct device *dev = hr_dev->dev; unsigned long i; int ret = 0; if (hns_roce_check_whether_mhop(hr_dev, table->type)) return hns_roce_table_mhop_get(hr_dev, table, obj); i = obj / (table->table_chunk_size / table->obj_size); mutex_lock(&table->mutex); if (table->hem[i]) { refcount_inc(&table->hem[i]->refcount); goto out; } table->hem[i] = hns_roce_alloc_hem(hr_dev, table->table_chunk_size >> PAGE_SHIFT, table->table_chunk_size, (table->lowmem ? GFP_KERNEL : GFP_HIGHUSER) | __GFP_NOWARN); if (!table->hem[i]) { ret = -ENOMEM; goto out; } /* Set HEM base address(128K/page, pa) to Hardware */ if (hr_dev->hw->set_hem(hr_dev, table, obj, HEM_HOP_STEP_DIRECT)) { hns_roce_free_hem(hr_dev, table->hem[i]); table->hem[i] = NULL; ret = -ENODEV; dev_err(dev, "set HEM base address to HW failed.\n"); goto out; } refcount_set(&table->hem[i]->refcount, 1); out: mutex_unlock(&table->mutex); return ret; } static void clear_mhop_hem(struct hns_roce_dev *hr_dev, struct hns_roce_hem_table *table, unsigned long obj, struct hns_roce_hem_mhop *mhop, struct hns_roce_hem_index *index) { struct ib_device *ibdev = &hr_dev->ib_dev; u32 hop_num = mhop->hop_num; u32 chunk_ba_num; int step_idx; index->inited = HEM_INDEX_BUF; chunk_ba_num = mhop->bt_chunk_size / BA_BYTE_LEN; if (check_whether_bt_num_2(table->type, hop_num)) { if (hns_roce_check_hem_null(table->hem, index->buf, chunk_ba_num, table->num_hem)) index->inited |= HEM_INDEX_L0; } else if (check_whether_bt_num_3(table->type, hop_num)) { if (hns_roce_check_hem_null(table->hem, index->buf, chunk_ba_num, table->num_hem)) { index->inited |= HEM_INDEX_L1; if (hns_roce_check_bt_null(table->bt_l1, index->l1, chunk_ba_num)) index->inited |= HEM_INDEX_L0; } } if (table->type < HEM_TYPE_MTT) { if (hop_num == HNS_ROCE_HOP_NUM_0) step_idx = 0; else step_idx = hop_num; if (hr_dev->hw->clear_hem(hr_dev, table, obj, step_idx)) ibdev_warn(ibdev, "failed to clear hop%u HEM.\n", hop_num); if (index->inited & HEM_INDEX_L1) if (hr_dev->hw->clear_hem(hr_dev, table, obj, 1)) ibdev_warn(ibdev, "failed to clear HEM step 1.\n"); if (index->inited & HEM_INDEX_L0) if (hr_dev->hw->clear_hem(hr_dev, table, obj, 0)) ibdev_warn(ibdev, "failed to clear HEM step 0.\n"); } } static void hns_roce_table_mhop_put(struct hns_roce_dev *hr_dev, struct hns_roce_hem_table *table, unsigned long obj, int check_refcount) { struct ib_device *ibdev = &hr_dev->ib_dev; struct hns_roce_hem_index index = {}; struct hns_roce_hem_mhop mhop = {}; int ret; ret = calc_hem_config(hr_dev, table, obj, &mhop, &index); if (ret) { ibdev_err(ibdev, "calc hem config failed!\n"); return; } if (!check_refcount) mutex_lock(&table->mutex); else if (!refcount_dec_and_mutex_lock(&table->hem[index.buf]->refcount, &table->mutex)) return; clear_mhop_hem(hr_dev, table, obj, &mhop, &index); free_mhop_hem(hr_dev, table, &mhop, &index); mutex_unlock(&table->mutex); } void hns_roce_table_put(struct hns_roce_dev *hr_dev, struct hns_roce_hem_table *table, unsigned long obj) { struct device *dev = hr_dev->dev; unsigned long i; if (hns_roce_check_whether_mhop(hr_dev, table->type)) { hns_roce_table_mhop_put(hr_dev, table, obj, 1); return; } i = obj / (table->table_chunk_size / table->obj_size); if (!refcount_dec_and_mutex_lock(&table->hem[i]->refcount, &table->mutex)) return; if (hr_dev->hw->clear_hem(hr_dev, table, obj, HEM_HOP_STEP_DIRECT)) dev_warn(dev, "failed to clear HEM base address.