// SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause /* * Copyright(c) 2015 - 2020 Intel Corporation. */ #include #include #include #include #include #include #include #include #include #include #include "hfi.h" #include "common.h" #include "device.h" #include "trace.h" #include "qp.h" #include "verbs_txreq.h" #include "debugfs.h" #include "vnic.h" #include "fault.h" #include "affinity.h" #include "ipoib.h" static unsigned int hfi1_lkey_table_size = 16; module_param_named(lkey_table_size, hfi1_lkey_table_size, uint, S_IRUGO); MODULE_PARM_DESC(lkey_table_size, "LKEY table size in bits (2^n, 1 <= n <= 23)"); static unsigned int hfi1_max_pds = 0xFFFF; module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO); MODULE_PARM_DESC(max_pds, "Maximum number of protection domains to support"); static unsigned int hfi1_max_ahs = 0xFFFF; module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO); MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support"); unsigned int hfi1_max_cqes = 0x2FFFFF; module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO); MODULE_PARM_DESC(max_cqes, "Maximum number of completion queue entries to support"); unsigned int hfi1_max_cqs = 0x1FFFF; module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO); MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support"); unsigned int hfi1_max_qp_wrs = 0x3FFF; module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO); MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support"); unsigned int hfi1_max_qps = 32768; module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO); MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support"); unsigned int hfi1_max_sges = 0x60; module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO); MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support"); unsigned int hfi1_max_mcast_grps = 16384; module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO); MODULE_PARM_DESC(max_mcast_grps, "Maximum number of multicast groups to support"); unsigned int hfi1_max_mcast_qp_attached = 16; module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached, uint, S_IRUGO); MODULE_PARM_DESC(max_mcast_qp_attached, "Maximum number of attached QPs to support"); unsigned int hfi1_max_srqs = 1024; module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO); MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support"); unsigned int hfi1_max_srq_sges = 128; module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO); MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support"); unsigned int hfi1_max_srq_wrs = 0x1FFFF; module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO); MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support"); unsigned short piothreshold = 256; module_param(piothreshold, ushort, S_IRUGO); MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio"); static unsigned int sge_copy_mode; module_param(sge_copy_mode, uint, S_IRUGO); MODULE_PARM_DESC(sge_copy_mode, "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS"); static void verbs_sdma_complete( struct sdma_txreq *cookie, int status); static int pio_wait(struct rvt_qp *qp, struct send_context *sc, struct hfi1_pkt_state *ps, u32 flag); /* Length of buffer to create verbs txreq cache name */ #define TXREQ_NAME_LEN 24 static uint wss_threshold = 80; module_param(wss_threshold, uint, S_IRUGO); MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy"); static uint wss_clean_period = 256; module_param(wss_clean_period, uint, S_IRUGO); MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned"); /* * Translate ib_wr_opcode into ib_wc_opcode. */ const enum ib_wc_opcode ib_hfi1_wc_opcode[] = { [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE, [IB_WR_TID_RDMA_WRITE] = IB_WC_RDMA_WRITE, [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE, [IB_WR_SEND] = IB_WC_SEND, [IB_WR_SEND_WITH_IMM] = IB_WC_SEND, [IB_WR_RDMA_READ] = IB_WC_RDMA_READ, [IB_WR_TID_RDMA_READ] = IB_WC_RDMA_READ, [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP, [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD, [IB_WR_SEND_WITH_INV] = IB_WC_SEND, [IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV, [IB_WR_REG_MR] = IB_WC_REG_MR }; /* * Length of header by opcode, 0 --> not supported */ const u8 hdr_len_by_opcode[256] = { /* RC */ [IB_OPCODE_RC_SEND_FIRST] = 12 + 8, [IB_OPCODE_RC_SEND_MIDDLE] = 12 + 8, [IB_OPCODE_RC_SEND_LAST] = 12 + 8, [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, [IB_OPCODE_RC_SEND_ONLY] = 12 + 8, [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4, [IB_OPCODE_RC_RDMA_WRITE_FIRST] = 12 + 8 + 16, [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = 12 + 8, [IB_OPCODE_RC_RDMA_WRITE_LAST] = 12 + 8, [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, [IB_OPCODE_RC_RDMA_WRITE_ONLY] = 12 + 8 + 16, [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20, [IB_OPCODE_RC_RDMA_READ_REQUEST] = 12 + 8 + 16, [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = 12 + 8 + 4, [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = 12 + 8, [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = 12 + 8 + 4, [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = 12 + 8 + 4, [IB_OPCODE_RC_ACKNOWLEDGE] = 12 + 8 + 4, [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = 12 + 8 + 4 + 8, [IB_OPCODE_RC_COMPARE_SWAP] = 12 + 8 + 28, [IB_OPCODE_RC_FETCH_ADD] = 12 + 8 + 28, [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = 12 + 8 + 4, [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = 12 + 8 + 4, [IB_OPCODE_TID_RDMA_READ_REQ] = 12 + 8 + 36, [IB_OPCODE_TID_RDMA_READ_RESP] = 12 + 8 + 36, [IB_OPCODE_TID_RDMA_WRITE_REQ] = 12 + 8 + 36, [IB_OPCODE_TID_RDMA_WRITE_RESP] = 12 + 8 + 36, [IB_OPCODE_TID_RDMA_WRITE_DATA] = 12 + 8 + 36, [IB_OPCODE_TID_RDMA_WRITE_DATA_LAST] = 12 + 8 + 36, [IB_OPCODE_TID_RDMA_ACK] = 12 + 8 + 36, [IB_OPCODE_TID_RDMA_RESYNC] = 12 + 8 + 36, /* UC */ [IB_OPCODE_UC_SEND_FIRST] = 12 + 8, [IB_OPCODE_UC_SEND_MIDDLE] = 12 + 8, [IB_OPCODE_UC_SEND_LAST] = 12 + 8, [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, [IB_OPCODE_UC_SEND_ONLY] = 12 + 8, [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4, [IB_OPCODE_UC_RDMA_WRITE_FIRST] = 12 + 8 + 16, [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = 12 + 8, [IB_OPCODE_UC_RDMA_WRITE_LAST] = 12 + 8, [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, [IB_OPCODE_UC_RDMA_WRITE_ONLY] = 12 + 8 + 16, [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20, /* UD */ [IB_OPCODE_UD_SEND_ONLY] = 12 + 8 + 8, [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 12 }; static const opcode_handler opcode_handler_tbl[256] = { /* RC */ [IB_OPCODE_RC_SEND_FIRST] = &hfi1_rc_rcv, [IB_OPCODE_RC_SEND_MIDDLE] = &hfi1_rc_rcv, [IB_OPCODE_RC_SEND_LAST] = &hfi1_rc_rcv, [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv, [IB_OPCODE_RC_SEND_ONLY] = &hfi1_rc_rcv, [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv, [IB_OPCODE_RC_RDMA_WRITE_FIRST] = &hfi1_rc_rcv, [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = &hfi1_rc_rcv, [IB_OPCODE_RC_RDMA_WRITE_LAST] = &hfi1_rc_rcv, [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv, [IB_OPCODE_RC_RDMA_WRITE_ONLY] = &hfi1_rc_rcv, [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv, [IB_OPCODE_RC_RDMA_READ_REQUEST] = &hfi1_rc_rcv, [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = &hfi1_rc_rcv, [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = &hfi1_rc_rcv, [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = &hfi1_rc_rcv, [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = &hfi1_rc_rcv, [IB_OPCODE_RC_ACKNOWLEDGE] = &hfi1_rc_rcv, [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = &hfi1_rc_rcv, [IB_OPCODE_RC_COMPARE_SWAP] = &hfi1_rc_rcv, [IB_OPCODE_RC_FETCH_ADD] = &hfi1_rc_rcv, [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = &hfi1_rc_rcv, [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = &hfi1_rc_rcv, /* TID RDMA has separate handlers for different opcodes.*/ [IB_OPCODE_TID_RDMA_WRITE_REQ] = &hfi1_rc_rcv_tid_rdma_write_req, [IB_OPCODE_TID_RDMA_WRITE_RESP] = &hfi1_rc_rcv_tid_rdma_write_resp, [IB_OPCODE_TID_RDMA_WRITE_DATA] = &hfi1_rc_rcv_tid_rdma_write_data, [IB_OPCODE_TID_RDMA_WRITE_DATA_LAST] = &hfi1_rc_rcv_tid_rdma_write_data, [IB_OPCODE_TID_RDMA_READ_REQ] = &hfi1_rc_rcv_tid_rdma_read_req, [IB_OPCODE_TID_RDMA_READ_RESP] = &hfi1_rc_rcv_tid_rdma_read_resp, [IB_OPCODE_TID_RDMA_RESYNC] = &hfi1_rc_rcv_tid_rdma_resync, [IB_OPCODE_TID_RDMA_ACK] = &hfi1_rc_rcv_tid_rdma_ack, /* UC */ [IB_OPCODE_UC_SEND_FIRST] = &hfi1_uc_rcv, [IB_OPCODE_UC_SEND_MIDDLE] = &hfi1_uc_rcv, [IB_OPCODE_UC_SEND_LAST] = &hfi1_uc_rcv, [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv, [IB_OPCODE_UC_SEND_ONLY] = &hfi1_uc_rcv, [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv, [IB_OPCODE_UC_RDMA_WRITE_FIRST] = &hfi1_uc_rcv, [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = &hfi1_uc_rcv, [IB_OPCODE_UC_RDMA_WRITE_LAST] = &hfi1_uc_rcv, [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv, [IB_OPCODE_UC_RDMA_WRITE_ONLY] = &hfi1_uc_rcv, [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv, /* UD */ [IB_OPCODE_UD_SEND_ONLY] = &hfi1_ud_rcv, [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_ud_rcv, /* CNP */ [IB_OPCODE_CNP] = &hfi1_cnp_rcv }; #define OPMASK 0x1f static const u32 pio_opmask[BIT(3)] = { /* RC */ [IB_OPCODE_RC >> 5] = BIT(RC_OP(SEND_ONLY) & OPMASK) | BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) | BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) | BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) | BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) | BIT(RC_OP(ACKNOWLEDGE) & OPMASK) | BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) | BIT(RC_OP(COMPARE_SWAP) & OPMASK) | BIT(RC_OP(FETCH_ADD) & OPMASK), /* UC */ [IB_OPCODE_UC >> 5] = BIT(UC_OP(SEND_ONLY) & OPMASK) | BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) | BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) | BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK), }; /* * System image GUID. */ __be64 ib_hfi1_sys_image_guid; /* * Make sure the QP is ready and able to accept the given opcode. */ static inline opcode_handler qp_ok(struct hfi1_packet *packet) { if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK)) return NULL; if (((packet->opcode & RVT_OPCODE_QP_MASK) == packet->qp->allowed_ops) || (packet->opcode == IB_OPCODE_CNP)) return opcode_handler_tbl[packet->opcode]; return NULL; } static u64 hfi1_fault_tx(struct rvt_qp *qp, u8 opcode, u64 pbc) { #ifdef CONFIG_FAULT_INJECTION if ((opcode & IB_OPCODE_MSP) == IB_OPCODE_MSP) { /* * In order to drop non-IB traffic we * set PbcInsertHrc to NONE (0x2). * The packet will still be delivered * to the receiving node but a * KHdrHCRCErr (KDETH packet with a bad * HCRC) will be triggered and the * packet will not be delivered to the * correct context. */ pbc &= ~PBC_INSERT_HCRC_SMASK; pbc |= (u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT; } else { /* * In order to drop regular verbs * traffic we set the PbcTestEbp * flag. The packet will still be * delivered to the receiving node but * a 'late ebp error' will be * triggered and will be dropped. */ pbc |= PBC_TEST_EBP; } #endif return pbc; } static opcode_handler tid_qp_ok(int opcode, struct hfi1_packet *packet) { if (packet->qp->ibqp.qp_type != IB_QPT_RC || !(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK)) return NULL; if ((opcode & RVT_OPCODE_QP_MASK) == IB_OPCODE_TID_RDMA) return opcode_handler_tbl[opcode]; return NULL; } void hfi1_kdeth_eager_rcv(struct hfi1_packet *packet) { struct hfi1_ctxtdata *rcd = packet->rcd; struct ib_header *hdr = packet->hdr; u32 tlen = packet->tlen; struct hfi1_pportdata *ppd = rcd->ppd; struct hfi1_ibport *ibp = &ppd->ibport_data; struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi; opcode_handler opcode_handler; unsigned long flags; u32 qp_num; int lnh; u8 opcode; /* DW == LRH (2) + BTH (3) + KDETH (9) + CRC (1) */ if (unlikely(tlen < 15 * sizeof(u32))) goto drop; lnh = be16_to_cpu(hdr->lrh[0]) & 3; if (lnh != HFI1_LRH_BTH) goto drop; packet->ohdr = &hdr->u.oth; trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf))); opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24); inc_opstats(tlen, &rcd->opstats->stats[opcode]); /* verbs_qp can be picked up from any tid_rdma header struct */ qp_num = be32_to_cpu(packet->ohdr->u.tid_rdma.r_req.verbs_qp) & RVT_QPN_MASK; rcu_read_lock(); packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num); if (!packet->qp) goto drop_rcu; spin_lock_irqsave(&packet->qp->r_lock, flags); opcode_handler = tid_qp_ok(opcode, packet); if (likely(opcode_handler)) opcode_handler(packet); else goto drop_unlock; spin_unlock_irqrestore(&packet->qp->r_lock, flags); rcu_read_unlock(); return; drop_unlock: spin_unlock_irqrestore(&packet->qp->r_lock, flags); drop_rcu: rcu_read_unlock(); drop: ibp->rvp.n_pkt_drops++; } void hfi1_kdeth_expected_rcv(struct hfi1_packet *packet) { struct hfi1_ctxtdata *rcd = packet->rcd; struct ib_header *hdr = packet->hdr; u32 tlen = packet->tlen; struct hfi1_pportdata *ppd = rcd->ppd; struct hfi1_ibport *ibp = &ppd->ibport_data; struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi; opcode_handler opcode_handler; unsigned long flags; u32 qp_num; int lnh; u8 opcode; /* DW == LRH (2) + BTH (3) + KDETH (9) + CRC (1) */ if (unlikely(tlen < 15 * sizeof(u32))) goto drop; lnh = be16_to_cpu(hdr->lrh[0]) & 3; if (lnh != HFI1_LRH_BTH) goto drop; packet->ohdr = &hdr->u.oth; trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf))); opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24); inc_opstats(tlen, &rcd->opstats->stats[opcode]); /* verbs_qp can be picked up from any tid_rdma header struct */ qp_num = be32_to_cpu(packet->ohdr->u.tid_rdma.r_rsp.verbs_qp) & RVT_QPN_MASK; rcu_read_lock(); packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num); if (!packet->qp) goto drop_rcu; spin_lock_irqsave(&packet->qp->r_lock, flags); opcode_handler = tid_qp_ok(opcode, packet); if (likely(opcode_handler)) opcode_handler(packet); else goto drop_unlock; spin_unlock_irqrestore(&packet->qp->r_lock, flags); rcu_read_unlock(); return; drop_unlock: spin_unlock_irqrestore(&packet->qp->r_lock, flags); drop_rcu: rcu_read_unlock(); drop: ibp->rvp.n_pkt_drops++; } static int hfi1_do_pkey_check(struct hfi1_packet *packet) { struct hfi1_ctxtdata *rcd = packet->rcd; struct hfi1_pportdata *ppd = rcd->ppd; struct hfi1_16b_header *hdr = packet->hdr; u16 pkey; /* Pkey check needed only for bypass packets */ if (packet->etype != RHF_RCV_TYPE_BYPASS) return 0; /* Perform pkey check */ pkey = hfi1_16B_get_pkey(hdr); return ingress_pkey_check(ppd, pkey, packet->sc, packet->qp->s_pkey_index, packet->slid, true); } static inline void hfi1_handle_packet(struct hfi1_packet *packet, bool is_mcast) { u32 qp_num; struct hfi1_ctxtdata *rcd = packet->rcd; struct hfi1_pportdata *ppd = rcd->ppd; struct hfi1_ibport *ibp = rcd_to_iport(rcd); struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi; opcode_handler packet_handler; unsigned long flags; inc_opstats(packet->tlen, &rcd->opstats->stats[packet->opcode]); if (unlikely(is_mcast)) { struct rvt_mcast *mcast; struct rvt_mcast_qp *p; if (!packet->grh) goto drop; mcast = rvt_mcast_find(&ibp->rvp, &packet->grh->dgid, opa_get_lid(packet->dlid, 9B)); if (!mcast) goto drop; rcu_read_lock(); list_for_each_entry_rcu(p, &mcast->qp_list, list) { packet->qp = p->qp; if (hfi1_do_pkey_check(packet)) goto unlock_drop; spin_lock_irqsave(&packet->qp->r_lock, flags); packet_handler = qp_ok(packet); if (likely(packet_handler)) packet_handler(packet); else ibp->rvp.n_pkt_drops++; spin_unlock_irqrestore(&packet->qp->r_lock, flags); } rcu_read_unlock(); /* * Notify rvt_multicast_detach() if it is waiting for us * to finish. */ if (atomic_dec_return(&mcast->refcount) <= 1) wake_up(&mcast->wait); } else { /* Get the destination QP number. */ if (packet->etype == RHF_RCV_TYPE_BYPASS && hfi1_16B_get_l4(packet->hdr) == OPA_16B_L4_FM) qp_num = hfi1_16B_get_dest_qpn(packet->mgmt); else qp_num = ib_bth_get_qpn(packet->ohdr); rcu_read_lock(); packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num); if (!packet->qp) goto unlock_drop; if (hfi1_do_pkey_check(packet)) goto unlock_drop; spin_lock_irqsave(&packet->qp->r_lock, flags); packet_handler = qp_ok(packet); if (likely(packet_handler)) packet_handler(packet); else ibp->rvp.n_pkt_drops++; spin_unlock_irqrestore(&packet->qp->r_lock, flags); rcu_read_unlock(); } return; unlock_drop: rcu_read_unlock(); drop: ibp->rvp.n_pkt_drops++; } /** * hfi1_ib_rcv - process an incoming packet * @packet: data packet information * * This is called to process an incoming packet at interrupt level. */ void hfi1_ib_rcv(struct hfi1_packet *packet) { struct hfi1_ctxtdata *rcd = packet->rcd; trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf))); hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid)); } void hfi1_16B_rcv(struct hfi1_packet *packet) { struct hfi1_ctxtdata *rcd = packet->rcd; trace_input_ibhdr(rcd->dd, packet, false); hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid)); } /* * This is called from a timer to check for QPs * which need kernel memory in order to send a packet. */ static void mem_timer(struct timer_list *t) { struct hfi1_ibdev *dev = from_timer(dev, t, mem_timer); struct list_head *list = &dev->memwait; struct rvt_qp *qp = NULL; struct iowait *wait; unsigned long flags; struct hfi1_qp_priv *priv; write_seqlock_irqsave(&dev->iowait_lock, flags); if (!list_empty(list)) { wait = list_first_entry(list, struct iowait, list); qp = iowait_to_qp(wait); priv = qp->priv; list_del_init(&priv->s_iowait.list); priv->s_iowait.lock = NULL; /* refcount held until actual wake up */ if (!list_empty(list)) mod_timer(&dev->mem_timer, jiffies + 1); } write_sequnlock_irqrestore(&dev->iowait_lock, flags); if (qp) hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM); } /* * This is called with progress side lock held. */ /* New API */ static void verbs_sdma_complete( struct sdma_txreq *cookie, int status) { struct verbs_txreq *tx = container_of(cookie, struct verbs_txreq, txreq); struct rvt_qp *qp = tx->qp; spin_lock(&qp->s_lock); if (tx->wqe) { rvt_send_complete(qp, tx->wqe, IB_WC_SUCCESS); } else if (qp->ibqp.qp_type == IB_QPT_RC) { struct hfi1_opa_header *hdr; hdr = &tx->phdr.hdr; if (unlikely(status == SDMA_TXREQ_S_ABORTED)) hfi1_rc_verbs_aborted(qp, hdr); hfi1_rc_send_complete(qp, hdr); } spin_unlock(&qp->s_lock); hfi1_put_txreq(tx); } void hfi1_wait_kmem(struct rvt_qp *qp) { struct hfi1_qp_priv *priv = qp->priv; struct ib_qp *ibqp = &qp->ibqp; struct ib_device *ibdev = ibqp->device; struct hfi1_ibdev *dev = to_idev(ibdev); if (list_empty(&priv->s_iowait.list)) { if (list_empty(&dev->memwait)) mod_timer(&dev->mem_timer, jiffies + 1); qp->s_flags |= RVT_S_WAIT_KMEM; list_add_tail(&priv->s_iowait.list, &dev->memwait); priv->s_iowait.lock = &dev->iowait_lock; trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM); rvt_get_qp(qp); } } static int wait_kmem(struct hfi1_ibdev *dev, struct rvt_qp *qp, struct hfi1_pkt_state *ps) { unsigned long flags; int ret = 0; spin_lock_irqsave(&qp->s_lock, flags); if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) { write_seqlock(&dev->iowait_lock); list_add_tail(&ps->s_txreq->txreq.list, &ps->wait->tx_head); hfi1_wait_kmem(qp); write_sequnlock(&dev->iowait_lock); hfi1_qp_unbusy(qp, ps->wait); ret = -EBUSY; } spin_unlock_irqrestore(&qp->s_lock, flags); return ret; } /* * This routine calls txadds for each sg entry. * * Add failures will revert the sge cursor */ static noinline int build_verbs_ulp_payload( struct sdma_engine *sde, u32 length, struct verbs_txreq *tx) { struct rvt_sge_state *ss = tx->ss; struct rvt_sge *sg_list = ss->sg_list; struct rvt_sge sge = ss->sge; u8 num_sge = ss->num_sge; u32 len; int ret = 0; while (length) { len = rvt_get_sge_length(&ss->sge, length); WARN_ON_ONCE(len == 0); ret = sdma_txadd_kvaddr( sde->dd, &tx->txreq, ss->sge.vaddr, len); if (ret) goto bail_txadd; rvt_update_sge(ss, len, false); length -= len; } return ret; bail_txadd: /* unwind cursor */ ss->sge = sge; ss->num_sge = num_sge; ss->sg_list = sg_list; return ret; } /** * update_tx_opstats - record stats by opcode * @qp: the qp * @ps: transmit packet state * @plen: the plen in dwords * * This is a routine to record the tx opstats after a * packet has been presented to the egress mechanism. */ static void update_tx_opstats(struct rvt_qp *qp, struct hfi1_pkt_state *ps, u32 plen) { #ifdef CONFIG_DEBUG_FS struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device); struct hfi1_opcode_stats_perctx *s = get_cpu_ptr(dd->tx_opstats); inc_opstats(plen * 4, &s->stats[ps->opcode]); put_cpu_ptr(s); #endif } /* * Build the number of DMA descriptors needed to send length bytes of data. * * NOTE: DMA mapping is held in the tx until completed in the ring or * the tx desc is freed without having been submitted to the ring * * This routine ensures all the helper routine calls succeed. */ /* New API */ static int build_verbs_tx_desc( struct sdma_engine *sde, u32 length, struct verbs_txreq *tx, struct hfi1_ahg_info *ahg_info, u64 pbc) { int ret = 0; struct hfi1_sdma_header *phdr = &tx->phdr; u16 hdrbytes = (tx->hdr_dwords + sizeof(pbc) / 4) << 2; u8 extra_bytes = 0; if (tx->phdr.hdr.hdr_type) { /* * hdrbytes accounts for PBC. Need to subtract 8 bytes * before calculating padding. */ extra_bytes = hfi1_get_16b_padding(hdrbytes - 8, length) + (SIZE_OF_CRC << 2) + SIZE_OF_LT; } if (!ahg_info->ahgcount) { ret = sdma_txinit_ahg( &tx->txreq, ahg_info->tx_flags, hdrbytes + length + extra_bytes, ahg_info->ahgidx, 0, NULL, 0, verbs_sdma_complete); if (ret) goto bail_txadd; phdr->pbc = cpu_to_le64(pbc); ret = sdma_txadd_kvaddr( sde->dd, &tx->txreq, phdr, hdrbytes); if (ret) goto bail_txadd; } else { ret = sdma_txinit_ahg( &tx->txreq, ahg_info->tx_flags, length, ahg_info->ahgidx, ahg_info->ahgcount, ahg_info->ahgdesc, hdrbytes, verbs_sdma_complete); if (ret) goto bail_txadd; } /* add the ulp payload - if any. tx->ss can be NULL for acks */ if (tx->ss) { ret = build_verbs_ulp_payload(sde, length, tx); if (ret) goto bail_txadd; } /* add icrc, lt byte, and padding to flit */ if (extra_bytes) ret = sdma_txadd_daddr(sde->dd, &tx->txreq, sde->dd->sdma_pad_phys, extra_bytes); bail_txadd: return ret; } static u64 update_hcrc(u8 opcode, u64 pbc) { if ((opcode & IB_OPCODE_TID_RDMA) == IB_OPCODE_TID_RDMA) { pbc &= ~PBC_INSERT_HCRC_SMASK; pbc |= (u64)PBC_IHCRC_LKDETH << PBC_INSERT_HCRC_SHIFT; } return pbc; } int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps, u64 pbc) { struct hfi1_qp_priv *priv = qp->priv; struct hfi1_ahg_info *ahg_info = priv->s_ahg; u32 hdrwords = ps->s_txreq->hdr_dwords; u32 len = ps->s_txreq->s_cur_size; u32 plen; struct hfi1_ibdev *dev = ps->dev; struct hfi1_pportdata *ppd = ps->ppd; struct verbs_txreq *tx; u8 sc5 = priv->s_sc; int ret; u32 dwords; if (ps->s_txreq->phdr.hdr.hdr_type) { u8 extra_bytes = hfi1_get_16b_padding((hdrwords << 2), len); dwords = (len + extra_bytes + (SIZE_OF_CRC << 2) + SIZE_OF_LT) >> 2; } else { dwords = (len + 3) >> 2; } plen = hdrwords + dwords + sizeof(pbc) / 4; tx = ps->s_txreq; if (!sdma_txreq_built(&tx->txreq)) { if (likely(pbc == 0)) { u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5); /* No vl15 here */ /* set PBC_DC_INFO bit (aka SC[4]) in pbc */ if (ps->s_txreq->phdr.hdr.hdr_type) pbc |= PBC_PACKET_BYPASS | PBC_INSERT_BYPASS_ICRC; else pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT); pbc = create_pbc(ppd, pbc, qp->srate_mbps, vl, plen); if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode))) pbc = hfi1_fault_tx(qp, ps->opcode, pbc); else /* Update HCRC based on packet opcode */ pbc = update_hcrc(ps->opcode, pbc); } tx->wqe = qp->s_wqe; ret = build_verbs_tx_desc(tx->sde, len, tx, ahg_info, pbc); if (unlikely(ret)) goto bail_build; } ret = sdma_send_txreq(tx->sde, ps->wait, &tx->txreq, ps->pkts_sent); if (unlikely(ret < 0)) { if (ret == -ECOMM) goto bail_ecomm; return ret; } update_tx_opstats(qp, ps, plen); trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device), &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5)); return ret; bail_ecomm: /* The current one got "sent" */ return 0; bail_build: ret = wait_kmem(dev, qp, ps); if (!ret) { /* free txreq - bad state */ hfi1_put_txreq(ps->s_txreq); ps->s_txreq = NULL; } return ret; } /* * If we are now in the error state, return zero to flush the * send work request. */ static int pio_wait(struct rvt_qp *qp, struct send_context *sc, struct hfi1_pkt_state *ps, u32 flag) { struct hfi1_qp_priv *priv = qp->priv; struct hfi1_devdata *dd = sc->dd; unsigned long flags; int ret = 0; /* * Note that as soon as want_buffer() is called and * possibly before it returns, sc_piobufavail() * could be called. Therefore, put QP on the I/O wait list before * enabling the PIO avail interrupt. */ spin_lock_irqsave(&qp->s_lock, flags); if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) { write_seqlock(&sc->waitlock); list_add_tail(&ps->s_txreq->txreq.list, &ps->wait->tx_head); if (list_empty(&priv->s_iowait.list)) { struct hfi1_ibdev *dev = &dd->verbs_dev; int was_empty; dev->n_piowait += !!(flag & RVT_S_WAIT_PIO); dev->n_piodrain += !!(flag & HFI1_S_WAIT_PIO_DRAIN); qp->s_flags |= flag; was_empty = list_empty(&sc->piowait); iowait_get_priority(&priv->s_iowait); iowait_queue(ps->pkts_sent, &priv->s_iowait, &sc->piowait); priv->s_iowait.lock = &sc->waitlock; trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO); rvt_get_qp(qp); /* counting: only call wantpiobuf_intr if first user */ if (was_empty) hfi1_sc_wantpiobuf_intr(sc, 1); } write_sequnlock(&sc->waitlock); hfi1_qp_unbusy(qp, ps->wait); ret = -EBUSY; } spin_unlock_irqrestore(&qp->s_lock, flags); return ret; } static void verbs_pio_complete(void *arg, int code) { struct rvt_qp *qp = (struct rvt_qp *)arg; struct hfi1_qp_priv *priv = qp->priv; if (iowait_pio_dec(&priv->s_iowait)) iowait_drain_wakeup(&priv->s_iowait); } int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps, u64 pbc) { struct hfi1_qp_priv *priv = qp->priv; u32 hdrwords = ps->s_txreq->hdr_dwords; struct rvt_sge_state *ss = ps->s_txreq->ss; u32 len = ps->s_txreq->s_cur_size; u32 dwords; u32 plen; struct hfi1_pportdata *ppd = ps->ppd; u32 *hdr; u8 sc5; unsigned long flags = 0; struct send_context *sc; struct pio_buf *pbuf; int wc_status = IB_WC_SUCCESS; int ret = 0; pio_release_cb cb = NULL; u8 extra_bytes = 0; if (ps->s_txreq->phdr.hdr.hdr_type) { u8 pad_size = hfi1_get_16b_padding((hdrwords << 2), len); extra_bytes = pad_size + (SIZE_OF_CRC << 2) + SIZE_OF_LT; dwords = (len + extra_bytes) >> 2; hdr = (u32 *)&ps->s_txreq->phdr.hdr.opah; } else { dwords = (len + 3) >> 2; hdr = (u32 *)&ps->s_txreq->phdr.hdr.ibh; } plen = hdrwords + dwords + sizeof(pbc) / 4; /* only RC/UC use complete */ switch (qp->ibqp.qp_type) { case IB_QPT_RC: case IB_QPT_UC: cb = verbs_pio_complete; break; default: break; } /* vl15 special case taken care of in ud.c */ sc5 = priv->s_sc; sc = ps->s_txreq->psc; if (likely(pbc == 0)) { u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5); /* set