/* * STMicroelectronics st_lsm6dsx FIFO buffer library driver * * LSM6DS3/LSM6DS3H/LSM6DSL/LSM6DSM: The FIFO buffer can be configured * to store data from gyroscope and accelerometer. Samples are queued * without any tag according to a specific pattern based on 'FIFO data sets' * (6 bytes each): * - 1st data set is reserved for gyroscope data * - 2nd data set is reserved for accelerometer data * The FIFO pattern changes depending on the ODRs and decimation factors * assigned to the FIFO data sets. The first sequence of data stored in FIFO * buffer contains the data of all the enabled FIFO data sets * (e.g. Gx, Gy, Gz, Ax, Ay, Az), then data are repeated depending on the * value of the decimation factor and ODR set for each FIFO data set. * FIFO supported modes: * - BYPASS: FIFO disabled * - CONTINUOUS: FIFO enabled. When the buffer is full, the FIFO index * restarts from the beginning and the oldest sample is overwritten * * Copyright 2016 STMicroelectronics Inc. * * Lorenzo Bianconi * Denis Ciocca * * Licensed under the GPL-2. */ #include #include #include #include #include #include #include #include "st_lsm6dsx.h" #define ST_LSM6DSX_REG_FIFO_THL_ADDR 0x06 #define ST_LSM6DSX_REG_FIFO_THH_ADDR 0x07 #define ST_LSM6DSX_FIFO_TH_MASK GENMASK(11, 0) #define ST_LSM6DSX_REG_FIFO_DEC_GXL_ADDR 0x08 #define ST_LSM6DSX_REG_HLACTIVE_ADDR 0x12 #define ST_LSM6DSX_REG_HLACTIVE_MASK BIT(5) #define ST_LSM6DSX_REG_PP_OD_ADDR 0x12 #define ST_LSM6DSX_REG_PP_OD_MASK BIT(4) #define ST_LSM6DSX_REG_FIFO_MODE_ADDR 0x0a #define ST_LSM6DSX_FIFO_MODE_MASK GENMASK(2, 0) #define ST_LSM6DSX_FIFO_ODR_MASK GENMASK(6, 3) #define ST_LSM6DSX_REG_FIFO_DIFFL_ADDR 0x3a #define ST_LSM6DSX_FIFO_DIFF_MASK GENMASK(11, 0) #define ST_LSM6DSX_FIFO_EMPTY_MASK BIT(12) #define ST_LSM6DSX_REG_FIFO_OUTL_ADDR 0x3e #define ST_LSM6DSX_MAX_FIFO_ODR_VAL 0x08 struct st_lsm6dsx_decimator_entry { u8 decimator; u8 val; }; static const struct st_lsm6dsx_decimator_entry st_lsm6dsx_decimator_table[] = { { 0, 0x0 }, { 1, 0x1 }, { 2, 0x2 }, { 3, 0x3 }, { 4, 0x4 }, { 8, 0x5 }, { 16, 0x6 }, { 32, 0x7 }, }; static int st_lsm6dsx_get_decimator_val(u8 val) { const int max_size = ARRAY_SIZE(st_lsm6dsx_decimator_table); int i; for (i = 0; i < max_size; i++) if (st_lsm6dsx_decimator_table[i].decimator == val) break; return i == max_size ? 0 : st_lsm6dsx_decimator_table[i].val; } static void st_lsm6dsx_get_max_min_odr(struct st_lsm6dsx_hw *hw, u16 *max_odr, u16 *min_odr) { struct st_lsm6dsx_sensor *sensor; int i; *max_odr = 0, *min_odr = ~0; for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) { sensor = iio_priv(hw->iio_devs[i]); if (!