// SPDX-License-Identifier: GPL-2.0-only /* * The industrial I/O core * * Copyright (c) 2008 Jonathan Cameron * * Based on elements of hwmon and input subsystems. */ #define pr_fmt(fmt) "iio-core: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "iio_core.h" #include "iio_core_trigger.h" /* IDA to assign each registered device a unique id */ static DEFINE_IDA(iio_ida); static dev_t iio_devt; #define IIO_DEV_MAX 256 struct bus_type iio_bus_type = { .name = "iio", }; EXPORT_SYMBOL(iio_bus_type); static struct dentry *iio_debugfs_dentry; static const char * const iio_direction[] = { [0] = "in", [1] = "out", }; static const char * const iio_chan_type_name_spec[] = { [IIO_VOLTAGE] = "voltage", [IIO_CURRENT] = "current", [IIO_POWER] = "power", [IIO_ACCEL] = "accel", [IIO_ANGL_VEL] = "anglvel", [IIO_MAGN] = "magn", [IIO_LIGHT] = "illuminance", [IIO_INTENSITY] = "intensity", [IIO_PROXIMITY] = "proximity", [IIO_TEMP] = "temp", [IIO_INCLI] = "incli", [IIO_ROT] = "rot", [IIO_ANGL] = "angl", [IIO_TIMESTAMP] = "timestamp", [IIO_CAPACITANCE] = "capacitance", [IIO_ALTVOLTAGE] = "altvoltage", [IIO_CCT] = "cct", [IIO_PRESSURE] = "pressure", [IIO_HUMIDITYRELATIVE] = "humidityrelative", [IIO_ACTIVITY] = "activity", [IIO_STEPS] = "steps", [IIO_ENERGY] = "energy", [IIO_DISTANCE] = "distance", [IIO_VELOCITY] = "velocity", [IIO_CONCENTRATION] = "concentration", [IIO_RESISTANCE] = "resistance", [IIO_PH] = "ph", [IIO_UVINDEX] = "uvindex", [IIO_ELECTRICALCONDUCTIVITY] = "electricalconductivity", [IIO_COUNT] = "count", [IIO_INDEX] = "index", [IIO_GRAVITY] = "gravity", [IIO_POSITIONRELATIVE] = "positionrelative", [IIO_PHASE] = "phase", [IIO_MASSCONCENTRATION] = "massconcentration", }; static const char * const iio_modifier_names[] = { [IIO_MOD_X] = "x", [IIO_MOD_Y] = "y", [IIO_MOD_Z] = "z", [IIO_MOD_X_AND_Y] = "x&y", [IIO_MOD_X_AND_Z] = "x&z", [IIO_MOD_Y_AND_Z] = "y&z", [IIO_MOD_X_AND_Y_AND_Z] = "x&y&z", [IIO_MOD_X_OR_Y] = "x|y", [IIO_MOD_X_OR_Z] = "x|z", [IIO_MOD_Y_OR_Z] = "y|z", [IIO_MOD_X_OR_Y_OR_Z] = "x|y|z", [IIO_MOD_ROOT_SUM_SQUARED_X_Y] = "sqrt(x^2+y^2)", [IIO_MOD_SUM_SQUARED_X_Y_Z] = "x^2+y^2+z^2", [IIO_MOD_LIGHT_BOTH] = "both", [IIO_MOD_LIGHT_IR] = "ir", [IIO_MOD_LIGHT_CLEAR] = "clear", [IIO_MOD_LIGHT_RED] = "red", [IIO_MOD_LIGHT_GREEN] = "green", [IIO_MOD_LIGHT_BLUE] = "blue", [IIO_MOD_LIGHT_UV] = "uv", [IIO_MOD_LIGHT_DUV] = "duv", [IIO_MOD_QUATERNION] = "quaternion", [IIO_MOD_TEMP_AMBIENT] = "ambient", [IIO_MOD_TEMP_OBJECT] = "object", [IIO_MOD_NORTH_MAGN] = "from_north_magnetic", [IIO_MOD_NORTH_TRUE] = "from_north_true", [IIO_MOD_NORTH_MAGN_TILT_COMP] = "from_north_magnetic_tilt_comp", [IIO_MOD_NORTH_TRUE_TILT_COMP] = "from_north_true_tilt_comp", [IIO_MOD_RUNNING] = "running", [IIO_MOD_JOGGING] = "jogging", [IIO_MOD_WALKING] = "walking", [IIO_MOD_STILL] = "still", [IIO_MOD_ROOT_SUM_SQUARED_X_Y_Z] = "sqrt(x^2+y^2+z^2)", [IIO_MOD_I] = "i", [IIO_MOD_Q] = "q", [IIO_MOD_CO2] = "co2", [IIO_MOD_VOC] = "voc", [IIO_MOD_PM1] = "pm1", [IIO_MOD_PM2P5] = "pm2p5", [IIO_MOD_PM4] = "pm4", [IIO_MOD_PM10] = "pm10", [IIO_MOD_ETHANOL] = "ethanol", [IIO_MOD_H2] = "h2", [IIO_MOD_O2] = "o2", [IIO_MOD_LINEAR_X] = "linear_x", [IIO_MOD_LINEAR_Y] = "linear_y", [IIO_MOD_LINEAR_Z] = "linear_z", [IIO_MOD_PITCH] = "pitch", [IIO_MOD_YAW] = "yaw", [IIO_MOD_ROLL] = "roll", }; /* relies on pairs of these shared then separate */ static const char * const iio_chan_info_postfix[] = { [IIO_CHAN_INFO_RAW] = "raw", [IIO_CHAN_INFO_PROCESSED] = "input", [IIO_CHAN_INFO_SCALE] = "scale", [IIO_CHAN_INFO_OFFSET] = "offset", [IIO_CHAN_INFO_CALIBSCALE] = "calibscale", [IIO_CHAN_INFO_CALIBBIAS] = "calibbias", [IIO_CHAN_INFO_PEAK] = "peak_raw", [IIO_CHAN_INFO_PEAK_SCALE] = "peak_scale", [IIO_CHAN_INFO_QUADRATURE_CORRECTION_RAW] = "quadrature_correction_raw", [IIO_CHAN_INFO_AVERAGE_RAW] = "mean_raw", [IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY] = "filter_low_pass_3db_frequency", [IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY] = "filter_high_pass_3db_frequency", [IIO_CHAN_INFO_SAMP_FREQ] = "sampling_frequency", [IIO_CHAN_INFO_FREQUENCY] = "frequency", [IIO_CHAN_INFO_PHASE] = "phase", [IIO_CHAN_INFO_HARDWAREGAIN] = "hardwaregain", [IIO_CHAN_INFO_HYSTERESIS] = "hysteresis", [IIO_CHAN_INFO_HYSTERESIS_RELATIVE] = "hysteresis_relative", [IIO_CHAN_INFO_INT_TIME] = "integration_time", [IIO_CHAN_INFO_ENABLE] = "en", [IIO_CHAN_INFO_CALIBHEIGHT] = "calibheight", [IIO_CHAN_INFO_CALIBWEIGHT] = "calibweight", [IIO_CHAN_INFO_DEBOUNCE_COUNT] = "debounce_count", [IIO_CHAN_INFO_DEBOUNCE_TIME] = "debounce_time", [IIO_CHAN_INFO_CALIBEMISSIVITY] = "calibemissivity", [IIO_CHAN_INFO_OVERSAMPLING_RATIO] = "oversampling_ratio", [IIO_CHAN_INFO_THERMOCOUPLE_TYPE] = "thermocouple_type", [IIO_CHAN_INFO_CALIBAMBIENT] = "calibambient", [IIO_CHAN_INFO_ZEROPOINT] = "zeropoint", }; /** * iio_device_id() - query the unique ID for the device * @indio_dev: Device structure whose ID is being queried * * The IIO device ID is a unique index used for example for the naming * of the character device /dev/iio\:device[ID]. * * Returns: Unique ID for the device. */ int iio_device_id(struct iio_dev *indio_dev) { struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); return iio_dev_opaque->id; } EXPORT_SYMBOL_GPL(iio_device_id); /** * iio_buffer_enabled() - helper function to test if the buffer is enabled * @indio_dev: IIO device structure for device * * Returns: True, if the buffer is enabled. */ bool iio_buffer_enabled(struct iio_dev *indio_dev) { struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); return iio_dev_opaque->currentmode & (INDIO_BUFFER_HARDWARE | INDIO_BUFFER_SOFTWARE | INDIO_BUFFER_TRIGGERED); } EXPORT_SYMBOL_GPL(iio_buffer_enabled); #if defined(CONFIG_DEBUG_FS) /* * There's also a CONFIG_DEBUG_FS guard in include/linux/iio/iio.h for * iio_get_debugfs_dentry() to make it inline if CONFIG_DEBUG_FS is undefined */ struct dentry *iio_get_debugfs_dentry(struct iio_dev *indio_dev) { struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); return iio_dev_opaque->debugfs_dentry; } EXPORT_SYMBOL_GPL(iio_get_debugfs_dentry); #endif /** * iio_find_channel_from_si() - get channel from its scan index * @indio_dev: device * @si: scan index to match * * Returns: * Constant pointer to iio_chan_spec, if scan index matches, NULL on failure. */ const struct iio_chan_spec *iio_find_channel_from_si(struct iio_dev *indio_dev, int