// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2014 Intel Corporation * * Driver for Semtech's SX9500 capacitive proximity/button solution. * Datasheet available at * <http://www.semtech.com/images/datasheet/sx9500.pdf>. */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/i2c.h> #include <linux/irq.h> #include <linux/acpi.h> #include <linux/gpio/consumer.h> #include <linux/regmap.h> #include <linux/pm.h> #include <linux/delay.h> #include <linux/iio/iio.h> #include <linux/iio/buffer.h> #include <linux/iio/sysfs.h> #include <linux/iio/events.h> #include <linux/iio/trigger.h> #include <linux/iio/triggered_buffer.h> #include <linux/iio/trigger_consumer.h> #define SX9500_DRIVER_NAME "sx9500" #define SX9500_IRQ_NAME "sx9500_event" /* Register definitions. */ #define SX9500_REG_IRQ_SRC 0x00 #define SX9500_REG_STAT 0x01 #define SX9500_REG_IRQ_MSK 0x03 #define SX9500_REG_PROX_CTRL0 0x06 #define SX9500_REG_PROX_CTRL1 0x07 #define SX9500_REG_PROX_CTRL2 0x08 #define SX9500_REG_PROX_CTRL3 0x09 #define SX9500_REG_PROX_CTRL4 0x0a #define SX9500_REG_PROX_CTRL5 0x0b #define SX9500_REG_PROX_CTRL6 0x0c #define SX9500_REG_PROX_CTRL7 0x0d #define SX9500_REG_PROX_CTRL8 0x0e #define SX9500_REG_SENSOR_SEL 0x20 #define SX9500_REG_USE_MSB 0x21 #define SX9500_REG_USE_LSB 0x22 #define SX9500_REG_AVG_MSB 0x23 #define SX9500_REG_AVG_LSB 0x24 #define SX9500_REG_DIFF_MSB 0x25 #define SX9500_REG_DIFF_LSB 0x26 #define SX9500_REG_OFFSET_MSB 0x27 #define SX9500_REG_OFFSET_LSB 0x28 #define SX9500_REG_RESET 0x7f /* Write this to REG_RESET to do a soft reset. */ #define SX9500_SOFT_RESET 0xde #define SX9500_SCAN_PERIOD_MASK GENMASK(6, 4) #define SX9500_SCAN_PERIOD_SHIFT 4 /* * These serve for identifying IRQ source in the IRQ_SRC register, and * also for masking the IRQs in the IRQ_MSK register. */ #define SX9500_CLOSE_IRQ BIT(6) #define SX9500_FAR_IRQ BIT(5) #define SX9500_CONVDONE_IRQ BIT(3) #define SX9500_PROXSTAT_SHIFT 4 #define SX9500_COMPSTAT_MASK GENMASK(3, 0) #define SX9500_NUM_CHANNELS 4 #define SX9500_CHAN_MASK GENMASK(SX9500_NUM_CHANNELS - 1, 0) struct sx9500_data { struct mutex mutex; struct i2c_client *client; struct iio_trigger *trig; struct regmap *regmap; struct gpio_desc *gpiod_rst; /* * Last reading of the proximity status for each channel. We * only send an event to user space when this changes. */ bool prox_stat[SX9500_NUM_CHANNELS]; bool event_enabled[SX9500_NUM_CHANNELS]; bool trigger_enabled; u16 *buffer; /* Remember enabled channels and sample rate during suspend. */ unsigned int suspend_ctrl0; struct completion completion; int data_rdy_users, close_far_users; int channel_users[SX9500_NUM_CHANNELS]; }; static const struct iio_event_spec sx9500_events[] = { { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_EITHER, .mask_separate = BIT(IIO_EV_INFO_ENABLE), }, }; #define SX9500_CHANNEL(idx) \ { \ .type = IIO_PROXIMITY, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .indexed = 1, \ .channel = idx, \ .event_spec = sx9500_events, \ .num_event_specs = ARRAY_SIZE(sx9500_events), \ .scan_index = idx, \ .scan_type = { \ .sign = 'u', \ .realbits = 16, \ .storagebits = 16, \ .shift = 0, \ }, \ } static const struct iio_chan_spec sx9500_channels[] = { SX9500_CHANNEL(0), SX9500_CHANNEL(1), SX9500_CHANNEL(2), SX9500_CHANNEL(3), IIO_CHAN_SOFT_TIMESTAMP(4), }; static const struct { int val; int val2; } sx9500_samp_freq_table[] = { {33, 333333}, {16, 666666}, {11, 111111}, {8, 333333}, {6, 666666}, {5, 