PBC_DC_INFO bit (aka SC[4]) in pbc */ if (ps->s_txreq->phdr.hdr.hdr_type) pbc |= PBC_PACKET_BYPASS | PBC_INSERT_BYPASS_ICRC; else pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT); pbc = create_pbc(ppd, pbc, qp->srate_mbps, vl, plen); if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode))) pbc = hfi1_fault_tx(qp, ps->opcode, pbc); else /* Update HCRC based on packet opcode */ pbc = update_hcrc(ps->opcode, pbc); } if (cb) iowait_pio_inc(&priv->s_iowait); pbuf = sc_buffer_alloc(sc, plen, cb, qp); if (IS_ERR_OR_NULL(pbuf)) { if (cb) verbs_pio_complete(qp, 0); if (IS_ERR(pbuf)) { /* * If we have filled the PIO buffers to capacity and are * not in an active state this request is not going to * go out to so just complete it with an error or else a * ULP or the core may be stuck waiting. */ hfi1_cdbg( PIO, "alloc failed. state not active, completing"); wc_status = IB_WC_GENERAL_ERR; goto pio_bail; } else { /* * This is a normal occurrence. The PIO buffs are full * up but we are still happily sending, well we could be * so lets continue to queue the request. */ hfi1_cdbg(PIO, "alloc failed. state active, queuing"); ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO); if (!ret) /* txreq not queued - free */ goto bail; /* tx consumed in wait */ return ret; } } if (dwords == 0) { pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords); } else { seg_pio_copy_start(pbuf, pbc, hdr, hdrwords * 4); if (ss) { while (len) { void *addr = ss->sge.vaddr; u32 slen = rvt_get_sge_length(&ss->sge, len); rvt_update_sge(ss, slen, false); seg_pio_copy_mid(pbuf, addr, slen); len -= slen; } } /* add icrc, lt byte, and padding to flit */ if (extra_bytes) seg_pio_copy_mid(pbuf, ppd->dd->sdma_pad_dma, extra_bytes); seg_pio_copy_end(pbuf); } update_tx_opstats(qp, ps, plen); trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device), &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5)); pio_bail: spin_lock_irqsave(&qp->s_lock, flags); if (qp->s_wqe) { rvt_send_complete(qp, qp->s_wqe, wc_status); } else if (qp->ibqp.qp_type == IB_QPT_RC) { if (unlikely(wc_status == IB_WC_GENERAL_ERR)) hfi1_rc_verbs_aborted(qp, &ps->s_txreq->phdr.hdr); hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr); } spin_unlock_irqrestore(&qp->s_lock, flags); ret = 0; bail: hfi1_put_txreq(ps->s_txreq); return ret; } /* * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent * being an entry from the partition key table), return 0 * otherwise. Use the matching criteria for egress partition keys * specified in the OPAv1 spec., section 9.1l.7. */ static inline int egress_pkey_matches_entry(u16 pkey, u16 ent) { u16 mkey = pkey & PKEY_LOW_15_MASK; u16 mentry = ent & PKEY_LOW_15_MASK; if (mkey == mentry) { /* * If pkey[15] is set (full partition member), * is bit 15 in the corresponding table element * clear (limited member)? */ if (pkey & PKEY_MEMBER_MASK) return !!(ent & PKEY_MEMBER_MASK); return 1; } return 0; } /** * egress_pkey_check - check P_KEY of a packet * @ppd: Physical IB port data * @slid: SLID for packet * @pkey: PKEY for header * @sc5: SC for packet * @s_pkey_index: It will be used for look up optimization for kernel contexts * only. If it is negative value, then it means user contexts is calling this * function. * * It checks if hdr's pkey is valid. * * Return: 0 on success, otherwise, 1 */ int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey, u8 sc5, int8_t s_pkey_index) { struct hfi1_devdata *dd; int i; int is_user_ctxt_mechanism = (s_pkey_index < 0); if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT)) return 0; /* If SC15, pkey[0:14] must be 0x7fff */ if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK)) goto bad; /* Is the pkey = 0x0, or 0x8000? */ if ((pkey & PKEY_LOW_15_MASK) == 0) goto bad; /* * For the kernel contexts only, if a qp is passed into the function, * the most likely matching pkey has index qp->s_pkey_index */ if (!is_user_ctxt_mechanism && egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) { return 0; } for (i = 0; i < MAX_PKEY_VALUES; i++) { if (egress_pkey_matches_entry(pkey, ppd->pkeys[i])) return 0; } bad: /* * For the user-context mechanism, the P_KEY check would only happen * once per SDMA request, not once per packet. Therefore, there's no * need to increment the counter for the user-context mechanism. */ if (!is_user_ctxt_mechanism) { incr_cntr64(&ppd->port_xmit_constraint_errors); dd = ppd->dd; if (!(dd->err_info_xmit_constraint.status & OPA_EI_STATUS_SMASK)) { dd->err_info_xmit_constraint.status |= OPA_EI_STATUS_SMASK; dd->err_info_xmit_constraint.slid = slid; dd->err_info_xmit_constraint.pkey = pkey; } } return 1; } /* * get_send_routine - choose an egress routine * * Choose an egress routine based on QP type * and size */ static inline send_routine get_send_routine(struct rvt_qp *qp, struct hfi1_pkt_state *ps) { struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device); struct hfi1_qp_priv *priv = qp->priv; struct verbs_txreq *tx = ps->s_txreq; if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA))) return dd->process_pio_send; switch (qp->ibqp.qp_type) { case IB_QPT_SMI: return dd->process_pio_send; case IB_QPT_GSI: case IB_QPT_UD: break; case IB_QPT_UC: case IB_QPT_RC: priv->s_running_pkt_size = (tx->s_cur_size + priv->s_running_pkt_size) / 2; if (piothreshold && priv->s_running_pkt_size <= min(piothreshold, qp->pmtu) && (BIT(ps->opcode & OPMASK) & pio_opmask[ps->opcode >> 5]) && iowait_sdma_pending(&priv->s_iowait) == 0 && !sdma_txreq_built(&tx->txreq)) return dd->process_pio_send; break; default: break; } return dd->process_dma_send; } /** * hfi1_verbs_send - send a packet * @qp: the QP to send on * @ps: the state of the packet to send * * Return zero if packet is sent or queued OK. * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise. */ int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps) { struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device); struct hfi1_qp_priv *priv = qp->priv; struct ib_other_headers *ohdr = NULL; send_routine sr; int ret; u16 pkey; u32 slid; u8 l4 = 0; /* locate the pkey within the headers */ if (ps->s_txreq->phdr.hdr.hdr_type) { struct hfi1_16b_header *hdr = &ps->s_txreq->phdr.hdr.opah; l4 = hfi1_16B_get_l4(hdr); if (l4 == OPA_16B_L4_IB_LOCAL) ohdr = &hdr->u.oth; else if (l4 == OPA_16B_L4_IB_GLOBAL) ohdr = &hdr->u.l.oth; slid = hfi1_16B_get_slid(hdr); pkey = hfi1_16B_get_pkey(hdr); } else { struct ib_header *hdr = &ps->s_txreq->phdr.hdr.ibh; u8 lnh = ib_get_lnh(hdr); if (lnh == HFI1_LRH_GRH) ohdr = &hdr->u.l.oth; else ohdr = &hdr->u.oth; slid = ib_get_slid(hdr); pkey = ib_bth_get_pkey(ohdr); } if (likely(l4 != OPA_16B_L4_FM)) ps->opcode = ib_bth_get_opcode(ohdr); else ps->opcode = IB_OPCODE_UD_SEND_ONLY; sr = get_send_routine(qp, ps); ret = egress_pkey_check(dd->pport, slid, pkey, priv->s_sc, qp->s_pkey_index); if (unlikely(ret)) { /* * The value we are returning here does not get propagated to * the verbs caller. Thus we need to complete the request with * error otherwise the caller could be sitting waiting on the * completion event. Only do this for PIO. SDMA has its own * mechanism for handling the errors. So for SDMA we can just * return. */ if (sr == dd->process_pio_send) { unsigned long flags; hfi1_cdbg(PIO, "%s() Failed. Completing with err", __func__); spin_lock_irqsave(&qp->s_lock, flags); rvt_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR); spin_unlock_irqrestore(&qp->s_lock, flags); } return -EINVAL; } if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait)) return pio_wait(qp, ps->s_txreq->psc, ps, HFI1_S_WAIT_PIO_DRAIN); return sr(qp, ps, 0); } /** * hfi1_fill_device_attr - Fill in rvt dev info device attributes. * @dd: the device data structure */ static void hfi1_fill_device_attr(struct hfi1_devdata *dd) { struct rvt_dev_info *rdi = &dd->verbs_dev.rdi; u32 ver = dd->dc8051_ver; memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props)); rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 32) | ((u64)(dc8051_ver_min(ver)) << 16) | (u64)dc8051_ver_patch(ver); rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR | IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT | IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN | IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE | IB_DEVICE_MEM_MGT_EXTENSIONS | IB_DEVICE_RDMA_NETDEV_OPA; rdi->dparms.props.page_size_cap = PAGE_SIZE; rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3; rdi->dparms.props.vendor_part_id = dd->pcidev->device; rdi->dparms.props.hw_ver = dd->minrev; rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid; rdi->dparms.props.max_mr_size = U64_MAX; rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX; rdi->dparms.props.max_qp = hfi1_max_qps; rdi->dparms.props.max_qp_wr = (hfi1_max_qp_wrs >= HFI1_QP_WQE_INVALID ? HFI1_QP_WQE_INVALID - 1 : hfi1_max_qp_wrs); rdi->dparms.props.max_send_sge = hfi1_max_sges; rdi->dparms.props.max_recv_sge = hfi1_max_sges; rdi->dparms.props.max_sge_rd = hfi1_max_sges; rdi->dparms.props.max_cq = hfi1_max_cqs; rdi->dparms.props.max_ah = hfi1_max_ahs; rdi->dparms.props.max_cqe = hfi1_max_cqes; rdi->dparms.props.max_pd = hfi1_max_pds; rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC; rdi->dparms.props.max_qp_init_rd_atom = 255; rdi->dparms.props.max_srq = hfi1_max_srqs; rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs; rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges; rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB; rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd); rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps; rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached; rdi->dparms.props.max_total_mcast_qp_attach = rdi->dparms.props.max_mcast_qp_attach * rdi->dparms.props.max_mcast_grp; } static inline u16 opa_speed_to_ib(u16 in) { u16 out = 0; if (in & OPA_LINK_SPEED_25G) out |= IB_SPEED_EDR; if (in & OPA_LINK_SPEED_12_5G) out |= IB_SPEED_FDR; return out; } /* * Convert a single OPA link width (no multiple flags) to an IB value. * A zero OPA link width means link down, which means the IB width value * is a don't care. */ static inline u16 opa_width_to_ib(u16 in) { switch (in) { case OPA_LINK_WIDTH_1X: /* map 2x and 3x to 1x as they don't exist in IB */ case OPA_LINK_WIDTH_2X: case OPA_LINK_WIDTH_3X: return IB_WIDTH_1X; default: /* link down or unknown, return our largest width */ case OPA_LINK_WIDTH_4X: return IB_WIDTH_4X; } } static int query_port(struct rvt_dev_info *rdi, u32 port_num, struct ib_port_attr *props) { struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi); struct hfi1_devdata *dd = dd_from_dev(verbs_dev); struct hfi1_pportdata *ppd = &dd->pport[port_num - 1]; u32 lid = ppd->lid; /* props being zeroed by the caller, avoid zeroing it here */ props->lid = lid ? lid : 0; props->lmc = ppd->lmc; /* OPA logical states match IB logical states */ props->state = driver_lstate(ppd); props->phys_state = driver_pstate(ppd); props->gid_tbl_len = HFI1_GUIDS_PER_PORT; props->active_width = (u8)opa_width_to_ib(ppd->link_width_active); /* see rate_show() in ib core/sysfs.c */ props->active_speed = opa_speed_to_ib(ppd->link_speed_active); props->max_vl_num = ppd->vls_supported; /* Once we are a "first class" citizen and have added the OPA MTUs to * the core we can advertise the larger MTU enum to the ULPs, for now * advertise only 4K. * * Those applications which are either OPA aware or pass the MTU enum * from the Path Records to us will get the new 8k MTU. Those that * attempt to process the MTU enum may fail in various ways. */ props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ? 4096 : hfi1_max_mtu), IB_MTU_4096); props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu : mtu_to_enum(ppd->ibmtu, IB_MTU_4096); props->phys_mtu = HFI1_CAP_IS_KSET(AIP) ? hfi1_max_mtu : ib_mtu_enum_to_int(props->max_mtu); return 0; } static int modify_device(struct ib_device *device, int device_modify_mask, struct ib_device_modify *device_modify) { struct hfi1_devdata *dd = dd_from_ibdev(device); unsigned i; int ret; if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID | IB_DEVICE_MODIFY_NODE_DESC)) { ret = -EOPNOTSUPP; goto bail; } if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) { memcpy(device->node_desc, device_modify->node_desc, IB_DEVICE_NODE_DESC_MAX); for (i = 0; i < dd->num_pports; i++) { struct hfi1_ibport *ibp = &dd->pport[i].ibport_data; hfi1_node_desc_chg(ibp); } } if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) { ib_hfi1_sys_image_guid = cpu_to_be64(device_modify->sys_image_guid); for (i = 0; i < dd->num_pports; i++) { struct hfi1_ibport *ibp = &dd->pport[i].ibport_data; hfi1_sys_guid_chg(ibp); } } ret = 0; bail: return ret; } static int shut_down_port(struct rvt_dev_info *rdi, u32 port_num) { struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi); struct hfi1_devdata *dd = dd_from_dev(verbs_dev); struct hfi1_pportdata *ppd = &dd->pport[port_num - 1]; int ret; set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0, OPA_LINKDOWN_REASON_UNKNOWN); ret = set_link_state(ppd, HLS_DN_DOWNDEF); return ret; } static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp, int guid_index, __be64 *guid) { struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp); if (guid_index >= HFI1_GUIDS_PER_PORT) return -EINVAL; *guid = get_sguid(ibp, guid_index); return 0; } /* * convert ah port,sl to sc */ u8 ah_to_sc(struct ib_device *ibdev, struct rdma_ah_attr *ah) { struct hfi1_ibport *ibp = to_iport(ibdev, rdma_ah_get_port_num(ah)); return ibp->sl_to_sc[rdma_ah_get_sl(ah)]; } static int hfi1_check_ah(struct ib_device *ibdev, struct rdma_ah_attr *ah_attr) { struct hfi1_ibport *ibp; struct hfi1_pportdata *ppd; struct hfi1_devdata *dd; u8 sc5; u8 sl; if (hfi1_check_mcast(rdma_ah_get_dlid(ah_attr)) && !