si) { int i; for (i = 0; i < indio_dev->num_channels; i++) if (indio_dev->channels[i].scan_index == si) return &indio_dev->channels[i]; return NULL; } /* This turns up an awful lot */ ssize_t iio_read_const_attr(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "%s\n", to_iio_const_attr(attr)->string); } EXPORT_SYMBOL(iio_read_const_attr); /** * iio_device_set_clock() - Set current timestamping clock for the device * @indio_dev: IIO device structure containing the device * @clock_id: timestamping clock POSIX identifier to set. * * Returns: 0 on success, or a negative error code. */ int iio_device_set_clock(struct iio_dev *indio_dev, clockid_t clock_id) { int ret; struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); const struct iio_event_interface *ev_int = iio_dev_opaque->event_interface; ret = mutex_lock_interruptible(&iio_dev_opaque->mlock); if (ret) return ret; if ((ev_int && iio_event_enabled(ev_int)) || iio_buffer_enabled(indio_dev)) { mutex_unlock(&iio_dev_opaque->mlock); return -EBUSY; } iio_dev_opaque->clock_id = clock_id; mutex_unlock(&iio_dev_opaque->mlock); return 0; } EXPORT_SYMBOL(iio_device_set_clock); /** * iio_device_get_clock() - Retrieve current timestamping clock for the device * @indio_dev: IIO device structure containing the device * * Returns: Clock ID of the current timestamping clock for the device. */ clockid_t iio_device_get_clock(const struct iio_dev *indio_dev) { struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); return iio_dev_opaque->clock_id; } EXPORT_SYMBOL(iio_device_get_clock); /** * iio_get_time_ns() - utility function to get a time stamp for events etc * @indio_dev: device * * Returns: Timestamp of the event in nanoseconds. */ s64 iio_get_time_ns(const struct iio_dev *indio_dev) { struct timespec64 tp; switch (iio_device_get_clock(indio_dev)) { case CLOCK_REALTIME: return ktime_get_real_ns(); case CLOCK_MONOTONIC: return ktime_get_ns(); case CLOCK_MONOTONIC_RAW: return ktime_get_raw_ns(); case CLOCK_REALTIME_COARSE: return ktime_to_ns(ktime_get_coarse_real()); case CLOCK_MONOTONIC_COARSE: ktime_get_coarse_ts64(&tp); return timespec64_to_ns(&tp); case CLOCK_BOOTTIME: return ktime_get_boottime_ns(); case CLOCK_TAI: return ktime_get_clocktai_ns(); default: BUG(); } } EXPORT_SYMBOL(iio_get_time_ns); static int __init iio_init(void) { int ret; /* Register sysfs bus */ ret = bus_register(&iio_bus_type); if (ret < 0) { pr_err("could not register bus type\n"); goto error_nothing; } ret = alloc_chrdev_region(&iio_devt, 0, IIO_DEV_MAX, "iio"); if (ret < 0) { pr_err("failed to allocate char dev region\n"); goto error_unregister_bus_type; } iio_debugfs_dentry = debugfs_create_dir("iio", NULL); return 0; error_unregister_bus_type: bus_unregister(&iio_bus_type); error_nothing: return ret; } static void __exit iio_exit(void) { if (iio_devt) unregister_chrdev_region(iio_devt, IIO_DEV_MAX); bus_unregister(&iio_bus_type); debugfs_remove(iio_debugfs_dentry); } #if defined(CONFIG_DEBUG_FS) static ssize_t iio_debugfs_read_reg(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { struct iio_dev *indio_dev = file->private_data; struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); unsigned int val = 0; int ret; if (*ppos > 0) return simple_read_from_buffer(userbuf, count, ppos, iio_dev_opaque->read_buf, iio_dev_opaque->read_buf_len); ret = indio_dev->info->debugfs_reg_access(indio_dev, iio_dev_opaque->cached_reg_addr, 0, &val); if (ret) { dev_err(indio_dev->dev.parent, "%s: read failed\n", __func__); return ret; } iio_dev_opaque->read_buf_len = snprintf(iio_dev_opaque->read_buf, sizeof(iio_dev_opaque->read_buf), "0x%X\n", val); return simple_read_from_buffer(userbuf, count, ppos, iio_dev_opaque->read_buf, iio_dev_opaque->read_buf_len); } static ssize_t iio_debugfs_write_reg(struct file *file, const char __user *userbuf, size_t count, loff_t *ppos) { struct iio_dev *indio_dev = file->private_data; struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); unsigned int reg, val; char buf[80]; int ret; count = min(count, sizeof(buf) - 1); if (copy_from_user(buf, userbuf, count)) return -EFAULT; buf[count] = 0; ret = sscanf(buf, "%i %i", ®, &val); switch (ret) { case 1: iio_dev_opaque->cached_reg_addr = reg; break; case 2: iio_dev_opaque->cached_reg_addr = reg; ret = indio_dev->info->debugfs_reg_access(indio_dev, reg, val, NULL); if (ret) { dev_err(indio_dev->dev.parent, "%s: write failed\n", __func__); return ret; } break; default: return -EINVAL; } return count; } static const struct file_operations iio_debugfs_reg_fops = { .open = simple_open, .read = iio_debugfs_read_reg, .write = iio_debugfs_write_reg, }; static void iio_device_unregister_debugfs(struct iio_dev *indio_dev) { struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); debugfs_remove_recursive(iio_dev_opaque->debugfs_dentry); } static void iio_device_register_debugfs(struct iio_dev *indio_dev) { struct iio_dev_opaque *iio_dev_opaque; if (indio_dev->info->debugfs_reg_access == NULL) return; if (!iio_debugfs_dentry) return; iio_dev_opaque = to_iio_dev_opaque(indio_dev); iio_dev_opaque->debugfs_dentry = debugfs_create_dir(dev_name(&indio_dev->dev), iio_debugfs_dentry); debugfs_create_file("direct_reg_access", 0644, iio_dev_opaque->debugfs_dentry, indio_dev, &iio_debugfs_reg_fops); } #else static void iio_device_register_debugfs(struct iio_dev *indio_dev) { } static void iio_device_unregister_debugfs(struct iio_dev *indio_dev) { } #endif /* CONFIG_DEBUG_FS */ static ssize_t iio_read_channel_ext_info(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct iio_dev_attr *this_attr = to_iio_dev_attr(attr); const struct iio_chan_spec_ext_info *ext_info; ext_info = &this_attr->c->ext_info[this_attr->address]; return ext_info->read(indio_dev, ext_info->private, this_attr->c, buf); } static ssize_t iio_write_channel_ext_info(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct iio_dev_attr *this_attr = to_iio_dev_attr(attr); const struct iio_chan_spec_ext_info *ext_info; ext_info = &this_attr->c->ext_info[this_attr->address]; return ext_info->write(indio_dev, ext_info->private, this_attr->c, buf, len); } ssize_t iio_enum_available_read(struct iio_dev *indio_dev, uintptr_t priv, const struct iio_chan_spec *chan, char *buf) { const struct iio_enum *e = (const struct iio_enum *)priv; unsigned int i; size_t len = 0; if (!e->num_items) return 0; for (i = 0; i < e->num_items; ++i) { if (!e->items[i]) continue; len += sysfs_emit_at(buf, len, "%s ", e->items[i]); } /* replace last space with a newline */ buf[len - 1] = '\n'; return len; } EXPORT_SYMBOL_GPL(iio_enum_available_read); ssize_t iio_enum_read(struct iio_dev *indio_dev, uintptr_t priv, const struct iio_chan_spec *chan, char *buf) { const struct iio_enum *e = (const struct iio_enum *)priv; int i; if (!e->get) return -EINVAL; i = e->get(indio_dev, chan); if (i < 0) return i; if (i >= e->num_items || !e->items[i]) return -EINVAL; return sysfs_emit(buf, "%s\n", e->items[i]); } EXPORT_SYMBOL_GPL(iio_enum_read); ssize_t iio_enum_write(struct iio_dev *indio_dev, uintptr_t priv, const struct iio_chan_spec *chan, const char *buf, size_t len) { const struct iio_enum *e = (const struct iio_enum *)priv; int ret; if (!e->set) return -EINVAL; ret = __sysfs_match_string(e->items, e->num_items, buf); if (ret < 0) return ret; ret = e->set(indio_dev, chan, ret); return ret ? ret : len; } EXPORT_SYMBOL_GPL(iio_enum_write); static const struct iio_mount_matrix iio_mount_idmatrix = { .rotation = { "1", "0", "0", "0", "1", "0", "0", "0", "1" } }; static int iio_setup_mount_idmatrix(const struct device *dev, struct iio_mount_matrix *matrix) { *matrix = iio_mount_idmatrix; dev_info(dev, "mounting matrix not found: using identity...\n"); return 0; } ssize_t iio_show_mount_matrix(struct iio_dev *indio_dev, uintptr_t priv, const struct iio_chan_spec *chan, char *buf) { const struct iio_mount_matrix *mtx; mtx = ((iio_get_mount_matrix_t *)priv)(indio_dev, chan); if (IS_ERR(mtx)) return PTR_ERR(mtx); if (!mtx) mtx = &iio_mount_idmatrix; return sysfs_emit(buf, "%s, %s, %s; %s, %s, %s; %s, %s, %s\n", mtx->rotation[0], mtx->rotation[1], mtx->rotation[2], mtx->rotation[3], mtx->rotation[4], mtx->rotation[5], mtx->rotation[6], mtx->rotation[7], mtx->rotation[8]); } EXPORT_SYMBOL_GPL(iio_show_mount_matrix); /** * iio_read_mount_matrix() - retrieve iio device mounting matrix from * device "mount-matrix" property * @dev: device the mounting matrix property is assigned to * @matrix: where to store retrieved matrix * * If device is assigned no mounting matrix property, a default 3x3 identity * matrix will be filled in. * * Returns: 0 if success, or a negative error code on failure. */ int iio_read_mount_matrix(struct device *dev, struct iio_mount_matrix *matrix) { size_t len = ARRAY_SIZE(iio_mount_idmatrix.rotation); int err; err = device_property_read_string_array(dev, "mount-matrix", matrix->rotation, len); if (err == len) return 0; if (err >= 0) /* Invalid number of matrix entries. */ return -EINVAL; if (err != -EINVAL) /* Invalid matrix declaration format. */ return err; /* Matrix was not declared at all: fallback to identity. */ return iio_setup_mount_idmatrix(dev, matrix); } EXPORT_SYMBOL(iio_read_mount_matrix); static ssize_t __iio_format_value(char *buf, size_t offset, unsigned int type, int size, const int *vals) { int tmp0, tmp1; s64 tmp2; bool scale_db = false; switch (type) { case IIO_VAL_INT: return sysfs_emit_at(buf, offset, "%d", vals[0]); case IIO_VAL_INT_PLUS_MICRO_DB: scale_db = true; fallthrough; case IIO_VAL_INT_PLUS_MICRO: if (vals[1] < 0) return sysfs_emit_at(buf, offset, "-%d.%06u%s", abs(vals[0]), -vals[1], scale_db ? " dB" : ""); else return sysfs_emit_at(buf, offset, "%d.%06u%s", vals[0], vals[1], scale_db ? " dB" : ""); case IIO_VAL_INT_PLUS_NANO: if (vals[1] < 0) return sysfs_emit_at(buf, offset, "-%d.%09u", abs(vals[0]), -vals[1]); else return sysfs_emit_at(buf, offset, "%d.%09u", vals[0], vals[1]); case IIO_VAL_FRACTIONAL: tmp2 = div_s64((s64)vals[0] * 1000000000LL, vals[1]); tmp1 = vals[1]; tmp0 = (int)div_s64_rem(tmp2, 1000000000, &tmp1); if ((tmp2 < 0) && (tmp0 == 0)) return sysfs_emit_at(buf, offset, "-0.%09u", abs(tmp1)); else return sysfs_emit_at(buf, offset, "%d.%09u", tmp0, abs(tmp1)); case IIO_VAL_FRACTIONAL_LOG2: tmp2 = shift_right((s64)vals[0] * 1000000000LL, vals[1]); tmp0 = (int)div_s64_rem(tmp2, 1000000000LL, &tmp1); if (tmp0 == 0 && tmp2 < 0) return sysfs_emit_at(buf, offset, "-0.%09u", abs(tmp1)); else return sysfs_emit_at(buf, offset, "%d.%09u", tmp0, abs(tmp1)); case IIO_VAL_INT_MULTIPLE: { int i; int l = 0; for (i = 0; i < size; ++i) l += sysfs_emit_at(buf, offset + l, "%d ", vals[i]); return l; } case IIO_VAL_CHAR: return sysfs_emit_at(buf, offset, "%c", (char)vals[0]); case IIO_VAL_INT_64: tmp2 = (s64)((((u64)vals[1]) << 32) | (u32)vals[0]); return sysfs_emit_at(buf, offset, "%lld", tmp2); default: return 0; } } /** * iio_format_value() - Formats a IIO value into its string representation * @buf: The buffer to which the formatted value gets written * which is assumed to be big enough (i.e. PAGE_SIZE). * @type: One of the IIO_VAL_* constants. This decides how the val * and val2 parameters are formatted. * @size: Number of IIO value entries contained in vals * @vals: Pointer to the values, exact meaning depends on the * type parameter. * * Returns: * 0 by default, a negative number on failure or the total number of characters * written for a type that belongs to the IIO_VAL_* constant. */ ssize_t iio_format_value(char *buf, unsigned int type, int size, int *vals) { ssize_t len; len = __iio_format_value(buf, 0, type, size, vals); if (len >= PAGE_SIZE - 1) return -EFBIG; return len + sysfs_emit_at(buf, len, "\n"); } EXPORT_SYMBOL_GPL(iio_format_value); static ssize_t iio_read_channel_label(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct iio_dev_attr *this_attr = to_iio_dev_attr(attr); if (indio_dev->info->read_label) return indio_dev->info->read_label(indio_dev, this_attr->c, buf); if (this_attr->c->extend_name) return sysfs_emit(buf, "%s\n", this_attr->c->extend_name); return -EINVAL; } static ssize_t iio_read_channel_info(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct iio_dev_attr *this_attr = to_iio_dev_attr(attr); int vals[INDIO_MAX_RAW_ELEMENTS]; int ret; int val_len = 2; if (indio_dev->info->read_raw_multi) ret = indio_dev->info->read_raw_multi(indio_dev, this_attr->c, INDIO_MAX_RAW_ELEMENTS, vals, &val_len, this_attr->address); else if (indio_dev->info->read_raw) ret = indio_dev->info->read_raw(indio_dev, this_attr->c, &vals[0], &vals[1], this_attr->address); else return -EINVAL; if (ret < 0) return ret; return iio_format_value(buf, ret, val_len, vals); } static ssize_t iio_format_list(char *buf, const int *vals, int type, int