\n"); hns_roce_free_hem(hr_dev, table->hem[i]); table->hem[i] = NULL; mutex_unlock(&table->mutex); } void *hns_roce_table_find(struct hns_roce_dev *hr_dev, struct hns_roce_hem_table *table, unsigned long obj, dma_addr_t *dma_handle) { struct hns_roce_hem_chunk *chunk; struct hns_roce_hem_mhop mhop; struct hns_roce_hem *hem; unsigned long mhop_obj = obj; unsigned long obj_per_chunk; unsigned long idx_offset; int offset, dma_offset; void *addr = NULL; u32 hem_idx = 0; int length; int i, j; if (!table->lowmem) return NULL; mutex_lock(&table->mutex); if (!hns_roce_check_whether_mhop(hr_dev, table->type)) { obj_per_chunk = table->table_chunk_size / table->obj_size; hem = table->hem[obj / obj_per_chunk]; idx_offset = obj % obj_per_chunk; dma_offset = offset = idx_offset * table->obj_size; } else { u32 seg_size = 64; /* 8 bytes per BA and 8 BA per segment */ if (hns_roce_calc_hem_mhop(hr_dev, table, &mhop_obj, &mhop)) goto out; /* mtt mhop */ i = mhop.l0_idx; j = mhop.l1_idx; if (mhop.hop_num == 2) hem_idx = i * (mhop.bt_chunk_size / BA_BYTE_LEN) + j; else if (mhop.hop_num == 1 || mhop.hop_num == HNS_ROCE_HOP_NUM_0) hem_idx = i; hem = table->hem[hem_idx]; dma_offset = offset = obj * seg_size % mhop.bt_chunk_size; if (mhop.hop_num == 2) dma_offset = offset = 0; } if (!hem) goto out; list_for_each_entry(chunk, &hem->chunk_list, list) { for (i = 0; i < chunk->npages; ++i) { length = sg_dma_len(&chunk->mem[i]); if (dma_handle && dma_offset >= 0) { if (length > (u32)dma_offset) *dma_handle = sg_dma_address( &chunk->mem[i]) + dma_offset; dma_offset -= length; } if (length > (u32)offset) { addr = chunk->buf[i] + offset; goto out; } offset -= length; } } out: mutex_unlock(&table->mutex); return addr; } int hns_roce_init_hem_table(struct hns_roce_dev *hr_dev, struct hns_roce_hem_table *table, u32 type, unsigned long obj_size, unsigned long nobj, int use_lowmem) { unsigned long obj_per_chunk; unsigned long num_hem; if (!hns_roce_check_whether_mhop(hr_dev, type)) { table->table_chunk_size = hr_dev->caps.chunk_sz; obj_per_chunk = table->table_chunk_size / obj_size; num_hem = DIV_ROUND_UP(nobj, obj_per_chunk); table->hem = kcalloc(num_hem, sizeof(*table->hem), GFP_KERNEL); if (!table->hem) return -ENOMEM; } else { struct hns_roce_hem_mhop mhop = {}; unsigned long buf_chunk_size; unsigned long bt_chunk_size; unsigned long bt_chunk_num; unsigned long num_bt_l0; u32 hop_num; if (get_hem_table_config(hr_dev, &mhop, type)) return -EINVAL; buf_chunk_size = mhop.buf_chunk_size; bt_chunk_size = mhop.bt_chunk_size; num_bt_l0 = mhop.ba_l0_num; hop_num = mhop.hop_num; obj_per_chunk = buf_chunk_size / obj_size; num_hem = DIV_ROUND_UP(nobj, obj_per_chunk); bt_chunk_num = bt_chunk_size / BA_BYTE_LEN; if (type >= HEM_TYPE_MTT) num_bt_l0 = bt_chunk_num; table->hem = kcalloc(num_hem, sizeof(*table->hem), GFP_KERNEL); if (!table->hem) goto err_kcalloc_hem_buf; if (check_whether_bt_num_3(type, hop_num)) { unsigned long num_bt_l1; num_bt_l1 = DIV_ROUND_UP(num_hem, bt_chunk_num); table->bt_l1 = kcalloc(num_bt_l1, sizeof(*table->bt_l1), GFP_KERNEL); if (!table->bt_l1) goto err_kcalloc_bt_l1; table->bt_l1_dma_addr = kcalloc(num_bt_l1, sizeof(*table->bt_l1_dma_addr), GFP_KERNEL); if (!table->bt_l1_dma_addr) goto err_kcalloc_l1_dma; } if (check_whether_bt_num_2(type, hop_num) || check_whether_bt_num_3(type, hop_num)) { table->bt_l0 = kcalloc(num_bt_l0, sizeof(*table->bt_l0), GFP_KERNEL); if (!table->bt_l0) goto err_kcalloc_bt_l0; table->bt_l0_dma_addr = kcalloc(num_bt_l0, sizeof(*table->bt_l0_dma_addr), GFP_KERNEL); if (!table->bt_l0_dma_addr) goto err_kcalloc_l0_dma; } } table->type = type; table->num_hem = num_hem; table->obj_size = obj_size; table->lowmem = use_lowmem; mutex_init(&table->mutex); return 0; err_kcalloc_l0_dma: kfree(table->bt_l0); table->bt_l0 = NULL; err_kcalloc_bt_l0: kfree(table->bt_l1_dma_addr); table->bt_l1_dma_addr = NULL; err_kcalloc_l1_dma: kfree(table->bt_l1); table->bt_l1 = NULL; err_kcalloc_bt_l1: kfree(table->hem); table->hem = NULL; err_kcalloc_hem_buf: return -ENOMEM; } static void hns_roce_cleanup_mhop_hem_table(struct hns_roce_dev *hr_dev, struct hns_roce_hem_table *table) { struct hns_roce_hem_mhop mhop; u32 buf_chunk_size; u64 obj; int i; if (hns_roce_calc_hem_mhop(hr_dev, table, NULL, &mhop)) return; buf_chunk_size = table->type < HEM_TYPE_MTT ? mhop.buf_chunk_size : mhop.bt_chunk_size; for (i = 0; i < table->num_hem; ++i) { obj = i * buf_chunk_size / table->obj_size; if (table->hem[i]) hns_roce_table_mhop_put(hr_dev, table, obj, 0); } kfree(table->hem); table->hem = NULL; kfree(table->bt_l1); table->bt_l1 = NULL; kfree(table->bt_l1_dma_addr); table->bt_l1_dma_addr = NULL; kfree(table->bt_l0); table->bt_l0 = NULL; kfree(table->bt_l0_dma_addr); table->bt_l0_dma_addr = NULL; } void hns_roce_cleanup_hem_table(struct hns_roce_dev *hr_dev, struct hns_roce_hem_table *table) { struct device *dev = hr_dev->dev; unsigned long i; if (hns_roce_check_whether_mhop(hr_dev, table->type)) { hns_roce_cleanup_mhop_hem_table(hr_dev, table); return; } for (i = 0; i < table->num_hem; ++i) if (table->hem[i]) { if (hr_dev->hw->clear_hem(hr_dev, table, i * table->table_chunk_size / table->obj_size, 0)) dev_err(dev, "Clear HEM base address failed.\n"); hns_roce_free_hem(hr_dev, table->hem[i]); } kfree(table->hem); } void hns_roce_cleanup_hem(struct hns_roce_dev *hr_dev) { if (hr_dev->caps.flags & HNS_ROCE_CAP_FLAG_SRQ) hns_roce_cleanup_hem_table(hr_dev, &hr_dev->srq_table.table); hns_roce_cleanup_hem_table(hr_dev, &hr_dev->cq_table.table); if (hr_dev->caps.qpc_timer_entry_sz) hns_roce_cleanup_hem_table(hr_dev, &hr_dev->qpc_timer_table); if (hr_dev->caps.cqc_timer_entry_sz) hns_roce_cleanup_hem_table(hr_dev, &hr_dev->cqc_timer_table); if (hr_dev->caps.flags & HNS_ROCE_CAP_FLAG_QP_FLOW_CTRL) hns_roce_cleanup_hem_table(hr_dev, &hr_dev->qp_table.sccc_table); if (hr_dev->caps.trrl_entry_sz) hns_roce_cleanup_hem_table(hr_dev, &hr_dev->qp_table.trrl_table); if (hr_dev->caps.gmv_entry_sz) hns_roce_cleanup_hem_table(hr_dev, &hr_dev->gmv_table); hns_roce_cleanup_hem_table(hr_dev, &hr_dev->qp_table.irrl_table); hns_roce_cleanup_hem_table(hr_dev, &hr_dev->qp_table.qp_table); hns_roce_cleanup_hem_table(hr_dev, &hr_dev->mr_table.mtpt_table); } struct hns_roce_hem_item { struct list_head list; /* link all hems in the same bt level */ struct list_head sibling; /* link all hems in last hop for mtt */ void *addr; dma_addr_t dma_addr; size_t count; /* max ba numbers */ int start; /* start buf offset in this hem */ int end; /* end buf offset in this hem */ }; /* All HEM items are linked in a tree structure */ struct hns_roce_hem_head { struct list_head branch[HNS_ROCE_MAX_BT_REGION]; struct list_head root; struct list_head leaf; }; static struct hns_roce_hem_item * hem_list_alloc_item(struct hns_roce_dev *hr_dev, int start, int end, int count, bool exist_bt, int bt_level) { struct hns_roce_hem_item *hem; hem = kzalloc(sizeof(*hem), GFP_KERNEL); if (!hem) return NULL; if (exist_bt) { hem->addr = dma_alloc_coherent(hr_dev->dev, count * BA_BYTE_LEN, &hem->dma_addr, GFP_KERNEL); if (!hem->addr) { kfree(hem); return NULL; } } hem->count = count; hem->start = start; hem->end = end; INIT_LIST_HEAD(&hem->list); INIT_LIST_HEAD(&hem->sibling); return hem; } static void hem_list_free_item(struct hns_roce_dev *hr_dev, struct hns_roce_hem_item *hem, bool exist_bt) { if (exist_bt) dma_free_coherent(hr_dev->dev, hem->count * BA_BYTE_LEN, hem->addr, hem->dma_addr); kfree(hem); } static void hem_list_free_all(struct hns_roce_dev *hr_dev, struct list_head *head, bool exist_bt) { struct hns_roce_hem_item *hem, *temp_hem; list_for_each_entry_safe(hem, temp_hem, head, list) { list_del(&hem->list); hem_list_free_item(hr_dev, hem, exist_bt); } } static void hem_list_link_bt(struct hns_roce_dev *hr_dev, void *base_addr, u64 table_addr) { *(u64 *)(base_addr) = table_addr; } /* assign L0 table address to hem from root bt */ static void hem_list_assign_bt(struct hns_roce_dev *hr_dev, struct hns_roce_hem_item *hem, void *cpu_addr, u64 phy_addr) { hem->addr = cpu_addr; hem->dma_addr = (dma_addr_t)phy_addr; } static inline bool hem_list_page_is_in_range(struct hns_roce_hem_item *hem, int offset) { return (hem->start <= offset && offset <= hem->end); } static struct hns_roce_hem_item *hem_list_search_item(struct list_head *ba_list, int page_offset) { struct hns_roce_hem_item *hem, *temp_hem; struct hns_roce_hem_item *found = NULL; list_for_each_entry_safe(hem, temp_hem, ba_list, list) { if (hem_list_page_is_in_range(hem, page_offset)) { found = hem; break; } } return found; } static bool hem_list_is_bottom_bt(int hopnum, int bt_level) { /* * hopnum base address table levels * 0 L0(buf) * 1 L0 -> buf * 2 L0 -> L1 -> buf * 3 L0 -> L1 -> L2 -> buf */ return bt_level >= (hopnum ? hopnum - 1 : hopnum); } /* * calc base address entries num * @hopnum: num of mutihop addressing * @bt_level: base address table level * @unit: ba entries