(rdma_ah_get_ah_flags(ah_attr) & IB_AH_GRH)) return -EINVAL; /* test the mapping for validity */ ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr)); ppd = ppd_from_ibp(ibp); dd = dd_from_ppd(ppd); sl = rdma_ah_get_sl(ah_attr); if (sl >= ARRAY_SIZE(ibp->sl_to_sc)) return -EINVAL; sl = array_index_nospec(sl, ARRAY_SIZE(ibp->sl_to_sc)); sc5 = ibp->sl_to_sc[sl]; if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf) return -EINVAL; return 0; } static void hfi1_notify_new_ah(struct ib_device *ibdev, struct rdma_ah_attr *ah_attr, struct rvt_ah *ah) { struct hfi1_ibport *ibp; struct hfi1_pportdata *ppd; struct hfi1_devdata *dd; u8 sc5; struct rdma_ah_attr *attr = &ah->attr; /* * Do not trust reading anything from rvt_ah at this point as it is not * done being setup. We can however modify things which we need to set. */ ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr)); ppd = ppd_from_ibp(ibp); sc5 = ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)]; hfi1_update_ah_attr(ibdev, attr); hfi1_make_opa_lid(attr); dd = dd_from_ppd(ppd); ah->vl = sc_to_vlt(dd, sc5); if (ah->vl < num_vls || ah->vl == 15) ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu); } /** * hfi1_get_npkeys - return the size of the PKEY table for context 0 * @dd: the hfi1_ib device */ unsigned hfi1_get_npkeys(struct hfi1_devdata *dd) { return ARRAY_SIZE(dd->pport[0].pkeys); } static void init_ibport(struct hfi1_pportdata *ppd) { struct hfi1_ibport *ibp = &ppd->ibport_data; size_t sz = ARRAY_SIZE(ibp->sl_to_sc); int i; for (i = 0; i < sz; i++) { ibp->sl_to_sc[i] = i; ibp->sc_to_sl[i] = i; } for (i = 0; i < RVT_MAX_TRAP_LISTS ; i++) INIT_LIST_HEAD(&ibp->rvp.trap_lists[i].list); timer_setup(&ibp->rvp.trap_timer, hfi1_handle_trap_timer, 0); spin_lock_init(&ibp->rvp.lock); /* Set the prefix to the default value (see ch. 4.1.1) */ ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX; ibp->rvp.sm_lid = 0; /* * Below should only set bits defined in OPA PortInfo.CapabilityMask * and PortInfo.CapabilityMask3 */ ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP | IB_PORT_CAP_MASK_NOTICE_SUP; ibp->rvp.port_cap3_flags = OPA_CAP_MASK3_IsSharedSpaceSupported; ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA; ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA; ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS; ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS; ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT; RCU_INIT_POINTER(ibp->rvp.qp[0], NULL); RCU_INIT_POINTER(ibp->rvp.qp[1], NULL); } static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str) { struct rvt_dev_info *rdi = ib_to_rvt(ibdev); struct hfi1_ibdev *dev = dev_from_rdi(rdi); u32 ver = dd_from_dev(dev)->dc8051_ver; snprintf(str, IB_FW_VERSION_NAME_MAX, "%u.%u.%u", dc8051_ver_maj(ver), dc8051_ver_min(ver), dc8051_ver_patch(ver)); } static const char * const driver_cntr_names[] = { /* must be element 0*/ "DRIVER_KernIntr", "DRIVER_ErrorIntr", "DRIVER_Tx_Errs", "DRIVER_Rcv_Errs", "DRIVER_HW_Errs", "DRIVER_NoPIOBufs", "DRIVER_CtxtsOpen", "DRIVER_RcvLen_Errs", "DRIVER_EgrBufFull", "DRIVER_EgrHdrFull" }; static DEFINE_MUTEX(cntr_names_lock); /* protects the *_cntr_names bufers */ static const char **dev_cntr_names; static const char **port_cntr_names; int num_driver_cntrs = ARRAY_SIZE(driver_cntr_names); static int num_dev_cntrs; static int num_port_cntrs; static int cntr_names_initialized; /* * Convert a list of names separated by '\n' into an array of NULL terminated * strings. Optionally some entries can be reserved in the array to hold extra * external strings. */ static int init_cntr_names(const char *names_in, const size_t names_len, int num_extra_names, int *num_cntrs, const char ***cntr_names) { char *names_out, *p, **q; int i, n; n = 0; for (i = 0; i < names_len; i++) if (names_in[i] == '\n') n++; names_out = kmalloc((n + num_extra_names) * sizeof(char *) + names_len, GFP_KERNEL); if (!names_out) { *num_cntrs = 0; *cntr_names = NULL; return -ENOMEM; } p = names_out + (n + num_extra_names) * sizeof(char *); memcpy(p, names_in, names_len); q = (char **)names_out; for (i = 0; i < n; i++) { q[i] = p; p = strchr(p, '\n'); *p++ = '\0'; } *num_cntrs = n; *cntr_names = (const char **)names_out; return 0; } static int init_counters(struct ib_device *ibdev) { struct hfi1_devdata *dd = dd_from_ibdev(ibdev); int i, err = 0; mutex_lock(&cntr_names_lock); if (cntr_names_initialized) goto out_unlock; err = init_cntr_names(dd->cntrnames, dd->cntrnameslen, num_driver_cntrs, &num_dev_cntrs, &dev_cntr_names); if (err) goto out_unlock; for (i = 0; i < num_driver_cntrs; i++) dev_cntr_names[num_dev_cntrs + i] = driver_cntr_names[i]; err = init_cntr_names(dd->portcntrnames, dd->portcntrnameslen, 0, &num_port_cntrs, &port_cntr_names); if (err) { kfree(dev_cntr_names); dev_cntr_names = NULL; goto out_unlock; } cntr_names_initialized = 1; out_unlock: mutex_unlock(&cntr_names_lock); return err; } static struct rdma_hw_stats *hfi1_alloc_hw_device_stats(struct ib_device *ibdev) { if (init_counters(ibdev)) return NULL; return rdma_alloc_hw_stats_struct(dev_cntr_names, num_dev_cntrs + num_driver_cntrs, RDMA_HW_STATS_DEFAULT_LIFESPAN); } static struct rdma_hw_stats *hfi_alloc_hw_port_stats(struct ib_device *ibdev, u32 port_num) { if (init_counters(ibdev)) return NULL; return rdma_alloc_hw_stats_struct(port_cntr_names, num_port_cntrs, RDMA_HW_STATS_DEFAULT_LIFESPAN); } static u64 hfi1_sps_ints(void) { unsigned long index, flags; struct hfi1_devdata *dd; u64 sps_ints = 0; xa_lock_irqsave(&hfi1_dev_table, flags); xa_for_each(&hfi1_dev_table, index, dd) { sps_ints += get_all_cpu_total(dd->int_counter); } xa_unlock_irqrestore(&hfi1_dev_table, flags); return sps_ints; } static int get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats, u32 port, int index) { u64 *values; int count; if (!port) { u64 *stats = (u64 *)&hfi1_stats; int i; hfi1_read_cntrs(dd_from_ibdev(ibdev), NULL, &values); values[num_dev_cntrs] = hfi1_sps_ints(); for (i = 1; i < num_driver_cntrs; i++) values[num_dev_cntrs + i] = stats[i]; count = num_dev_cntrs + num_driver_cntrs; } else { struct hfi1_ibport *ibp = to_iport(ibdev, port); hfi1_read_portcntrs(ppd_from_ibp(ibp), NULL, &values); count = num_port_cntrs; } memcpy(stats->value, values, count * sizeof(u64)); return count; } static const struct ib_device_ops hfi1_dev_ops = { .owner = THIS_MODULE, .driver_id = RDMA_DRIVER_HFI1, .alloc_hw_device_stats = hfi1_alloc_hw_device_stats, .alloc_hw_port_stats = hfi_alloc_hw_port_stats, .alloc_rdma_netdev = hfi1_vnic_alloc_rn, .device_group = &ib_hfi1_attr_group, .get_dev_fw_str = hfi1_get_dev_fw_str, .get_hw_stats = get_hw_stats, .modify_device = modify_device, .port_groups = hfi1_attr_port_groups, /* keep process mad in the driver */ .process_mad = hfi1_process_mad, .rdma_netdev_get_params = hfi1_ipoib_rn_get_params, }; /** * hfi1_register_ib_device - register our device with the infiniband core * @dd: the device data structure * Return 0 if successful, errno if unsuccessful. */ int hfi1_register_ib_device(struct hfi1_devdata *dd) { struct hfi1_ibdev *dev = &dd->verbs_dev; struct ib_device *ibdev = &dev->rdi.ibdev; struct hfi1_pportdata *ppd = dd->pport; struct hfi1_ibport *ibp = &ppd->ibport_data; unsigned i; int ret; for (i = 0; i < dd->num_pports; i++) init_ibport(ppd + i); /* Only need to initialize non-zero fields. */ timer_setup(&dev->mem_timer, mem_timer, 0); seqlock_init(&dev->iowait_lock); seqlock_init(&dev->txwait_lock); INIT_LIST_HEAD(&dev->txwait); INIT_LIST_HEAD(&dev->memwait); ret = verbs_txreq_init(dev); if (ret) goto err_verbs_txreq; /* Use first-port GUID as node guid */ ibdev->node_guid = get_sguid(ibp, HFI1_PORT_GUID_INDEX); /* * The system image GUID is supposed to be the same for all * HFIs in a single system but since there can be other * device types in the system, we can't be sure this is unique. */ if (!ib_hfi1_sys_image_guid) ib_hfi1_sys_image_guid = ibdev->node_guid; ibdev->phys_port_cnt = dd->num_pports; ibdev->dev.parent = &dd->pcidev->dev; ib_set_device_ops(ibdev, &hfi1_dev_ops); strlcpy(ibdev->node_desc, init_utsname()->nodename, sizeof(ibdev->node_desc)); /* * Fill in rvt info object. */ dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev; dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah; dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah; dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be; dd->verbs_dev.rdi.driver_f.query_port_state = query_port; dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port; dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg; /* * Fill in rvt info device attributes. */ hfi1_fill_device_attr(dd); /* queue pair */ dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size; dd->verbs_dev.rdi.dparms.qpn_start = 0; dd->verbs_dev.rdi.dparms.qpn_inc = 1; dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift; dd->verbs_dev.rdi.dparms.qpn_res_start = RVT_KDETH_QP_BASE; dd->verbs_dev.rdi.dparms.qpn_res_end = RVT_AIP_QP_MAX; dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC; dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK; dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT; dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK; dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA | RDMA_CORE_CAP_OPA_AH; dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE; dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc; dd->verbs_dev.rdi.driver_f.qp_priv_init = hfi1_qp_priv_init; dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free; dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps; dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset; dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send_from_rvt; dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send; dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send; dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr; dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp; dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters; dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue; dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp; dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp; dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp; dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu; dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp; dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp; dd->verbs_dev.rdi.driver_f.notify_restart_rc = hfi1_restart_rc; dd->verbs_dev.rdi.driver_f.setup_wqe = hfi1_setup_wqe; dd->verbs_dev.rdi.driver_f.comp_vect_cpu_lookup = hfi1_comp_vect_mappings_lookup; /* completeion queue */ dd->verbs_dev.rdi.ibdev.num_comp_vectors = dd->comp_vect_possible_cpus; dd->verbs_dev.rdi.dparms.node = dd->node; /* misc settings */ dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */ dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size; dd->verbs_dev.rdi.dparms.nports = dd->num_pports; dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd); dd->verbs_dev.rdi.dparms.sge_copy_mode = sge_copy_mode; dd->verbs_dev.rdi.dparms.wss_threshold = wss_threshold; dd->verbs_dev.rdi.dparms.wss_clean_period = wss_clean_period; dd->verbs_dev.rdi.dparms.reserved_operations = 1; dd->verbs_dev.rdi.dparms.extra_rdma_atomic = HFI1_TID_RDMA_WRITE_CNT; /* post send table */ dd->verbs_dev.rdi.post_parms = hfi1_post_parms; /* opcode translation table */ dd->verbs_dev.rdi.wc_opcode = ib_hfi1_wc_opcode; ppd = dd->pport; for (i = 0; i < dd->num_pports; i++, ppd++) rvt_init_port(&dd->verbs_dev.rdi, &ppd->ibport_data.rvp, i, ppd->pkeys); ret = rvt_register_device(&dd->verbs_dev.rdi); if (ret) goto err_verbs_txreq; ret = hfi1_verbs_register_sysfs(dd); if (ret) goto err_class; return ret; err_class: rvt_unregister_device(&dd->verbs_dev.rdi); err_verbs_txreq: verbs_txreq_exit(dev); dd_dev_err(dd, "cannot register verbs: %d!\n", -ret); return ret; } void hfi1_unregister_ib_device(struct hfi1_devdata *dd) { struct hfi1_ibdev *dev = &dd->verbs_dev; hfi1_verbs_unregister_sysfs(dd); rvt_unregister_device(&dd->verbs_dev.rdi); if (!list_empty(&dev->txwait)) dd_dev_err(dd, "txwait list not empty!\n"); if (!list_empty(&dev->memwait)) dd_dev_err(dd, "memwait list not empty!\n"); del_timer_sync(&dev->mem_timer); verbs_txreq_exit(dev); mutex_lock(&cntr_names_lock); kfree(dev_cntr_names); kfree(port_cntr_names); dev_cntr_names = NULL; port_cntr_names = NULL; cntr_names_initialized = 0; mutex_unlock(&cntr_names_lock); } void hfi1_cnp_rcv(struct hfi1_packet *packet) { struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd); struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); struct ib_header *hdr = packet->hdr; struct rvt_qp *qp = packet->qp; u32 lqpn, rqpn = 0; u16 rlid = 0; u8 sl, sc5, svc_type; switch (packet->qp->ibqp.qp_type) { case IB_QPT_UC: rlid = rdma_ah_get_dlid(&qp->remote_ah_attr); rqpn = qp->remote_qpn; svc_type = IB_CC_SVCTYPE_UC; break; case IB_QPT_RC: rlid = rdma_ah_get_dlid(&qp->remote_ah_attr); rqpn = qp->remote_qpn; svc_type = IB_CC_SVCTYPE_RC; break; case IB_QPT_SMI: case IB_QPT_GSI: case IB_QPT_UD: svc_type = IB_CC_SVCTYPE_UD; break; default: ibp->rvp.n_pkt_drops++; return; } sc5 = hfi1_9B_get_sc5(hdr, packet->rhf); sl = ibp->sc_to_sl[sc5]; lqpn = qp->ibqp.qp_num; process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type); }