length, const char *prefix, const char *suffix) { ssize_t len; int stride; int i; switch (type) { case IIO_VAL_INT: stride = 1; break; default: stride = 2; break; } len = sysfs_emit(buf, prefix); for (i = 0; i <= length - stride; i += stride) { if (i != 0) { len += sysfs_emit_at(buf, len, " "); if (len >= PAGE_SIZE) return -EFBIG; } len += __iio_format_value(buf, len, type, stride, &vals[i]); if (len >= PAGE_SIZE) return -EFBIG; } len += sysfs_emit_at(buf, len, "%s\n", suffix); return len; } static ssize_t iio_format_avail_list(char *buf, const int *vals, int type, int length) { return iio_format_list(buf, vals, type, length, "", ""); } static ssize_t iio_format_avail_range(char *buf, const int *vals, int type) { int length; /* * length refers to the array size , not the number of elements. * The purpose is to print the range [min , step ,max] so length should * be 3 in case of int, and 6 for other types. */ switch (type) { case IIO_VAL_INT: length = 3; break; default: length = 6; break; } return iio_format_list(buf, vals, type, length, "[", "]"); } static ssize_t iio_read_channel_info_avail(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct iio_dev_attr *this_attr = to_iio_dev_attr(attr); const int *vals; int ret; int length; int type; if (!indio_dev->info->read_avail) return -EINVAL; ret = indio_dev->info->read_avail(indio_dev, this_attr->c, &vals, &type, &length, this_attr->address); if (ret < 0) return ret; switch (ret) { case IIO_AVAIL_LIST: return iio_format_avail_list(buf, vals, type, length); case IIO_AVAIL_RANGE: return iio_format_avail_range(buf, vals, type); default: return -EINVAL; } } /** * __iio_str_to_fixpoint() - Parse a fixed-point number from a string * @str: The string to parse * @fract_mult: Multiplier for the first decimal place, should be a power of 10 * @integer: The integer part of the number * @fract: The fractional part of the number * @scale_db: True if this should parse as dB * * Returns: * 0 on success, or a negative error code if the string could not be parsed. */ static int __iio_str_to_fixpoint(const char *str, int fract_mult, int *integer, int *fract, bool scale_db) { int i = 0, f = 0; bool integer_part = true, negative = false; if (fract_mult == 0) { *fract = 0; return kstrtoint(str, 0, integer); } if (str[0] == '-') { negative = true; str++; } else if (str[0] == '+') { str++; } while (*str) { if ('0' <= *str && *str <= '9') { if (integer_part) { i = i * 10 + *str - '0'; } else { f += fract_mult * (*str - '0'); fract_mult /= 10; } } else if (*str == '\n') { if (*(str + 1) == '\0') break; return -EINVAL; } else if (!strncmp(str, " dB", sizeof(" dB") - 1) && scale_db) { /* Ignore the dB suffix */ str += sizeof(" dB") - 1; continue; } else if (!strncmp(str, "dB", sizeof("dB") - 1) && scale_db) { /* Ignore the dB suffix */ str += sizeof("dB") - 1; continue; } else if (*str == '.' && integer_part) { integer_part = false; } else { return -EINVAL; } str++; } if (negative) { if (i) i = -i; else f = -f; } *integer = i; *fract = f; return 0; } /** * iio_str_to_fixpoint() - Parse a fixed-point number from a string * @str: The string to parse * @fract_mult: Multiplier for the first decimal place, should be a power of 10 * @integer: The integer part of the number * @fract: The fractional part of the number * * Returns: * 0 on success, or a negative error code if the string could not be parsed. */ int iio_str_to_fixpoint(const char *str, int fract_mult, int *integer, int *fract) { return __iio_str_to_fixpoint(str, fract_mult, integer, fract, false); } EXPORT_SYMBOL_GPL(iio_str_to_fixpoint); static ssize_t iio_write_channel_info(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct iio_dev_attr *this_attr = to_iio_dev_attr(attr); int ret, fract_mult = 100000; int integer, fract = 0; bool is_char = false; bool scale_db = false; /* Assumes decimal - precision based on number of digits */ if (!indio_dev->info->write_raw) return -EINVAL; if (indio_dev->info->write_raw_get_fmt) switch (indio_dev->info->write_raw_get_fmt(indio_dev, this_attr->c, this_attr->address)) { case IIO_VAL_INT: fract_mult = 0; break; case IIO_VAL_INT_PLUS_MICRO_DB: scale_db = true; fallthrough; case IIO_VAL_INT_PLUS_MICRO: fract_mult = 100000; break; case IIO_VAL_INT_PLUS_NANO: fract_mult = 100000000; break; case IIO_VAL_CHAR: is_char = true; break; default: return -EINVAL; } if (is_char) { char ch; if (sscanf(buf, "%c", &ch) != 1) return -EINVAL; integer = ch; } else { ret = __iio_str_to_fixpoint(buf, fract_mult, &integer, &fract, scale_db); if (ret) return ret; } ret = indio_dev->info->write_raw(indio_dev, this_attr->c, integer, fract, this_attr->address); if (ret) return ret; return len; } static int __iio_device_attr_init(struct device_attribute *dev_attr, const char *postfix, struct iio_chan_spec const *chan, ssize_t (*readfunc)(struct device *dev, struct device_attribute *attr, char *buf), ssize_t (*writefunc)(struct device *dev, struct device_attribute *attr, const char *buf, size_t len), enum iio_shared_by shared_by) { int ret = 0; char *name = NULL; char *full_postfix; sysfs_attr_init(&dev_attr->attr); /* Build up postfix of __postfix */ if (chan->modified && (shared_by == IIO_SEPARATE)) { if (chan->extend_name) full_postfix = kasprintf(GFP_KERNEL, "%s_%s_%s", iio_modifier_names[chan->channel2], chan->extend_name, postfix); else full_postfix = kasprintf(GFP_KERNEL, "%s_%s", iio_modifier_names[chan->channel2], postfix); } else { if (chan->extend_name == NULL || shared_by != IIO_SEPARATE) full_postfix = kstrdup(postfix, GFP_KERNEL); else full_postfix = kasprintf(GFP_KERNEL, "%s_%s", chan->extend_name, postfix); } if (full_postfix == NULL) return -ENOMEM; if (chan->differential) { /* Differential can not have modifier */ switch (shared_by) { case IIO_SHARED_BY_ALL: name = kasprintf(GFP_KERNEL, "%s", full_postfix); break; case IIO_SHARED_BY_DIR: name = kasprintf(GFP_KERNEL, "%s_%s", iio_direction[chan->output], full_postfix); break; case IIO_SHARED_BY_TYPE: name = kasprintf(GFP_KERNEL, "%s_%s-%s_%s", iio_direction[chan->output], iio_chan_type_name_spec[chan->type], iio_chan_type_name_spec[chan->type], full_postfix); break; case IIO_SEPARATE: if (!chan->indexed) { WARN(1, "Differential channels must be indexed\n"); ret = -EINVAL; goto error_free_full_postfix; } name = kasprintf(GFP_KERNEL, "%s_%s%d-%s%d_%s", iio_direction[chan->output], iio_chan_type_name_spec[chan->type], chan->channel, iio_chan_type_name_spec[chan->type], chan->channel2, full_postfix); break; } } else { /* Single ended */ switch (shared_by) { case IIO_SHARED_BY_ALL: name = kasprintf(GFP_KERNEL, "%s", full_postfix); break; case IIO_SHARED_BY_DIR: name = kasprintf(GFP_KERNEL, "%s_%s", iio_direction[chan->output], full_postfix); break; case IIO_SHARED_BY_TYPE: name = kasprintf(GFP_KERNEL, "%s_%s_%s", iio_direction[chan->output], iio_chan_type_name_spec[chan->type], full_postfix); break; case IIO_SEPARATE: if (chan->indexed) name = kasprintf(GFP_KERNEL, "%s_%s%d_%s", iio_direction[chan->output], iio_chan_type_name_spec[chan->type], chan->channel, full_postfix); else name = kasprintf(GFP_KERNEL, "%s_%s_%s", iio_direction[chan->output], iio_chan_type_name_spec[chan->type], full_postfix); break; } } if (name == NULL) { ret = -ENOMEM; goto error_free_full_postfix; } dev_attr->attr.name = name; if (readfunc) { dev_attr->attr.mode |= 0444; dev_attr->show = readfunc; } if (writefunc) { dev_attr->attr.mode |= 0200; dev_attr->store = writefunc; } error_free_full_postfix: kfree(full_postfix); return ret; } static void __iio_device_attr_deinit(struct device_attribute *dev_attr) { kfree(dev_attr->attr.name); } int __iio_add_chan_devattr(const char *postfix, struct iio_chan_spec const *chan, ssize_t (*readfunc)(struct device *dev, struct device_attribute *attr, char *buf), ssize_t (*writefunc)(struct device *dev, struct device_attribute *attr, const char *buf, size_t len), u64 mask, enum iio_shared_by shared_by, struct device *dev, struct iio_buffer *buffer, struct list_head *attr_list) { int ret; struct iio_dev_attr *iio_attr, *t; iio_attr = kzalloc(sizeof(*iio_attr), GFP_KERNEL); if (iio_attr == NULL) return -ENOMEM; ret = __iio_device_attr_init(&iio_attr->dev_attr, postfix, chan, readfunc, writefunc, shared_by); if (ret) goto error_iio_dev_attr_free; iio_attr->c = chan; iio_attr->address = mask; iio_attr->buffer = buffer; list_for_each_entry(t, attr_list, l) if (strcmp(t->dev_attr.attr.name, iio_attr->dev_attr.attr.name) == 0) { if (shared_by == IIO_SEPARATE) dev_err(dev, "tried to double register : %s\n", t->dev_attr.attr.name); ret = -EBUSY; goto error_device_attr_deinit; } list_add(&iio_attr->l, attr_list); return 0; error_device_attr_deinit: __iio_device_attr_deinit(&iio_attr->dev_attr); error_iio_dev_attr_free: kfree(iio_attr); return ret; } static int iio_device_add_channel_label(struct iio_dev *indio_dev, struct iio_chan_spec const *chan) { struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); int ret; if (!indio_dev->info->read_label && !chan->extend_name) return 0; ret = __iio_add_chan_devattr("label", chan, &iio_read_channel_label, NULL, 0, IIO_SEPARATE, &indio_dev->dev, NULL, &iio_dev_opaque->channel_attr_list); if (ret < 0) return ret; return 1; } static int iio_device_add_info_mask_type(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, enum iio_shared_by shared_by, const long *infomask) { struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); int i, ret, attrcount = 0; for_each_set_bit(i, infomask, sizeof(*infomask)*8) { if (i >= ARRAY_SIZE(iio_chan_info_postfix)) return -EINVAL; ret = __iio_add_chan_devattr(iio_chan_info_postfix[i], chan, &iio_read_channel_info, &iio_write_channel_info, i, shared_by, &indio_dev->dev, NULL, &iio_dev_opaque->channel_attr_list); if ((ret == -EBUSY) && (shared_by != IIO_SEPARATE)) continue; if (ret < 0) return ret; attrcount++; } return attrcount; } static int iio_device_add_info_mask_type_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, enum iio_shared_by shared_by, const long *infomask) { struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); int i, ret, attrcount = 0; char *avail_postfix; for_each_set_bit(i, infomask, sizeof(*infomask) * 8) { if (i >= ARRAY_SIZE(iio_chan_info_postfix)) return -EINVAL; avail_postfix = kasprintf(GFP_KERNEL, "%s_available", iio_chan_info_postfix[i]); if (!avail_postfix) return -ENOMEM; ret = __iio_add_chan_devattr(avail_postfix, chan, &iio_read_channel_info_avail, NULL, i, shared_by, &indio_dev->dev, NULL, &iio_dev_opaque->channel_attr_list); kfree(avail_postfix); if ((ret == -EBUSY) && (shared_by != IIO_SEPARATE)) continue; if (ret < 0) return ret; attrcount++; } return attrcount; } static int iio_device_add_channel_sysfs(struct iio_dev *indio_dev, struct iio_chan_spec const *chan) { struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); int ret, attrcount = 0; const struct iio_chan_spec_ext_info *ext_info; if (chan->channel < 0) return 0; ret = iio_device_add_info_mask_type(indio_dev, chan, IIO_SEPARATE, &chan->info_mask_separate); if (ret < 0) return ret; attrcount += ret; ret = iio_device_add_info_mask_type_avail(indio_dev, chan, IIO_SEPARATE, &chan->info_mask_separate_available); if (ret < 0) return ret; attrcount += ret; ret = iio_device_add_info_mask_type(indio_dev, chan, IIO_SHARED_BY_TYPE, &chan->info_mask_shared_by_type); if (ret < 0) return ret; attrcount += ret; ret = iio_device_add_info_mask_type_avail(indio_dev, chan, IIO_SHARED_BY_TYPE, &chan->info_mask_shared_by_type_available); if (ret < 0) return ret; attrcount += ret; ret = iio_device_add_info_mask_type(indio_dev, chan, IIO_SHARED_BY_DIR, &chan->info_mask_shared_by_dir); if (ret < 0) return ret; attrcount += ret; ret = iio_device_add_info_mask_type_avail(indio_dev, chan, IIO_SHARED_BY_DIR, &chan->info_mask_shared_by_dir_available); if (ret < 0) return ret; attrcount += ret; ret = iio_device_add_info_mask_type(indio_dev, chan, IIO_SHARED_BY_ALL, &chan->info_mask_shared_by_all); if (ret < 0) return ret; attrcount += ret; ret = iio_device_add_info_mask_type_avail(indio_dev, chan, IIO_SHARED_BY_ALL, &chan->info_mask_shared_by_all_available); if (ret < 0) return ret; attrcount += ret; ret = iio_device_add_channel_label(indio_dev, chan); if (ret < 0) return ret; attrcount += ret; if (chan->ext_info) { unsigned int i = 0; for (ext_info = chan->ext_info; ext_info->name; ext_info++) { ret = __iio_add_chan_devattr(ext_info->name, chan, ext_info->read ? &iio_read_channel_ext_info : NULL, ext_info->write ? &iio_write_channel_ext_info : NULL, i, ext_info->shared, &indio_dev->dev, NULL, &iio_dev_opaque->channel_attr_list); i++; if (ret == -EBUSY && ext_info->shared) continue; if (ret) return ret; attrcount++; } } return attrcount; } /** * iio_free_chan_devattr_list() - Free a list