0}, {3, 333333}, {2, 500000}, }; static const unsigned int sx9500_scan_period_table[] = { 30, 60, 90, 120, 150, 200, 300, 400, }; static const struct regmap_range sx9500_writable_reg_ranges[] = { regmap_reg_range(SX9500_REG_IRQ_MSK, SX9500_REG_IRQ_MSK), regmap_reg_range(SX9500_REG_PROX_CTRL0, SX9500_REG_PROX_CTRL8), regmap_reg_range(SX9500_REG_SENSOR_SEL, SX9500_REG_SENSOR_SEL), regmap_reg_range(SX9500_REG_OFFSET_MSB, SX9500_REG_OFFSET_LSB), regmap_reg_range(SX9500_REG_RESET, SX9500_REG_RESET), }; static const struct regmap_access_table sx9500_writeable_regs = { .yes_ranges = sx9500_writable_reg_ranges, .n_yes_ranges = ARRAY_SIZE(sx9500_writable_reg_ranges), }; /* * All allocated registers are readable, so we just list unallocated * ones. */ static const struct regmap_range sx9500_non_readable_reg_ranges[] = { regmap_reg_range(SX9500_REG_STAT + 1, SX9500_REG_STAT + 1), regmap_reg_range(SX9500_REG_IRQ_MSK + 1, SX9500_REG_PROX_CTRL0 - 1), regmap_reg_range(SX9500_REG_PROX_CTRL8 + 1, SX9500_REG_SENSOR_SEL - 1), regmap_reg_range(SX9500_REG_OFFSET_LSB + 1, SX9500_REG_RESET - 1), }; static const struct regmap_access_table sx9500_readable_regs = { .no_ranges = sx9500_non_readable_reg_ranges, .n_no_ranges = ARRAY_SIZE(sx9500_non_readable_reg_ranges), }; static const struct regmap_range sx9500_volatile_reg_ranges[] = { regmap_reg_range(SX9500_REG_IRQ_SRC, SX9500_REG_STAT), regmap_reg_range(SX9500_REG_USE_MSB, SX9500_REG_OFFSET_LSB), regmap_reg_range(SX9500_REG_RESET, SX9500_REG_RESET), }; static const struct regmap_access_table sx9500_volatile_regs = { .yes_ranges = sx9500_volatile_reg_ranges, .n_yes_ranges = ARRAY_SIZE(sx9500_volatile_reg_ranges), }; static const struct regmap_config sx9500_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = SX9500_REG_RESET, .cache_type = REGCACHE_RBTREE, .wr_table = &sx9500_writeable_regs, .rd_table = &sx9500_readable_regs, .volatile_table = &sx9500_volatile_regs, }; static int sx9500_inc_users(struct sx9500_data *data, int *counter, unsigned int reg, unsigned int bitmask) { (*counter)++; if (*counter != 1) /* Bit is already active, nothing to do. */ return 0; return regmap_update_bits(data->regmap, reg, bitmask, bitmask); } static int sx9500_dec_users(struct sx9500_data *data, int *counter, unsigned int reg, unsigned int bitmask) { (*counter)--; if (*counter != 0) /* There are more users, do not deactivate. */ return 0; return regmap_update_bits(data->regmap, reg, bitmask, 0); } static int sx9500_inc_chan_users(struct sx9500_data *data, int chan) { return sx9500_inc_users(data, &data->channel_users[chan], SX9500_REG_PROX_CTRL0, BIT(chan)); } static int sx9500_dec_chan_users(struct sx9500_data *data, int chan) { return sx9500_dec_users(data, &data->channel_users[chan], SX9500_REG_PROX_CTRL0, BIT(chan)); } static int sx9500_inc_data_rdy_users(struct sx9500_data *data) { return sx9500_inc_users(data, &data->data_rdy_users, SX9500_REG_IRQ_MSK, SX9500_CONVDONE_IRQ); } static int sx9500_dec_data_rdy_users(struct sx9500_data *data) { return sx9500_dec_users(data, &data->data_rdy_users, SX9500_REG_IRQ_MSK, SX9500_CONVDONE_IRQ); } static int sx9500_inc_close_far_users(struct sx9500_data *data) { return sx9500_inc_users(data, &data->close_far_users, SX9500_REG_IRQ_MSK, SX9500_CLOSE_IRQ | SX9500_FAR_IRQ); } static int sx9500_dec_close_far_users(struct sx9500_data *data) { return sx9500_dec_users(data, &data->close_far_users, SX9500_REG_IRQ_MSK, SX9500_CLOSE_IRQ | SX9500_FAR_IRQ); } static int sx9500_read_prox_data(struct sx9500_data *data, const struct iio_chan_spec *chan, int *val) { int ret; __be16 regval; ret = regmap_write(data->regmap, SX9500_REG_SENSOR_SEL, chan->channel); if (ret < 0) return ret; ret = regmap_bulk_read(data->regmap, SX9500_REG_USE_MSB, ®val, 2); if (ret < 0) return ret; *val = be16_to_cpu(regval); return IIO_VAL_INT; } /* * If we have no interrupt support, we have to wait for a scan period * after enabling a channel to get a result. */ static int sx9500_wait_for_sample(struct sx9500_data *data) { int ret; unsigned int val; ret = regmap_read(data->regmap, SX9500_REG_PROX_CTRL0, &val); if (ret < 0) return ret; val = (val & SX9500_SCAN_PERIOD_MASK) >> SX9500_SCAN_PERIOD_SHIFT; msleep(sx9500_scan_period_table[val]); return 0; } static int sx9500_read_proximity(struct sx9500_data *data, const struct iio_chan_spec *chan, int *val) { int ret; mutex_lock(&data->mutex); ret = sx9500_inc_chan_users(data, chan->channel); if (ret < 0) goto out; ret = sx9500_inc_data_rdy_users(data); if (ret < 0) goto out_dec_chan; mutex_unlock(&data->mutex); if (data->client->irq > 0) ret = wait_for_completion_interruptible(&data->completion); else ret = sx9500_wait_for_sample(data); mutex_lock(&data->mutex); if (ret < 0) goto out_dec_data_rdy; ret = sx9500_read_prox_data(data, chan, val); if (ret < 0) goto out_dec_data_rdy; ret = sx9500_dec_data_rdy_users(data); if (ret < 0) goto out_dec_chan; ret = sx9500_dec_chan_users(data, chan->channel); if (ret < 0) goto out; ret = IIO_VAL_INT; goto out; out_dec_data_rdy: sx9500_dec_data_rdy_users(data); out_dec_chan: sx9500_dec_chan_users(data, chan->channel); out: mutex_unlock(&data->mutex); reinit_completion(&data->completion); return ret; } static int sx9500_read_samp_freq(struct sx9500_data *data, int *val, int *val2) { int ret; unsigned int regval; mutex_lock(&data->mutex); ret = regmap_read(data->regmap, SX9500_REG_PROX_CTRL0, ®val); mutex_unlock(&data->mutex); if (ret < 0) return ret; regval = (regval & SX9500_SCAN_PERIOD_MASK) >> SX9500_SCAN_PERIOD_SHIFT; *val = sx9500_samp_freq_table[regval].val; *val2 = sx9500_samp_freq_table[regval].val2; return IIO_VAL_INT_PLUS_MICRO; } static int sx9500_read_raw(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, int *val, int *val2, long mask) { struct sx9500_data *data = iio_priv(indio_dev); int ret; switch (chan->type) { case IIO_PROXIMITY: switch (mask) { case IIO_CHAN_INFO_RAW: ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; ret = sx9500_read_proximity(data, chan, val); iio_device_release_direct_mode(indio_dev); return ret; case IIO_CHAN_INFO_SAMP_FREQ: return sx9500_read_samp_freq(data, val, val2); default: return -EINVAL; } default: return -EINVAL; } } static int sx9500_set_samp_freq(struct sx9500_data *data, int val, int val2) { int i, ret; for (i = 0; i < ARRAY_SIZE(sx9500_samp_freq_table); i++) if (val == sx9500_samp_freq_table[i].val && val2 == sx9500_samp_freq_table[i].val2) break; if (i == ARRAY_SIZE(sx9500_samp_freq_table)) return -EINVAL; mutex_lock(&data->mutex); ret = regmap_update_bits(data->regmap, SX9500_REG_PROX_CTRL0, SX9500_SCAN_PERIOD_MASK, i << SX9500_SCAN_PERIOD_SHIFT); mutex_unlock(&data->mutex); return ret; } static int sx9500_write_raw(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, int val, int val2, long mask) { struct sx9500_data *data = iio_priv(indio_dev); switch (chan->type) { case IIO_PROXIMITY: switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: return sx9500_set_samp_freq(data, val, val2); default: return -EINVAL; } default: return -EINVAL; } } static irqreturn_t sx9500_irq_handler(int irq, void *private) { struct iio_dev *indio_dev = private; struct sx9500_data *data = iio_priv(indio_dev); if (data->trigger_enabled) iio_trigger_poll(data->trig); /* * Even if no event is enabled, we need to wake the thread to * clear the interrupt state by reading SX9500_REG_IRQ_SRC. It * is not possible to do that here because regmap_read takes a * mutex. */ return IRQ_WAKE_THREAD; } static void sx9500_push_events(struct iio_dev *indio_dev) { int ret; unsigned int val, chan; struct sx9500_data *data = iio_priv(indio_dev); ret = regmap_read(data->regmap, SX9500_REG_STAT, &val); if (ret < 0) { dev_err(&data->client->dev, "i2c transfer error in irq\n"); return; } val >>= SX9500_PROXSTAT_SHIFT; for (chan = 0; chan < SX9500_NUM_CHANNELS; chan++) { int dir; u64 ev; bool new_prox = val & BIT(chan); if (!data->event_enabled[chan]) continue; if (new_prox == data->prox_stat[chan]) /* No change on this channel. */ continue; dir = new_prox ? IIO_EV_DIR_FALLING : IIO_EV_DIR_RISING; ev = IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, chan, IIO_EV_TYPE_THRESH, dir); iio_push_event(indio_dev, ev, iio_get_time_ns(indio_dev)); data->prox_stat[chan] = new_prox; } } static irqreturn_t sx9500_irq_thread_handler(int irq, void *private) { struct iio_dev *indio_dev = private; struct sx9500_data *data = iio_priv(indio_dev); int ret; unsigned int val; mutex_lock(&data->mutex); ret = regmap_read(data->regmap, SX9500_REG_IRQ_SRC, &val); if (ret < 0) { dev_err(&data->client->dev, "i2c transfer error in irq\n"); goto out; } if (val & (SX9500_CLOSE_IRQ | SX9500_FAR_IRQ)) sx9500_push_events(indio_dev); if (val & SX9500_CONVDONE_IRQ) complete(&data->completion); out: mutex_unlock(&data->mutex); return IRQ_HANDLED; } static int sx9500_read_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir) { struct sx9500_data *data = iio_priv(indio_dev); if (chan->type != IIO_PROXIMITY || type != IIO_EV_TYPE_THRESH || dir != IIO_EV_DIR_EITHER) return -EINVAL; return data->event_enabled[chan->channel]; } static int sx9500_write_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, int state) { struct sx9500_data *data = iio_priv(indio_dev); int ret; if (chan->type != IIO_PROXIMITY || type != IIO_EV_TYPE_THRESH || dir != IIO_EV_DIR_EITHER) return -EINVAL; mutex_lock(&data->mutex); if (state == 1) { ret = sx9500_inc_chan_users(data, chan->channel); if (ret < 0) goto out_unlock; ret = sx9500_inc_close_far_users(data); if (ret < 0) goto out_undo_chan; } else { ret = sx9500_dec_chan_users(data, chan->channel); if (ret < 0) goto out_unlock; ret = sx9500_dec_close_far_users(data); if (ret < 0) goto out_undo_chan; } data->event_enabled[chan->channel] = state; goto out_unlock; out_undo_chan: if (state == 1) sx9500_dec_chan_users(data, chan->channel); else sx9500_inc_chan_users(data, chan->channel); out_unlock: mutex_unlock(&data->mutex); return ret; } static int sx9500_update_scan_mode(struct iio_dev *indio_dev, const unsigned long *scan_mask) { struct sx9500_data *data = iio_priv(indio_dev); mutex_lock(&data->mutex); kfree(data->buffer); data->buffer = kzalloc(indio_dev->scan_bytes, GFP_KERNEL); mutex_unlock(&data->mutex); if (data->buffer == NULL) return -ENOMEM; return 0; } static IIO_CONST_ATTR_SAMP_FREQ_AVAIL( "2.500000 3.333333 5 6.666666 