per bt page */ static u32 hem_list_calc_ba_range(int hopnum, int bt_level, int unit) { u32 step; int max; int i; if (hopnum <= bt_level) return 0; /* * hopnum bt_level range * 1 0 unit * ------------ * 2 0 unit * unit * 2 1 unit * ------------ * 3 0 unit * unit * unit * 3 1 unit * unit * 3 2 unit */ step = 1; max = hopnum - bt_level; for (i = 0; i < max; i++) step = step * unit; return step; } /* * calc the root ba entries which could cover all regions * @regions: buf region array * @region_cnt: array size of @regions * @unit: ba entries per bt page */ int hns_roce_hem_list_calc_root_ba(const struct hns_roce_buf_region *regions, int region_cnt, int unit) { struct hns_roce_buf_region *r; int total = 0; int step; int i; for (i = 0; i < region_cnt; i++) { r = (struct hns_roce_buf_region *)®ions[i]; if (r->hopnum > 1) { step = hem_list_calc_ba_range(r->hopnum, 1, unit); if (step > 0) total += (r->count + step - 1) / step; } else { total += r->count; } } return total; } static int hem_list_alloc_mid_bt(struct hns_roce_dev *hr_dev, const struct hns_roce_buf_region *r, int unit, int offset, struct list_head *mid_bt, struct list_head *btm_bt) { struct hns_roce_hem_item *hem_ptrs[HNS_ROCE_MAX_BT_LEVEL] = { NULL }; struct list_head temp_list[HNS_ROCE_MAX_BT_LEVEL]; struct hns_roce_hem_item *cur, *pre; const int hopnum = r->hopnum; int start_aligned; int distance; int ret = 0; int max_ofs; int level; u32 step; int end; if (hopnum <= 1) return 0; if (hopnum > HNS_ROCE_MAX_BT_LEVEL) { dev_err(hr_dev->dev, "invalid hopnum %d!\n", hopnum); return -EINVAL; } if (offset < r->offset) { dev_err(hr_dev->dev, "invalid offset %d, min %u!\n", offset, r->offset); return -EINVAL; } distance = offset - r->offset; max_ofs = r->offset + r->count - 1; for (level = 0; level < hopnum; level++) INIT_LIST_HEAD(&temp_list[level]); /* config L1 bt to last bt and link them to corresponding parent */ for (level = 1; level < hopnum; level++) { cur = hem_list_search_item(&mid_bt[level], offset); if (cur) { hem_ptrs[level] = cur; continue; } step = hem_list_calc_ba_range(hopnum, level, unit); if (step < 1) { ret = -EINVAL; goto err_exit; } start_aligned = (distance / step) * step + r->offset; end = min_t(int, start_aligned + step - 1, max_ofs); cur = hem_list_alloc_item(hr_dev, start_aligned, end, unit, true, level); if (!cur) { ret = -ENOMEM; goto err_exit; } hem_ptrs[level] = cur; list_add(&cur->list, &temp_list[level]); if (hem_list_is_bottom_bt(hopnum, level)) list_add(&cur->sibling, &temp_list[0]); /* link bt to parent bt */ if (level > 1) { pre = hem_ptrs[level - 1]; step = (cur->start - pre->start) / step * BA_BYTE_LEN; hem_list_link_bt(hr_dev, pre->addr + step, cur->dma_addr); } } list_splice(&temp_list[0], btm_bt); for (level = 1; level < hopnum; level++) list_splice(&temp_list[level], &mid_bt[level]); return 0; err_exit: for (level = 1; level < hopnum; level++) hem_list_free_all(hr_dev, &temp_list[level], true); return ret; } static struct hns_roce_hem_item * alloc_root_hem(struct hns_roce_dev *hr_dev, int unit, int *max_ba_num, const struct hns_roce_buf_region *regions, int region_cnt) { const struct hns_roce_buf_region *r; struct hns_roce_hem_item *hem; int ba_num; int offset; ba_num = hns_roce_hem_list_calc_root_ba(regions, region_cnt, unit); if (ba_num < 1) return ERR_PTR(-ENOMEM); if (ba_num > unit) return ERR_PTR(-ENOBUFS); offset = regions[0].offset; /* indicate to last region */ r = ®ions[region_cnt - 1]; hem = hem_list_alloc_item(hr_dev, offset, r->offset + r->count - 1, ba_num, true, 0); if (!hem) return ERR_PTR(-ENOMEM); *max_ba_num = ba_num; return hem; } static int alloc_fake_root_bt(struct hns_roce_dev *hr_dev, void *cpu_base, u64 phy_base, const struct hns_roce_buf_region *r, struct list_head *branch_head, struct list_head *leaf_head) { struct hns_roce_hem_item *hem; hem = hem_list_alloc_item(hr_dev, r->offset, r->offset + r->count - 1, r->count, false, 0); if (!hem) return -ENOMEM; hem_list_assign_bt(hr_dev, hem, cpu_base, phy_base); list_add(&hem->list, branch_head); list_add(&hem->sibling, leaf_head); return r->count; } static int setup_middle_bt(struct hns_roce_dev *hr_dev, void *cpu_base, int unit, const struct hns_roce_buf_region *r, const struct list_head *branch_head) { struct hns_roce_hem_item *hem, *temp_hem; int total = 0; int offset; int step; step = hem_list_calc_ba_range(r->hopnum, 1, unit); if (step < 1) return -EINVAL; /* if exist mid bt, link L1 to L0 */ list_for_each_entry_safe(hem, temp_hem, branch_head, list) { offset = (hem->start - r->offset) / step * BA_BYTE_LEN; hem_list_link_bt(hr_dev, cpu_base + offset, hem->dma_addr); total++; } return total; } static int setup_root_hem(struct hns_roce_dev *hr_dev, struct hns_roce_hem_list *hem_list, int unit, int max_ba_num, struct hns_roce_hem_head *head, const struct hns_roce_buf_region *regions, int region_cnt) { const struct hns_roce_buf_region *r; struct hns_roce_hem_item *root_hem; void *cpu_base; u64 phy_base; int i, total; int ret; root_hem = list_first_entry(&head->root, struct hns_roce_hem_item, list); if (!root_hem) return -ENOMEM; total = 0; for (i = 0; i < region_cnt && total < max_ba_num; i++) { r = ®ions[i]; if (!r->count) continue; /* all regions's mid[x][0] shared the root_bt's trunk */ cpu_base = root_hem->addr + total * BA_BYTE_LEN; phy_base = root_hem->dma_addr + total * BA_BYTE_LEN; /* if hopnum is 0 or 1, cut a new fake hem from the root bt * which's address share to all regions. */ if (hem_list_is_bottom_bt(r->hopnum, 0)) ret = alloc_fake_root_bt(hr_dev, cpu_base, phy_base, r, &head->branch[i], &head->leaf); else ret = setup_middle_bt(hr_dev, cpu_base, unit, r, &hem_list->mid_bt[i][1]); if (ret < 0) return ret; total += ret; } list_splice(&head->leaf, &hem_list->btm_bt); list_splice(&head->root, &hem_list->root_bt); for (i = 0; i < region_cnt; i++) list_splice(&head->branch[i], &hem_list->mid_bt[i][0]); return 0; } static int hem_list_alloc_root_bt(struct hns_roce_dev *hr_dev, struct hns_roce_hem_list *hem_list, int unit, const struct hns_roce_buf_region *regions, int region_cnt) { struct hns_roce_hem_item *root_hem; struct hns_roce_hem_head head; int max_ba_num; int