of IIO device attributes * @attr_list: List of IIO device attributes * * This function frees the memory allocated for each of the IIO device * attributes in the list. */ void iio_free_chan_devattr_list(struct list_head *attr_list) { struct iio_dev_attr *p, *n; list_for_each_entry_safe(p, n, attr_list, l) { kfree_const(p->dev_attr.attr.name); list_del(&p->l); kfree(p); } } static ssize_t name_show(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); return sysfs_emit(buf, "%s\n", indio_dev->name); } static DEVICE_ATTR_RO(name); static ssize_t label_show(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); return sysfs_emit(buf, "%s\n", indio_dev->label); } static DEVICE_ATTR_RO(label); static const char * const clock_names[] = { [CLOCK_REALTIME] = "realtime", [CLOCK_MONOTONIC] = "monotonic", [CLOCK_PROCESS_CPUTIME_ID] = "process_cputime_id", [CLOCK_THREAD_CPUTIME_ID] = "thread_cputime_id", [CLOCK_MONOTONIC_RAW] = "monotonic_raw", [CLOCK_REALTIME_COARSE] = "realtime_coarse", [CLOCK_MONOTONIC_COARSE] = "monotonic_coarse", [CLOCK_BOOTTIME] = "boottime", [CLOCK_REALTIME_ALARM] = "realtime_alarm", [CLOCK_BOOTTIME_ALARM] = "boottime_alarm", [CLOCK_SGI_CYCLE] = "sgi_cycle", [CLOCK_TAI] = "tai", }; static ssize_t current_timestamp_clock_show(struct device *dev, struct device_attribute *attr, char *buf) { const struct iio_dev *indio_dev = dev_to_iio_dev(dev); const clockid_t clk = iio_device_get_clock(indio_dev); switch (clk) { case CLOCK_REALTIME: case CLOCK_MONOTONIC: case CLOCK_MONOTONIC_RAW: case CLOCK_REALTIME_COARSE: case CLOCK_MONOTONIC_COARSE: case CLOCK_BOOTTIME: case CLOCK_TAI: break; default: BUG(); } return sysfs_emit(buf, "%s\n", clock_names[clk]); } static ssize_t current_timestamp_clock_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { clockid_t clk; int ret; ret = sysfs_match_string(clock_names, buf); if (ret < 0) return ret; clk = ret; switch (clk) { case CLOCK_REALTIME: case CLOCK_MONOTONIC: case CLOCK_MONOTONIC_RAW: case CLOCK_REALTIME_COARSE: case CLOCK_MONOTONIC_COARSE: case CLOCK_BOOTTIME: case CLOCK_TAI: break; default: return -EINVAL; } ret = iio_device_set_clock(dev_to_iio_dev(dev), clk); if (ret) return ret; return len; } int iio_device_register_sysfs_group(struct iio_dev *indio_dev, const struct attribute_group *group) { struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); const struct attribute_group **new, **old = iio_dev_opaque->groups; unsigned int cnt = iio_dev_opaque->groupcounter; new = krealloc_array(old, cnt + 2, sizeof(*new), GFP_KERNEL); if (!new) return -ENOMEM; new[iio_dev_opaque->groupcounter++] = group; new[iio_dev_opaque->groupcounter] = NULL; iio_dev_opaque->groups = new; return 0; } static DEVICE_ATTR_RW(current_timestamp_clock); static int iio_device_register_sysfs(struct iio_dev *indio_dev) { struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); int i, ret = 0, attrcount, attrn, attrcount_orig = 0; struct iio_dev_attr *p; struct attribute **attr, *clk = NULL; /* First count elements in any existing group */ if (indio_dev->info->attrs) { attr = indio_dev->info->attrs->attrs; while (*attr++ != NULL) attrcount_orig++; } attrcount = attrcount_orig; /* * New channel registration method - relies on the fact a group does * not need to be initialized if its name is NULL. */ if (indio_dev->channels) for (i = 0; i < indio_dev->num_channels; i++) { const struct iio_chan_spec *chan = &indio_dev->channels[i]; if (chan->type == IIO_TIMESTAMP) clk = &dev_attr_current_timestamp_clock.attr; ret = iio_device_add_channel_sysfs(indio_dev, chan); if (ret < 0) goto error_clear_attrs; attrcount += ret; } if (iio_dev_opaque->event_interface) clk = &dev_attr_current_timestamp_clock.attr; if (indio_dev->name) attrcount++; if (indio_dev->label) attrcount++; if (clk) attrcount++; iio_dev_opaque->chan_attr_group.attrs = kcalloc(attrcount + 1, sizeof(iio_dev_opaque->chan_attr_group.attrs[0]), GFP_KERNEL); if (iio_dev_opaque->chan_attr_group.attrs == NULL) { ret = -ENOMEM; goto error_clear_attrs; } /* Copy across original attributes, and point to original binary attributes */ if (indio_dev->info->attrs) { memcpy(iio_dev_opaque->chan_attr_group.attrs, indio_dev->info->attrs->attrs, sizeof(iio_dev_opaque->chan_attr_group.attrs[0]) *attrcount_orig); iio_dev_opaque->chan_attr_group.is_visible = indio_dev->info->attrs->is_visible; iio_dev_opaque->chan_attr_group.bin_attrs = indio_dev->info->attrs->bin_attrs; } attrn = attrcount_orig; /* Add all elements from the list. */ list_for_each_entry(p, &iio_dev_opaque->channel_attr_list, l) iio_dev_opaque->chan_attr_group.attrs[attrn++] = &p->dev_attr.attr; if (indio_dev->name) iio_dev_opaque->chan_attr_group.attrs[attrn++] = &dev_attr_name.attr; if (indio_dev->label) iio_dev_opaque->chan_attr_group.attrs[attrn++] = &dev_attr_label.attr; if (clk) iio_dev_opaque->chan_attr_group.attrs[attrn++] = clk; ret = iio_device_register_sysfs_group(indio_dev, &iio_dev_opaque->chan_attr_group); if (ret) goto error_free_chan_attrs; return 0; error_free_chan_attrs: kfree(iio_dev_opaque->chan_attr_group.attrs); iio_dev_opaque->chan_attr_group.attrs = NULL; error_clear_attrs: iio_free_chan_devattr_list(&iio_dev_opaque->channel_attr_list); return ret; } static void iio_device_unregister_sysfs(struct iio_dev *indio_dev) { struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); iio_free_chan_devattr_list(&iio_dev_opaque->channel_attr_list); kfree(iio_dev_opaque->chan_attr_group.attrs); iio_dev_opaque->chan_attr_group.attrs = NULL; kfree(iio_dev_opaque->groups); iio_dev_opaque->groups = NULL; } static void iio_dev_release(struct device *device) { struct iio_dev *indio_dev = dev_to_iio_dev(device); struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); if (indio_dev->modes & INDIO_ALL_TRIGGERED_MODES) iio_device_unregister_trigger_consumer(indio_dev); iio_device_unregister_eventset(indio_dev); iio_device_unregister_sysfs(indio_dev); iio_device_detach_buffers(indio_dev); lockdep_unregister_key(&iio_dev_opaque->mlock_key); ida_free(&iio_ida, iio_dev_opaque->id); kfree(iio_dev_opaque); } const struct device_type iio_device_type = { .name = "iio_device", .release = iio_dev_release, }; /** * iio_device_alloc() - allocate an iio_dev from a driver * @parent: Parent device. * @sizeof_priv: Space to allocate for private structure. * * Returns: * Pointer to allocated iio_dev on success, NULL on failure. */ struct