(hw->enable_mask & BIT(sensor->id))) continue; *max_odr = max_t(u16, *max_odr, sensor->odr); *min_odr = min_t(u16, *min_odr, sensor->odr); } } static int st_lsm6dsx_update_decimators(struct st_lsm6dsx_hw *hw) { struct st_lsm6dsx_sensor *sensor; u16 max_odr, min_odr, sip = 0; int err, i; u8 data; st_lsm6dsx_get_max_min_odr(hw, &max_odr, &min_odr); for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) { sensor = iio_priv(hw->iio_devs[i]); /* update fifo decimators and sample in pattern */ if (hw->enable_mask & BIT(sensor->id)) { sensor->sip = sensor->odr / min_odr; sensor->decimator = max_odr / sensor->odr; data = st_lsm6dsx_get_decimator_val(sensor->decimator); } else { sensor->sip = 0; sensor->decimator = 0; data = 0; } err = st_lsm6dsx_write_with_mask(hw, ST_LSM6DSX_REG_FIFO_DEC_GXL_ADDR, sensor->decimator_mask, data); if (err < 0) return err; sip += sensor->sip; } hw->sip = sip; return 0; } int st_lsm6dsx_set_fifo_mode(struct st_lsm6dsx_hw *hw, enum st_lsm6dsx_fifo_mode fifo_mode) { u8 data; int err; switch (fifo_mode) { case ST_LSM6DSX_FIFO_BYPASS: data = fifo_mode; break; case ST_LSM6DSX_FIFO_CONT: data = (ST_LSM6DSX_MAX_FIFO_ODR_VAL << __ffs(ST_LSM6DSX_FIFO_ODR_MASK)) | fifo_mode; break; default: return -EINVAL; } err = hw->tf->write(hw->dev, ST_LSM6DSX_REG_FIFO_MODE_ADDR, sizeof(data), &data); if (err < 0) return err; hw->fifo_mode = fifo_mode; return 0; } int st_lsm6dsx_update_watermark(struct st_lsm6dsx_sensor *sensor, u16 watermark) { u16 fifo_watermark = ~0, cur_watermark, sip = 0; struct st_lsm6dsx_hw *hw = sensor->hw; struct st_lsm6dsx_sensor *cur_sensor; __le16 wdata; int i, err; u8 data; for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) { cur_sensor = iio_priv(hw->iio_devs[i]); if (!(hw->enable_mask & BIT(cur_sensor->id))) continue; cur_watermark = (cur_sensor == sensor) ? watermark : cur_sensor->watermark; fifo_watermark = min_t(u16, fifo_watermark, cur_watermark); sip += cur_sensor->sip; } if (!sip) return 0; fifo_watermark = max_t(u16, fifo_watermark, sip); fifo_watermark = (fifo_watermark / sip) * sip; fifo_watermark = fifo_watermark * ST_LSM6DSX_SAMPLE_DEPTH; mutex_lock(&hw->lock); err = hw->tf->read(hw->dev, ST_LSM6DSX_REG_FIFO_THH_ADDR, sizeof(data), &data); if (err < 0) goto out; fifo_watermark = ((data << 8) & ~ST_LSM6DSX_FIFO_TH_MASK) | (fifo_watermark & ST_LSM6DSX_FIFO_TH_MASK); wdata = cpu_to_le16(fifo_watermark); err = hw->tf->write(hw->dev, ST_LSM6DSX_REG_FIFO_THL_ADDR, sizeof(wdata), (u8 *)&wdata); out: mutex_unlock(&hw->lock); return err < 0 ? err : 0; } /** * st_lsm6dsx_read_fifo() - LSM6DS3-LSM6DS3H-LSM6DSL-LSM6DSM read FIFO routine * @hw: Pointer to instance of struct st_lsm6dsx_hw. * * Read samples from the hw FIFO and push them to IIO buffers. * * Return: Number of bytes read from the FIFO */ static int st_lsm6dsx_read_fifo(struct st_lsm6dsx_hw *hw) { u16 fifo_len, pattern_len = hw->sip * ST_LSM6DSX_SAMPLE_SIZE; int err, acc_sip, gyro_sip, read_len, samples, offset; struct st_lsm6dsx_sensor *acc_sensor, *gyro_sensor; s64 acc_ts, acc_delta_ts, gyro_ts, gyro_delta_ts; u8 iio_buff[ALIGN(ST_LSM6DSX_SAMPLE_SIZE, sizeof(s64)) + sizeof(s64)]; u8 buff[pattern_len]; __le16 fifo_status; err = hw->tf->read(hw->dev, ST_LSM6DSX_REG_FIFO_DIFFL_ADDR, sizeof(fifo_status), (u8 *)&fifo_status); if (err < 0) return err; if (fifo_status & cpu_to_le16(ST_LSM6DSX_FIFO_EMPTY_MASK)) return 0; fifo_len = (le16_to_cpu(fifo_status) & ST_LSM6DSX_FIFO_DIFF_MASK) * ST_LSM6DSX_CHAN_SIZE; samples = fifo_len / ST_LSM6DSX_SAMPLE_SIZE; fifo_len = (fifo_len / pattern_len) * pattern_len; /* * compute delta timestamp between two consecutive samples * in order to estimate queueing time of data generated * by the sensor */ acc_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_ACC]); acc_ts = acc_sensor->ts - acc_sensor->delta_ts; acc_delta_ts = div_s64(acc_sensor->delta_ts * acc_sensor->decimator, samples); gyro_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_GYRO]); gyro_ts = gyro_sensor->ts - gyro_sensor->delta_ts; gyro_delta_ts = div_s64(gyro_sensor->delta_ts * gyro_sensor->decimator, samples); for (read_len = 0; read_len < fifo_len; read_len += pattern_len) { err = hw->tf->read(hw->dev, ST_LSM6DSX_REG_FIFO_OUTL_ADDR, sizeof(buff), buff); if (err < 0) return err; /* * Data are written to the FIFO with a specific pattern * depending on the configured ODRs. The first sequence of data * stored in FIFO contains the data of all enabled sensors * (e.g. Gx, Gy, Gz, Ax, Ay, Az), then data are repeated * depending on the value of the decimation factor set for each * sensor. * * Supposing the FIFO is storing data from gyroscope and * accelerometer at different ODRs: * - gyroscope ODR = 208Hz, accelerometer ODR = 104Hz * Since the gyroscope ODR is twice the accelerometer one, the * following pattern is repeated every 9 samples: * - Gx, Gy, Gz, Ax, Ay, Az, Gx, Gy, Gz */ gyro_sip = gyro_sensor->sip; acc_sip = acc_sensor->sip; offset = 0; while (acc_sip > 0 || gyro_sip > 0) { if (gyro_sip-- > 0) { memcpy(iio_buff, &buff[offset], ST_LSM6DSX_SAMPLE_SIZE); iio_push_to_buffers_with_timestamp( hw->iio_devs[ST_LSM6DSX_ID_GYRO], iio_buff, gyro_ts); offset += ST_LSM6DSX_SAMPLE_SIZE; gyro_ts += gyro_delta_ts; } if (acc_sip-- > 0) { memcpy(iio_buff, &buff[offset], ST_LSM6DSX_SAMPLE_SIZE); iio_push_to_buffers_with_timestamp( hw->iio_devs[ST_LSM6DSX_ID_ACC], iio_buff, acc_ts); offset += ST_LSM6DSX_SAMPLE_SIZE; acc_ts += acc_delta_ts; } } } return read_len; } int st_lsm6dsx_flush_fifo(struct st_lsm6dsx_hw *hw) { int err; mutex_lock(&hw->fifo_lock); st_lsm6dsx_read_fifo(hw); err = st_lsm6dsx_set_fifo_mode(hw, ST_LSM6DSX_FIFO_BYPASS); mutex_unlock(&hw->fifo_lock); return err; } static int st_lsm6dsx_update_fifo(struct iio_dev *iio_dev, bool enable) { struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev); struct st_lsm6dsx_hw *hw = sensor->hw; int err; if (hw->fifo_mode != ST_LSM6DSX_FIFO_BYPASS) { err = st_lsm6dsx_flush_fifo(hw); if (err < 0) return err; } if (enable) { err = st_lsm6dsx_sensor_enable(sensor); if (err < 0) return err; } else { err = st_lsm6dsx_sensor_disable(sensor); if (err < 0) return err; } err = st_lsm6dsx_update_decimators(hw); if (err < 0) return err; err = st_lsm6dsx_update_watermark(sensor, sensor->watermark); if (err < 0) return err; if (hw->enable_mask) { err = st_lsm6dsx_set_fifo_mode(hw, ST_LSM6DSX_FIFO_CONT); if (err < 0) return err; /* * store enable buffer timestamp as reference to compute * first delta timestamp */ sensor->ts = iio_get_time_ns(iio_dev); } return 0; } static irqreturn_t st_lsm6dsx_handler_irq(int irq, void *private) { struct st_lsm6dsx_hw *hw = private; struct st_lsm6dsx_sensor *sensor; int i; if (!hw->sip) return IRQ_NONE; for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) { sensor = iio_priv(hw->iio_devs[i]); if (sensor->sip > 0) { s64 timestamp; timestamp = iio_get_time_ns(hw->iio_devs[i]); sensor->delta_ts = timestamp - sensor->ts; sensor->ts = timestamp; } } return IRQ_WAKE_THREAD; } static irqreturn_t st_lsm6dsx_handler_thread(int irq, void *private) { struct st_lsm6dsx_hw *hw = private; int count; mutex_lock(&hw->fifo_lock); count = st_lsm6dsx_read_fifo(hw); mutex_unlock(&hw->fifo_lock); return !count ? IRQ_NONE : IRQ_HANDLED; } static int st_lsm6dsx_buffer_preenable(struct iio_dev *iio_dev) { return st_lsm6dsx_update_fifo(iio_dev, true); } static int st_lsm6dsx_buffer_postdisable(struct iio_dev *iio_dev) { return st_lsm6dsx_update_fifo(iio_dev, false); } static const struct iio_buffer_setup_ops st_lsm6dsx_buffer_ops = { .preenable = st_lsm6dsx_buffer_preenable, .postdisable = st_lsm6dsx_buffer_postdisable, }; int st_lsm6dsx_fifo_setup(struct st_lsm6dsx_hw *hw) { struct device_node *np = hw->dev->of_node; struct st_sensors_platform_data *pdata; struct iio_buffer *buffer; unsigned long irq_type; bool irq_active_low; int i, err; irq_type = irqd_get_trigger_type(irq_get_irq_data(hw->irq)); switch (irq_type) { case IRQF_TRIGGER_HIGH: case IRQF_TRIGGER_RISING: irq_active_low = false; break; case IRQF_TRIGGER_LOW: case IRQF_TRIGGER_FALLING: irq_active_low = true; break; default: dev_info(hw->dev, "mode %lx unsupported\n", irq_type); return -EINVAL; } err = st_lsm6dsx_write_with_mask(hw, ST_LSM6DSX_REG_HLACTIVE_ADDR, ST_LSM6DSX_REG_HLACTIVE_MASK, irq_active_low); if (err < 0) return err; pdata = (struct st_sensors_platform_data *)hw->dev->platform_data; if ((np && of_property_read_bool(np, "drive-open-drain")) || (pdata && pdata->open_drain)) { err = st_lsm6dsx_write_with_mask(hw, ST_LSM6DSX_REG_PP_OD_ADDR, ST_LSM6DSX_REG_PP_OD_MASK, 1); if (err < 0) return err; irq_type |= IRQF_SHARED; } err = devm_request_threaded_irq(hw->dev, hw->irq, st_lsm6dsx_handler_irq, st_lsm6dsx_handler_thread, irq_type | IRQF_ONESHOT, "lsm6dsx", hw); if (err) { dev_err(hw->dev, "failed to request trigger irq %d\n", hw->irq); return err; } for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) { buffer = devm_iio_kfifo_allocate(hw->dev); if (!buffer) return -ENOMEM; iio_device_attach_buffer(hw->iio_devs[i], buffer); hw->iio_devs[i]->modes |= INDIO_BUFFER_SOFTWARE; hw->iio_devs[i]->setup_ops = &st_lsm6dsx_buffer_ops; } return 0; }