ret; int i; root_hem = hem_list_search_item(&hem_list->root_bt, regions[0].offset); if (root_hem) return 0; max_ba_num = 0; root_hem = alloc_root_hem(hr_dev, unit, &max_ba_num, regions, region_cnt); if (IS_ERR(root_hem)) return PTR_ERR(root_hem); /* List head for storing all allocated HEM items */ INIT_LIST_HEAD(&head.root); INIT_LIST_HEAD(&head.leaf); for (i = 0; i < region_cnt; i++) INIT_LIST_HEAD(&head.branch[i]); hem_list->root_ba = root_hem->dma_addr; list_add(&root_hem->list, &head.root); ret = setup_root_hem(hr_dev, hem_list, unit, max_ba_num, &head, regions, region_cnt); if (ret) { for (i = 0; i < region_cnt; i++) hem_list_free_all(hr_dev, &head.branch[i], false); hem_list_free_all(hr_dev, &head.root, true); } return ret; } /* construct the base address table and link them by address hop config */ int hns_roce_hem_list_request(struct hns_roce_dev *hr_dev, struct hns_roce_hem_list *hem_list, const struct hns_roce_buf_region *regions, int region_cnt, unsigned int bt_pg_shift) { const struct hns_roce_buf_region *r; int ofs, end; int unit; int ret; int i; if (region_cnt > HNS_ROCE_MAX_BT_REGION) { dev_err(hr_dev->dev, "invalid region region_cnt %d!\n", region_cnt); return -EINVAL; } unit = (1 << bt_pg_shift) / BA_BYTE_LEN; for (i = 0; i < region_cnt; i++) { r = ®ions[i]; if (!r->count) continue; end = r->offset + r->count; for (ofs = r->offset; ofs < end; ofs += unit) { ret = hem_list_alloc_mid_bt(hr_dev, r, unit, ofs, hem_list->mid_bt[i], &hem_list->btm_bt); if (ret) { dev_err(hr_dev->dev, "alloc hem trunk fail ret=%d!\n", ret); goto err_alloc; } } } ret = hem_list_alloc_root_bt(hr_dev, hem_list, unit, regions, region_cnt); if (ret) dev_err(hr_dev->dev, "alloc hem root fail ret=%d!\n", ret); else return 0; err_alloc: hns_roce_hem_list_release(hr_dev, hem_list); return ret; } void hns_roce_hem_list_release(struct hns_roce_dev *hr_dev, struct hns_roce_hem_list *hem_list) { int i, j; for (i = 0; i < HNS_ROCE_MAX_BT_REGION; i++) for (j = 0; j < HNS_ROCE_MAX_BT_LEVEL; j++) hem_list_free_all(hr_dev, &hem_list->mid_bt[i][j], j != 0); hem_list_free_all(hr_dev, &hem_list->root_bt, true); INIT_LIST_HEAD(&hem_list->btm_bt); hem_list->root_ba = 0; } void hns_roce_hem_list_init(struct hns_roce_hem_list *hem_list) { int i, j; INIT_LIST_HEAD(&hem_list->root_bt); INIT_LIST_HEAD(&hem_list->btm_bt); for (i = 0; i < HNS_ROCE_MAX_BT_REGION; i++) for (j = 0; j < HNS_ROCE_MAX_BT_LEVEL; j++) INIT_LIST_HEAD(&hem_list->mid_bt[i][j]); } void *hns_roce_hem_list_find_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_hem_list *hem_list, int offset, int *mtt_cnt, u64 *phy_addr) { struct list_head *head = &hem_list->btm_bt; struct hns_roce_hem_item *hem, *temp_hem; void *cpu_base = NULL; u64 phy_base = 0; int nr = 0; list_for_each_entry_safe(hem, temp_hem, head, sibling) { if (hem_list_page_is_in_range(hem, offset)) { nr = offset - hem->start; cpu_base = hem->addr + nr * BA_BYTE_LEN; phy_base = hem->dma_addr + nr * BA_BYTE_LEN; nr = hem->end + 1 - offset; break; } } if (mtt_cnt) *mtt_cnt = nr; if (phy_addr) *phy_addr = phy_base; return cpu_base; }