8.333333 11.111111 16.666666 33.333333"); static struct attribute *sx9500_attributes[] = { &iio_const_attr_sampling_frequency_available.dev_attr.attr, NULL, }; static const struct attribute_group sx9500_attribute_group = { .attrs = sx9500_attributes, }; static const struct iio_info sx9500_info = { .attrs = &sx9500_attribute_group, .read_raw = &sx9500_read_raw, .write_raw = &sx9500_write_raw, .read_event_config = &sx9500_read_event_config, .write_event_config = &sx9500_write_event_config, .update_scan_mode = &sx9500_update_scan_mode, }; static int sx9500_set_trigger_state(struct iio_trigger *trig, bool state) { struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); struct sx9500_data *data = iio_priv(indio_dev); int ret; mutex_lock(&data->mutex); if (state) ret = sx9500_inc_data_rdy_users(data); else ret = sx9500_dec_data_rdy_users(data); if (ret < 0) goto out; data->trigger_enabled = state; out: mutex_unlock(&data->mutex); return ret; } static const struct iio_trigger_ops sx9500_trigger_ops = { .set_trigger_state = sx9500_set_trigger_state, }; static irqreturn_t sx9500_trigger_handler(int irq, void *private) { struct iio_poll_func *pf = private; struct iio_dev *indio_dev = pf->indio_dev; struct sx9500_data *data = iio_priv(indio_dev); int val, bit, ret, i = 0; mutex_lock(&data->mutex); for_each_set_bit(bit, indio_dev->active_scan_mask, indio_dev->masklength) { ret = sx9500_read_prox_data(data, &indio_dev->channels[bit], &val); if (ret < 0) goto out; data->buffer[i++] = val; } iio_push_to_buffers_with_timestamp(indio_dev, data->buffer, iio_get_time_ns(indio_dev)); out: mutex_unlock(&data->mutex); iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static int sx9500_buffer_postenable(struct iio_dev *indio_dev) { struct sx9500_data *data = iio_priv(indio_dev); int ret = 0, i; mutex_lock(&data->mutex); for (i = 0; i < SX9500_NUM_CHANNELS; i++) if (test_bit(i, indio_dev->active_scan_mask)) { ret = sx9500_inc_chan_users(data, i); if (ret) break; } if (ret) for (i = i - 1; i >= 0; i--) if (test_bit(i, indio_dev->active_scan_mask)) sx9500_dec_chan_users(data, i); mutex_unlock(&data->mutex); return ret; } static int sx9500_buffer_predisable(struct iio_dev *indio_dev) { struct sx9500_data *data = iio_priv(indio_dev); int ret = 0, i; mutex_lock(&data->mutex); for (i = 0; i < SX9500_NUM_CHANNELS; i++) if (test_bit(i, indio_dev->active_scan_mask)) { ret = sx9500_dec_chan_users(data, i); if (ret) break; } if (ret) for (i = i - 1; i >= 0; i--) if (test_bit(i, indio_dev->active_scan_mask)) sx9500_inc_chan_users(data, i); mutex_unlock(&data->mutex); return ret; } static const struct iio_buffer_setup_ops sx9500_buffer_setup_ops = { .postenable = sx9500_buffer_postenable, .predisable = sx9500_buffer_predisable, }; struct sx9500_reg_default { u8 reg; u8 def; }; static const struct sx9500_reg_default sx9500_default_regs[] = { { .reg = SX9500_REG_PROX_CTRL1, /* Shield enabled, small range. */ .def = 0x43, }, { .reg = SX9500_REG_PROX_CTRL2, /* x8 gain, 167kHz frequency, finest resolution. */ .def = 0x77, }, { .reg = SX9500_REG_PROX_CTRL3, /* Doze enabled, 2x scan period doze, no raw filter. */ .def = 0x40, }, { .reg = SX9500_REG_PROX_CTRL4, /* Average threshold. */ .def = 0x30, }, { .reg = SX9500_REG_PROX_CTRL5, /* * Debouncer off, lowest average negative filter, * highest average postive filter. */ .def = 0x0f, }, { .reg = SX9500_REG_PROX_CTRL6, /* Proximity detection threshold: 280 */ .def = 