// SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause /* * Copyright(c) 2023 - Cornelis Networks, Inc. */ #include #include "hfi.h" #include "common.h" #include "device.h" #include "pinning.h" #include "mmu_rb.h" #include "user_sdma.h" #include "trace.h" struct sdma_mmu_node { struct mmu_rb_node rb; struct hfi1_user_sdma_pkt_q *pq; struct page **pages; unsigned int npages; }; static bool sdma_rb_filter(struct mmu_rb_node *node, unsigned long addr, unsigned long len); static int sdma_rb_evict(void *arg, struct mmu_rb_node *mnode, void *arg2, bool *stop); static void sdma_rb_remove(void *arg, struct mmu_rb_node *mnode); static struct mmu_rb_ops sdma_rb_ops = { .filter = sdma_rb_filter, .evict = sdma_rb_evict, .remove = sdma_rb_remove, }; int hfi1_init_system_pinning(struct hfi1_user_sdma_pkt_q *pq) { struct hfi1_devdata *dd = pq->dd; int ret; ret = hfi1_mmu_rb_register(pq, &sdma_rb_ops, dd->pport->hfi1_wq, &pq->handler); if (ret) dd_dev_err(dd, "[%u:%u] Failed to register system memory DMA support with MMU: %d\n", pq->ctxt, pq->subctxt, ret); return ret; } void hfi1_free_system_pinning(struct hfi1_user_sdma_pkt_q *pq) { if (pq->handler) hfi1_mmu_rb_unregister(pq->handler); } static u32 sdma_cache_evict(struct hfi1_user_sdma_pkt_q *pq, u32 npages) { struct evict_data evict_data; evict_data.cleared = 0; evict_data.target = npages; hfi1_mmu_rb_evict(pq->handler, &evict_data); return evict_data.cleared; } static void unpin_vector_pages(struct mm_struct *mm, struct page **pages, unsigned int start, unsigned int npages) { hfi1_release_user_pages(mm, pages + start, npages, false); kfree(pages); } static inline struct mm_struct *mm_from_sdma_node(struct sdma_mmu_node *node) { return node->rb.handler->mn.mm; } static void free_system_node(struct sdma_mmu_node *node) { if (node->npages) { unpin_vector_pages(mm_from_sdma_node(node), node->pages, 0, node->npages); atomic_sub(node->npages, &node->pq->n_locked); } kfree(node); } /* * kref_get()'s an additional kref on the returned rb_node to prevent rb_node * from being released until after rb_node is assigned to an SDMA descriptor * (struct sdma_desc) under add_system_iovec_to_sdma_packet(), even if the * virtual address range for rb_node is invalidated between now and then. */ static struct sdma_mmu_node *find_system_node(struct mmu_rb_handler *handler, unsigned long start, unsigned long end) { struct mmu_rb_node *rb_node; unsigned long flags; spin_lock_irqsave(&handler->lock, flags); rb_node = hfi1_mmu_rb_get_first(handler, start, (end - start)); if (!rb_node) { spin_unlock_irqrestore(&handler->lock, flags); return NULL; } /* "safety" kref to prevent release before add_system_iovec_to_sdma_packet() */ kref_get(&rb_node->refcount); spin_unlock_irqrestore(&handler->lock, flags); return container_of(rb_node, struct sdma_mmu_node, rb); } static int pin_system_pages(struct user_sdma_request *req, uintptr_t start_address, size_t length, struct sdma_mmu_node *node, int npages) { struct hfi1_user_sdma_pkt_q *pq = req->pq; int pinned, cleared; struct page **pages; pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL); if (!pages) return -ENOMEM; retry: if (!hfi1_can_pin_pages(pq->dd, current->mm, atomic_read(&pq->n_locked), npages)) { SDMA_DBG(req, "Evicting: nlocked %u npages %u", atomic_read(&pq->n_locked), npages); cleared = sdma_cache_evict(pq, npages); if (cleared >= npages) goto retry; } SDMA_DBG(req, "Acquire user pages start_address %lx node->npages %u npages %u", start_address, node->npages, npages); pinned = hfi1_acquire_user_pages(current->mm, start_address, npages, 0, pages); if (pinned < 0) { kfree(pages); SDMA_DBG(req, "pinned %d", pinned); return pinned; } if (pinned != npages) { unpin_vector_pages(current->mm, pages, node->npages, pinned); SDMA_DBG(req, "npages %u pinned %d", npages, pinned); return -EFAULT; } node->rb.addr = start_address; node->rb.len = length; node->pages = pages; node->npages = npages; atomic_add(pinned, &pq->n_locked); SDMA_DBG(req, "done. pinned %d", pinned); return 0; } /* * kref refcount on *node_p will be 2 on successful addition: one kref from * kref_init() for mmu_rb_handler and one kref to prevent *node_p from being * released until after *node_p is assigned to an SDMA descriptor (struct * sdma_desc) under add_system_iovec_to_sdma_packet(), even if the virtual * address range for *node_p is invalidated between now and then. */ static int add_system_pinning(struct user_sdma_request *req, struct sdma_mmu_node **node_p, unsigned long start, unsigned long len) { struct hfi1_user_sdma_pkt_q *pq = req->pq; struct sdma_mmu_node *node; int ret; node = kzalloc(sizeof(*node), GFP_KERNEL); if (!node) return -ENOMEM; /* First kref "moves" to mmu_rb_handler */ kref_init(&node->rb.refcount); /* "safety" kref to prevent release before add_system_iovec_to_sdma_packet() */ kref_get(&node->rb.refcount); node->pq = pq; ret = pin_system_pages(req, start, len, node, PFN_DOWN(len)); if (ret == 0) { ret = hfi1_mmu_rb_insert(pq->handler, &node->rb); if (ret) free_system_node(node); else *node_p = node; return ret; } kfree(node); return ret; } static int get_system_cache_entry(struct user_sdma_request *req, struct sdma_mmu_node **node_p, size_t req_start, size_t req_len) { struct hfi1_user_sdma_pkt_q *pq = req->pq; u64 start = ALIGN_DOWN(req_start, PAGE_SIZE); u64 end = PFN_ALIGN(req_start + req_len); int ret; if ((end - start) == 0) { SDMA_DBG(req, "Request for empty cache entry req_start %lx req_len %lx start %llx end %llx", req_start, req_len, start, end); return -EINVAL; } SDMA_DBG(req, "req_start %lx req_len %lu", req_start, req_len); while (1) { struct sdma_mmu_node *node = find_system_node(pq->handler, start, end); u64 prepend_len = 0; SDMA_DBG(req, "node %p start %llx end %llu", node, start, end); if (!node) { ret = add_system_pinning(req, node_p, start, end - start); if (ret == -EEXIST) { /* * Another execution context has inserted a * conficting entry first. */ continue; } return ret; } if (node->rb.addr <= start) { /* * This entry covers at least part of the region. If it doesn't extend * to the end, then this will be called again for the next segment. */ *node_p = node; return 0; } SDMA_DBG(req, "prepend: node->rb.addr %lx, node->rb.refcount %d", node->rb.addr, kref_read(&node->rb.refcount)); prepend_len = node->rb.addr - start; /* * This node will not be returned, instead a new node * will be. So release the reference. */ kref_put(&node->rb.refcount, hfi1_mmu_rb_release); /* Prepend a node to cover the beginning of the allocation */ ret = add_system_pinning(req, node_p, start, prepend_len); if (ret == -EEXIST) { /* Another execution context has inserted a conficting entry first. */ continue; } return ret; } } static void sdma_mmu_rb_node_get(void *ctx) { struct mmu_rb_node *node = ctx; kref_get(&node->refcount); } static void sdma_mmu_rb_node_put(void *ctx) { struct sdma_mmu_node *node = ctx; kref_put(&node->rb.refcount, hfi1_mmu_rb_release); } static int add_mapping_to_sdma_packet(struct user_sdma_request *req, struct user_sdma_txreq *tx, struct sdma_mmu_node *cache_entry, size_t start, size_t from_this_cache_entry) { struct hfi1_user_sdma_pkt_q *pq = req->pq; unsigned int page_offset; unsigned int from_this_page; size_t page_index; void *ctx; int ret; /* * Because the cache may be more fragmented than the memory that is being accessed, * it's not strictly necessary to have a descriptor per cache entry. */ while (from_this_cache_entry) { page_index = PFN_DOWN(start - cache_entry->rb.addr); if (page_index >= cache_entry->npages) { SDMA_DBG(req, "Request for page_index %zu >= cache_entry->npages %u", page_index, cache_entry->npages); return -EINVAL; } page_offset = start - ALIGN_DOWN(start, PAGE_SIZE); from_this_page = PAGE_SIZE - page_offset; if (from_this_page < from_this_cache_entry) { ctx = NULL; } else { /* * In the case they are