iio_dev *iio_device_alloc(struct device *parent, int sizeof_priv) { struct iio_dev_opaque *iio_dev_opaque; struct iio_dev *indio_dev; size_t alloc_size; alloc_size = sizeof(struct iio_dev_opaque); if (sizeof_priv) { alloc_size = ALIGN(alloc_size, IIO_DMA_MINALIGN); alloc_size += sizeof_priv; } iio_dev_opaque = kzalloc(alloc_size, GFP_KERNEL); if (!iio_dev_opaque) return NULL; indio_dev = &iio_dev_opaque->indio_dev; if (sizeof_priv) indio_dev->priv = (char *)iio_dev_opaque + ALIGN(sizeof(*iio_dev_opaque), IIO_DMA_MINALIGN); indio_dev->dev.parent = parent; indio_dev->dev.type = &iio_device_type; indio_dev->dev.bus = &iio_bus_type; device_initialize(&indio_dev->dev); mutex_init(&iio_dev_opaque->mlock); mutex_init(&iio_dev_opaque->info_exist_lock); INIT_LIST_HEAD(&iio_dev_opaque->channel_attr_list); iio_dev_opaque->id = ida_alloc(&iio_ida, GFP_KERNEL); if (iio_dev_opaque->id < 0) { /* cannot use a dev_err as the name isn't available */ pr_err("failed to get device id\n"); kfree(iio_dev_opaque); return NULL; } if (dev_set_name(&indio_dev->dev, "iio:device%d", iio_dev_opaque->id)) { ida_free(&iio_ida, iio_dev_opaque->id); kfree(iio_dev_opaque); return NULL; } INIT_LIST_HEAD(&iio_dev_opaque->buffer_list); INIT_LIST_HEAD(&iio_dev_opaque->ioctl_handlers); lockdep_register_key(&iio_dev_opaque->mlock_key); lockdep_set_class(&iio_dev_opaque->mlock, &iio_dev_opaque->mlock_key); return indio_dev; } EXPORT_SYMBOL(iio_device_alloc); /** * iio_device_free() - free an iio_dev from a driver * @dev: the iio_dev associated with the device */ void iio_device_free(struct iio_dev *dev) { if (dev) put_device(&dev->dev); } EXPORT_SYMBOL(iio_device_free); static void devm_iio_device_release(void *iio_dev) { iio_device_free(iio_dev); } /** * devm_iio_device_alloc - Resource-managed iio_device_alloc() * @parent: Device to allocate iio_dev for, and parent for this IIO device * @sizeof_priv: Space to allocate for private structure. * * Managed iio_device_alloc. iio_dev allocated with this function is * automatically freed on driver detach. * * Returns: * Pointer to allocated iio_dev on success, NULL on failure. */ struct iio_dev *devm_iio_device_alloc(struct device *parent, int sizeof_priv) { struct iio_dev *iio_dev; int ret; iio_dev = iio_device_alloc(parent, sizeof_priv); if (!iio_dev) return NULL; ret = devm_add_action_or_reset(parent, devm_iio_device_release, iio_dev); if (ret) return NULL; return iio_dev; } EXPORT_SYMBOL_GPL(devm_iio_device_alloc); /** * iio_chrdev_open() - chrdev file open for buffer access and ioctls * @inode: Inode structure for identifying the device in the file system * @filp: File structure for iio device used to keep and later access * private data * * Returns: 0 on success or -EBUSY if the device is already opened */ static int iio_chrdev_open(struct inode *inode, struct file *filp) { struct iio_dev_opaque *iio_dev_opaque = container_of(inode->i_cdev, struct iio_dev_opaque, chrdev); struct iio_dev *indio_dev = &iio_dev_opaque->indio_dev; struct iio_dev_buffer_pair *ib; if (test_and_set_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags)) return -EBUSY; iio_device_get(indio_dev); ib = kmalloc(sizeof(*ib), GFP_KERNEL); if (!ib) { iio_device_put(indio_dev); clear_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags); return -ENOMEM; } ib->indio_dev = indio_dev; ib->buffer = indio_dev->buffer; filp->private_data = ib; return 0; } /** * iio_chrdev_release() - chrdev file close buffer access and ioctls * @inode: Inode structure pointer for the char device * @filp: File structure pointer for the char device * * Returns: 0 for successful release. */ static int iio_chrdev_release(struct inode *inode, struct file *filp) { struct iio_dev_buffer_pair *ib = filp->private_data; struct iio_dev_opaque *iio_dev_opaque = container_of(inode->i_cdev, struct iio_dev_opaque, chrdev); struct iio_dev *indio_dev = &iio_dev_opaque->indio_dev; kfree(ib); clear_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags); iio_device_put(indio_dev); return 0; } void iio_device_ioctl_handler_register(struct iio_dev *indio_dev, struct iio_ioctl_handler *h) { struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); list_add_tail(&h->entry, &iio_dev_opaque->ioctl_handlers); } void iio_device_ioctl_handler_unregister(struct iio_ioctl_handler *h) { list_del(&h->entry); } static long iio_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { struct iio_dev_buffer_pair *ib = filp->private_data; struct iio_dev *indio_dev = ib->indio_dev; struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); struct iio_ioctl_handler *h; int ret = -ENODEV; mutex_lock(&iio_dev_opaque->info_exist_lock); /* * The NULL check here is required to prevent crashing when a device * is being removed while userspace would still have open file handles * to try to access this device. */ if (!indio_dev->info) goto out_unlock; list_for_each_entry(h, &iio_dev_opaque->ioctl_handlers, entry) { ret = h->ioctl(indio_dev, filp, cmd, arg); if (ret != IIO_IOCTL_UNHANDLED) break; } if (ret == IIO_IOCTL_UNHANDLED) ret = -ENODEV; out_unlock: mutex_unlock(&iio_dev_opaque->info_exist_lock); return ret; } static const struct file_operations iio_buffer_fileops = { .owner = THIS_MODULE, .llseek = noop_llseek, .read = iio_buffer_read_outer_addr, .write = iio_buffer_write_outer_addr, .poll = iio_buffer_poll_addr, .unlocked_ioctl = iio_ioctl, .compat_ioctl = compat_ptr_ioctl, .open = iio_chrdev_open, .release = iio_chrdev_release, }; static const struct file_operations iio_event_fileops = { .owner = THIS_MODULE, .llseek = noop_llseek, .unlocked_ioctl = iio_ioctl, .compat_ioctl = compat_ptr_ioctl, .open = iio_chrdev_open, .release = iio_chrdev_release, }; static int iio_check_unique_scan_index(struct iio_dev *indio_dev) { int i, j; const struct iio_chan_spec *channels = indio_dev->channels; if (!