0x0e, }, { .reg = SX9500_REG_PROX_CTRL7, /* * No automatic compensation, compensate each pin * independently, proximity hysteresis: 32, close * debouncer off, far debouncer off. */ .def = 0x00, }, { .reg = SX9500_REG_PROX_CTRL8, /* No stuck timeout, no periodic compensation. */ .def = 0x00, }, { .reg = SX9500_REG_PROX_CTRL0, /* Scan period: 30ms, all sensors disabled. */ .def = 0x00, }, }; /* Activate all channels and perform an initial compensation. */ static int sx9500_init_compensation(struct iio_dev *indio_dev) { struct sx9500_data *data = iio_priv(indio_dev); int i, ret; unsigned int val; ret = regmap_update_bits(data->regmap, SX9500_REG_PROX_CTRL0, SX9500_CHAN_MASK, SX9500_CHAN_MASK); if (ret < 0) return ret; for (i = 10; i >= 0; i--) { usleep_range(10000, 20000); ret = regmap_read(data->regmap, SX9500_REG_STAT, &val); if (ret < 0) goto out; if (!(val & SX9500_COMPSTAT_MASK)) break; } if (i < 0) { dev_err(&data->client->dev, "initial compensation timed out"); ret = -ETIMEDOUT; } out: regmap_update_bits(data->regmap, SX9500_REG_PROX_CTRL0, SX9500_CHAN_MASK, 0); return ret; } static int sx9500_init_device(struct iio_dev *indio_dev) { struct sx9500_data *data = iio_priv(indio_dev); int ret, i; unsigned int val; if (data->gpiod_rst) { gpiod_set_value_cansleep(data->gpiod_rst, 0); usleep_range(1000, 2000); gpiod_set_value_cansleep(data->gpiod_rst, 1); usleep_range(1000, 2000); } ret = regmap_write(data->regmap, SX9500_REG_IRQ_MSK, 0); if (ret < 0) return ret; ret = regmap_write(data->regmap, SX9500_REG_RESET, SX9500_SOFT_RESET); if (ret < 0) return ret; ret = regmap_read(data->regmap, SX9500_REG_IRQ_SRC, &val); if (ret < 0) return ret; for (i = 0; i < ARRAY_SIZE(sx9500_default_regs); i++) { ret = regmap_write(data->regmap, sx9500_default_regs[i].reg, sx9500_default_regs[i].def); if (ret < 0) return ret; } return sx9500_init_compensation(indio_dev); } static const struct acpi_gpio_params reset_gpios = { 0, 0, false }; static const struct acpi_gpio_params interrupt_gpios = { 2, 0, false }; static const struct acpi_gpio_mapping acpi_sx9500_gpios[] = { { "reset-gpios", &reset_gpios, 1 }, /* * Some platforms have a bug in ACPI GPIO description making IRQ * GPIO to be output only. Ask the GPIO core to ignore this limit. */ { "interrupt-gpios", &interrupt_gpios, 1, ACPI_GPIO_QUIRK_NO_IO_RESTRICTION }, { }, }; static void sx9500_gpio_probe(struct i2c_client *client, struct sx9500_data *data) { struct gpio_desc *gpiod_int; struct device *dev; int ret; if (!client) return; dev = &client->dev; ret = devm_acpi_dev_add_driver_gpios(dev, acpi_sx9500_gpios); if (ret) dev_dbg(dev, "Unable to add GPIO mapping table\n"); if (client->irq <= 0) { gpiod_int = devm_gpiod_get(dev, "interrupt", GPIOD_IN); if (IS_ERR(gpiod_int)) dev_err(dev, "gpio get irq failed\n"); else client->irq = gpiod_to_irq(gpiod_int); } data->gpiod_rst = devm_gpiod_get(dev, "reset", GPIOD_OUT_HIGH); if (IS_ERR(data->gpiod_rst)) { dev_warn(dev, "gpio get reset pin failed\n"); data->gpiod_rst = NULL; } } static int sx9500_probe(struct i2c_client *client, const struct i2c_device_id *id) { int ret; struct iio_dev *indio_dev; struct sx9500_data *data; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (indio_dev == NULL) return -ENOMEM; data = iio_priv(indio_dev); data->client = client; mutex_init(&data->mutex); init_completion(&data->completion); data->trigger_enabled = false; data->regmap = devm_regmap_init_i2c(client, &sx9500_regmap_config); if (IS_ERR(data->regmap)) return PTR_ERR(data->regmap); indio_dev->name = SX9500_DRIVER_NAME; indio_dev->channels = sx9500_channels; indio_dev->num_channels = ARRAY_SIZE(sx9500_channels); indio_dev->info = &sx9500_info; indio_dev->modes = INDIO_DIRECT_MODE; i2c_set_clientdata(client, indio_dev); sx9500_gpio_probe(client, data); ret = sx9500_init_device(indio_dev); if (ret < 0) return ret; if (client->irq <= 0) dev_warn(&client->dev, "no valid irq found\n"); else { ret = devm_request_threaded_irq(&client->dev, client->irq, sx9500_irq_handler, sx9500_irq_thread_handler, IRQF_TRIGGER_FALLING | IRQF_ONESHOT, SX9500_IRQ_NAME, indio_dev); if (ret < 0) return ret; data->trig = devm_iio_trigger_alloc(&client->dev, "%s-dev%d", indio_dev->name, indio_dev->id); if (!data->trig) return -ENOMEM; data->trig->dev.parent = &client->dev; data->trig->ops = &sx9500_trigger_ops; iio_trigger_set_drvdata(data->trig, indio_dev); ret = iio_trigger_register(data->trig); if (ret) return ret; } ret = iio_triggered_buffer_setup(indio_dev, NULL, sx9500_trigger_handler, &sx9500_buffer_setup_ops); if (ret < 0) goto out_trigger_unregister; ret = iio_device_register(indio_dev); if (ret < 0) goto out_buffer_cleanup; return 0; out_buffer_cleanup: iio_triggered_buffer_cleanup(indio_dev); out_trigger_unregister: if (client->irq > 0) iio_trigger_unregister(data->trig); return ret; } static int sx9500_remove(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); struct sx9500_data *data = iio_priv(indio_dev); iio_device_unregister(indio_dev); iio_triggered_buffer_cleanup(indio_dev); if (client->irq > 0) iio_trigger_unregister(data->trig); kfree(data->buffer); return 0; } #ifdef CONFIG_PM_SLEEP static int sx9500_suspend(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct sx9500_data *data = iio_priv(indio_dev); int ret; mutex_lock(&data->mutex); ret = regmap_read(data->regmap, SX9500_REG_PROX_CTRL0, &data->suspend_ctrl0); if (ret < 0) goto out; /* * Scan period doesn't matter because when all the sensors are * deactivated the device is in sleep mode. */ ret = regmap_write(data->regmap, SX9500_REG_PROX_CTRL0, 0); out: mutex_unlock(&data->mutex); return ret; } static int sx9500_resume(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct sx9500_data *data = iio_priv(indio_dev); int ret; mutex_lock(&data->mutex); ret = regmap_write(data->regmap, SX9500_REG_PROX_CTRL0, data->suspend_ctrl0); mutex_unlock(&data->mutex); return ret; } #endif /* CONFIG_PM_SLEEP */ static const struct dev_pm_ops sx9500_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(sx9500_suspend, sx9500_resume) }; static const struct acpi_device_id sx9500_acpi_match[] = { {"SSX9500", 0}, {"SASX9500", 0}, { }, }; MODULE_DEVICE_TABLE(acpi, sx9500_acpi_match); static const struct of_device_id sx9500_of_match[] = { { .compatible = "semtech,sx9500", }, { } }; MODULE_DEVICE_TABLE(of, sx9500_of_match); static const struct i2c_device_id sx9500_id[] = { {"sx9500", 0}, { }, }; MODULE_DEVICE_TABLE(i2c, sx9500_id); static struct i2c_driver sx9500_driver = { .driver = { .name = SX9500_DRIVER_NAME, .acpi_match_table = ACPI_PTR(sx9500_acpi_match), .of_match_table = of_match_ptr(sx9500_of_match), .pm = &sx9500_pm_ops, }, .probe = sx9500_probe, .remove = sx9500_remove, .id_table = sx9500_id, }; module_i2c_driver(sx9500_driver); MODULE_AUTHOR("Vlad Dogaru <vlad.dogaru@intel.com>"); MODULE_DESCRIPTION("Driver for Semtech SX9500 proximity sensor"); MODULE_LICENSE("GPL v2");