equal the next line has no practical effect, * but it's better to do a register to register copy than a conditional * branch. */ from_this_page = from_this_cache_entry; ctx = cache_entry; } ret = sdma_txadd_page(pq->dd, &tx->txreq, cache_entry->pages[page_index], page_offset, from_this_page, ctx, sdma_mmu_rb_node_get, sdma_mmu_rb_node_put); if (ret) { /* * When there's a failure, the entire request is freed by * user_sdma_send_pkts(). */ SDMA_DBG(req, "sdma_txadd_page failed %d page_index %lu page_offset %u from_this_page %u", ret, page_index, page_offset, from_this_page); return ret; } start += from_this_page; from_this_cache_entry -= from_this_page; } return 0; } static int add_system_iovec_to_sdma_packet(struct user_sdma_request *req, struct user_sdma_txreq *tx, struct user_sdma_iovec *iovec, size_t from_this_iovec) { while (from_this_iovec > 0) { struct sdma_mmu_node *cache_entry; size_t from_this_cache_entry; size_t start; int ret; start = (uintptr_t)iovec->iov.iov_base + iovec->offset; ret = get_system_cache_entry(req, &cache_entry, start, from_this_iovec); if (ret) { SDMA_DBG(req, "pin system segment failed %d", ret); return ret; } from_this_cache_entry = cache_entry->rb.len - (start - cache_entry->rb.addr); if (from_this_cache_entry > from_this_iovec) from_this_cache_entry = from_this_iovec; ret = add_mapping_to_sdma_packet(req, tx, cache_entry, start, from_this_cache_entry); /* * Done adding cache_entry to zero or more sdma_desc. Can * kref_put() the "safety" kref taken under * get_system_cache_entry(). */ kref_put(&cache_entry->rb.refcount, hfi1_mmu_rb_release); if (ret) { SDMA_DBG(req, "add system segment failed %d", ret); return ret; } iovec->offset += from_this_cache_entry; from_this_iovec -= from_this_cache_entry; } return 0; } /* * Add up to pkt_data_remaining bytes to the txreq, starting at the current * offset in the given iovec entry and continuing until all data has been added * to the iovec or the iovec entry type changes. * * On success, prior to returning, adjust pkt_data_remaining, req->iov_idx, and * the offset value in req->iov[req->iov_idx] to reflect the data that has been * consumed. */ int hfi1_add_pages_to_sdma_packet(struct user_sdma_request *req, struct user_sdma_txreq *tx, struct user_sdma_iovec *iovec, u32 *pkt_data_remaining) { size_t remaining_to_add = *pkt_data_remaining; /* * Walk through iovec entries, ensure the associated pages * are pinned and mapped, add data to the packet until no more * data remains to be added or the iovec entry type changes. */ while (remaining_to_add > 0) { struct user_sdma_iovec *cur_iovec; size_t from_this_iovec; int ret; cur_iovec = iovec; from_this_iovec = iovec->iov.iov_len - iovec->offset; if (from_this_iovec > remaining_to_add) { from_this_iovec = remaining_to_add; } else { /* The current iovec entry will be consumed by this pass. */ req->iov_idx++; iovec++; } ret = add_system_iovec_to_sdma_packet(req, tx, cur_iovec, from_this_iovec); if (ret) return ret; remaining_to_add -= from_this_iovec; } *pkt_data_remaining = remaining_to_add; return 0; } static bool sdma_rb_filter(struct mmu_rb_node *node, unsigned long addr, unsigned long len) { return (bool)(node->addr == addr); } /* * Return 1 to remove the node from the rb tree and call the remove op. * * Called with the rb tree lock held. */ static int sdma_rb_evict(void *arg, struct mmu_rb_node *mnode, void *evict_arg, bool *stop) { struct sdma_mmu_node *node = container_of(mnode, struct sdma_mmu_node, rb); struct evict_data *evict_data = evict_arg; /* this node will be evicted, add its pages to our count */ evict_data->cleared += node->npages; /* have enough pages been cleared? */ if (evict_data->cleared >= evict_data->target) *stop = true; return 1; /* remove this node */ } static void sdma_rb_remove(void *arg, struct mmu_rb_node *mnode) { struct sdma_mmu_node *node = container_of(mnode, struct sdma_mmu_node, rb); free_system_node(node); }