(indio_dev->modes & INDIO_ALL_BUFFER_MODES)) return 0; for (i = 0; i < indio_dev->num_channels - 1; i++) { if (channels[i].scan_index < 0) continue; for (j = i + 1; j < indio_dev->num_channels; j++) if (channels[i].scan_index == channels[j].scan_index) { dev_err(&indio_dev->dev, "Duplicate scan index %d\n", channels[i].scan_index); return -EINVAL; } } return 0; } static int iio_check_extended_name(const struct iio_dev *indio_dev) { unsigned int i; if (!indio_dev->info->read_label) return 0; for (i = 0; i < indio_dev->num_channels; i++) { if (indio_dev->channels[i].extend_name) { dev_err(&indio_dev->dev, "Cannot use labels and extend_name at the same time\n"); return -EINVAL; } } return 0; } static const struct iio_buffer_setup_ops noop_ring_setup_ops; int __iio_device_register(struct iio_dev *indio_dev, struct module *this_mod) { struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); struct fwnode_handle *fwnode = NULL; int ret; if (!indio_dev->info) return -EINVAL; iio_dev_opaque->driver_module = this_mod; /* If the calling driver did not initialize firmware node, do it here */ if (dev_fwnode(&indio_dev->dev)) fwnode = dev_fwnode(&indio_dev->dev); /* The default dummy IIO device has no parent */ else if (indio_dev->dev.parent) fwnode = dev_fwnode(indio_dev->dev.parent); device_set_node(&indio_dev->dev, fwnode); fwnode_property_read_string(fwnode, "label", &indio_dev->label); ret = iio_check_unique_scan_index(indio_dev); if (ret < 0) return ret; ret = iio_check_extended_name(indio_dev); if (ret < 0) return ret; iio_device_register_debugfs(indio_dev); ret = iio_buffers_alloc_sysfs_and_mask(indio_dev); if (ret) { dev_err(indio_dev->dev.parent, "Failed to create buffer sysfs interfaces\n"); goto error_unreg_debugfs; } ret = iio_device_register_sysfs(indio_dev); if (ret) { dev_err(indio_dev->dev.parent, "Failed to register sysfs interfaces\n"); goto error_buffer_free_sysfs; } ret = iio_device_register_eventset(indio_dev); if (ret) { dev_err(indio_dev->dev.parent, "Failed to register event set\n"); goto error_free_sysfs; } if (indio_dev->modes & INDIO_ALL_TRIGGERED_MODES) iio_device_register_trigger_consumer(indio_dev); if ((indio_dev->modes & INDIO_ALL_BUFFER_MODES) && indio_dev->setup_ops == NULL) indio_dev->setup_ops = &noop_ring_setup_ops; if (iio_dev_opaque->attached_buffers_cnt) cdev_init(&iio_dev_opaque->chrdev, &iio_buffer_fileops); else if (iio_dev_opaque->event_interface) cdev_init(&iio_dev_opaque->chrdev, &iio_event_fileops); if (iio_dev_opaque->attached_buffers_cnt || iio_dev_opaque->event_interface) { indio_dev->dev.devt = MKDEV(MAJOR(iio_devt), iio_dev_opaque->id); iio_dev_opaque->chrdev.owner = this_mod; } /* assign device groups now; they should be all registered now */ indio_dev->dev.groups = iio_dev_opaque->groups; ret = cdev_device_add(&iio_dev_opaque->chrdev, &indio_dev->dev); if (ret < 0) goto error_unreg_eventset; return 0; error_unreg_eventset: iio_device_unregister_eventset(indio_dev); error_free_sysfs: iio_device_unregister_sysfs(indio_dev); error_buffer_free_sysfs: iio_buffers_free_sysfs_and_mask(indio_dev); error_unreg_debugfs: iio_device_unregister_debugfs(indio_dev); return ret; } EXPORT_SYMBOL(__iio_device_register); /** * iio_device_unregister() - unregister a device from the IIO subsystem * @indio_dev: Device structure representing the device. */ void iio_device_unregister(struct iio_dev *indio_dev) { struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); cdev_device_del(&iio_dev_opaque->chrdev, &indio_dev->dev); mutex_lock(&iio_dev_opaque->info_exist_lock); iio_device_unregister_debugfs(indio_dev); iio_disable_all_buffers(indio_dev); indio_dev->info = NULL; iio_device_wakeup_eventset(indio_dev); iio_buffer_wakeup_poll(indio_dev); mutex_unlock(&iio_dev_opaque->info_exist_lock); iio_buffers_free_sysfs_and_mask(indio_dev); } EXPORT_SYMBOL(iio_device_unregister); static void devm_iio_device_unreg(void *indio_dev) { iio_device_unregister(indio_dev); } int __devm_iio_device_register(struct device *dev, struct iio_dev *indio_dev, struct module *this_mod) { int ret; ret = __iio_device_register(indio_dev, this_mod); if (ret) return ret; return devm_add_action_or_reset(dev, devm_iio_device_unreg, indio_dev); } EXPORT_SYMBOL_GPL(__devm_iio_device_register); /** * iio_device_claim_direct_mode - Keep device in direct mode * @indio_dev: the iio_dev associated with the device * * If the device is in direct mode it is guaranteed to stay * that way until iio_device_release_direct_mode() is called. * * Use with iio_device_release_direct_mode() * * Returns: 0 on success, -EBUSY on failure. */ int iio_device_claim_direct_mode(struct iio_dev *indio_dev) { struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); mutex_lock(&iio_dev_opaque->mlock); if (iio_buffer_enabled(indio_dev)) { mutex_unlock(&iio_dev_opaque->mlock); return -EBUSY; } return 0; } EXPORT_SYMBOL_GPL(iio_device_claim_direct_mode); /** * iio_device_release_direct_mode - releases claim on direct mode * @indio_dev: the iio_dev associated with the device * * Release the claim. Device is no longer guaranteed to stay * in direct mode. * * Use with iio_device_claim_direct_mode() */ void iio_device_release_direct_mode(struct iio_dev *indio_dev) { mutex_unlock(&to_iio_dev_opaque(indio_dev)->mlock); } EXPORT_SYMBOL_GPL(iio_device_release_direct_mode); /** * iio_device_claim_buffer_mode - Keep device in buffer mode * @indio_dev: the iio_dev associated with the device * * If the device is in buffer mode it is guaranteed to stay * that way until iio_device_release_buffer_mode() is called. * * Use with iio_device_release_buffer_mode(). * * Returns: 0 on success, -EBUSY on failure. */ int iio_device_claim_buffer_mode(struct iio_dev *indio_dev) { struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); mutex_lock(&iio_dev_opaque->mlock); if (iio_buffer_enabled(indio_dev)) return 0; mutex_unlock(&iio_dev_opaque->mlock); return -EBUSY; } EXPORT_SYMBOL_GPL(iio_device_claim_buffer_mode); /** * iio_device_release_buffer_mode - releases claim on buffer mode * @indio_dev: the iio_dev associated with the device * * Release the claim. Device is no longer guaranteed to stay * in buffer mode. * * Use with iio_device_claim_buffer_mode(). */ void iio_device_release_buffer_mode(struct iio_dev *indio_dev) { mutex_unlock(&to_iio_dev_opaque(indio_dev)->mlock); } EXPORT_SYMBOL_GPL(iio_device_release_buffer_mode); /** * iio_device_get_current_mode() - helper function providing read-only access to * the opaque @currentmode variable * @indio_dev: IIO device structure for device */ int iio_device_get_current_mode(struct iio_dev *indio_dev) { struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); return iio_dev_opaque->currentmode; } EXPORT_SYMBOL_GPL(iio_device_get_current_mode); subsys_initcall(iio_init); module_exit(iio_exit); MODULE_AUTHOR("Jonathan Cameron "); MODULE_DESCRIPTION("Industrial I/O core"); MODULE_LICENSE("GPL");