/* * AD5024, AD5025, AD5044, AD5045, AD5064, AD5064-1, AD5065, AD5628, AD5629R, * AD5648, AD5666, AD5668, AD5669R Digital to analog converters driver * * Copyright 2011 Analog Devices Inc. * * Licensed under the GPL-2. */ #include <linux/device.h> #include <linux/err.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/spi/spi.h> #include <linux/i2c.h> #include <linux/slab.h> #include <linux/sysfs.h> #include <linux/regulator/consumer.h> #include <asm/unaligned.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #define AD5064_MAX_DAC_CHANNELS 8 #define AD5064_MAX_VREFS 4 #define AD5064_ADDR(x) ((x) << 20) #define AD5064_CMD(x) ((x) << 24) #define AD5064_ADDR_DAC(chan) (chan) #define AD5064_ADDR_ALL_DAC 0xF #define AD5064_CMD_WRITE_INPUT_N 0x0 #define AD5064_CMD_UPDATE_DAC_N 0x1 #define AD5064_CMD_WRITE_INPUT_N_UPDATE_ALL 0x2 #define AD5064_CMD_WRITE_INPUT_N_UPDATE_N 0x3 #define AD5064_CMD_POWERDOWN_DAC 0x4 #define AD5064_CMD_CLEAR 0x5 #define AD5064_CMD_LDAC_MASK 0x6 #define AD5064_CMD_RESET 0x7 #define AD5064_CMD_CONFIG 0x8 #define AD5064_CONFIG_DAISY_CHAIN_ENABLE BIT(1) #define AD5064_CONFIG_INT_VREF_ENABLE BIT(0) #define AD5064_LDAC_PWRDN_NONE 0x0 #define AD5064_LDAC_PWRDN_1K 0x1 #define AD5064_LDAC_PWRDN_100K 0x2 #define AD5064_LDAC_PWRDN_3STATE 0x3 /** * struct ad5064_chip_info - chip specific information * @shared_vref: whether the vref supply is shared between channels * @internal_vref: internal reference voltage. 0 if the chip has no internal * vref. * @channel: channel specification * @num_channels: number of channels */ struct ad5064_chip_info { bool shared_vref; unsigned long internal_vref; const struct iio_chan_spec *channels; unsigned int num_channels; }; struct ad5064_state; typedef int (*ad5064_write_func)(struct ad5064_state *st, unsigned int cmd, unsigned int addr, unsigned int val); /** * struct ad5064_state - driver instance specific data * @dev: the device for this driver instance * @chip_info: chip model specific constants, available modes etc * @vref_reg: vref supply regulators * @pwr_down: whether channel is powered down * @pwr_down_mode: channel's current power down mode * @dac_cache: current DAC raw value (chip does not support readback) * @use_internal_vref: set to true if the internal reference voltage should be * used. * @write: register write callback * @data: i2c/spi transfer buffers */ struct ad5064_state { struct device *dev; const struct ad5064_chip_info *chip_info; struct regulator_bulk_data vref_reg[AD5064_MAX_VREFS]; bool pwr_down[AD5064_MAX_DAC_CHANNELS]; u8 pwr_down_mode[AD5064_MAX_DAC_CHANNELS]; unsigned int dac_cache[AD5064_MAX_DAC_CHANNELS]; bool use_internal_vref; ad5064_write_func write; /* * DMA (thus cache coherency maintenance) requires the * transfer buffers to live in their own cache lines. */ union { u8 i2c[3]; __be32 spi; } data ____cacheline_aligned; }; enum ad5064_type { ID_AD5024, ID_AD5025, ID_AD5044, ID_AD5045, ID_AD5064, ID_AD5064_1, ID_AD5065, ID_AD5628_1, ID_AD5628_2, ID_AD5648_1, ID_AD5648_2, ID_AD5666_1, ID_AD5666_2, ID_AD5668_1, ID_AD5668_2, }; static int ad5064_write(struct ad5064_state *st, unsigned int cmd, unsigned int addr, unsigned int val, unsigned int shift) { val <<= shift; return st->write(st, cmd, addr, val); } static int ad5064_sync_powerdown_mode(struct ad5064_state *st, unsigned int channel) { unsigned int val; int ret; val = (0x1 << channel); if (st->pwr_down[channel]) val |= st->pwr_down_mode[channel] << 8; ret = ad5064_write(st, AD5064_CMD_POWERDOWN_DAC, 0, val, 0); return ret; } static const char * const ad5064_powerdown_modes[] = { "1kohm_to_gnd", "100kohm_to_gnd", "three_state", }; static int ad5064_get_powerdown_mode(struct iio_dev *indio_dev, const struct iio_chan_spec *chan) { struct ad5064_state *st = iio_priv(indio_dev); return st->pwr_down_mode[chan->channel] - 1; } static int ad5064_set_powerdown_mode(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, unsigned int mode) { struct ad5064_state *st = iio_priv(indio_dev); int ret; mutex_lock(&indio_dev->mlock); st->pwr_down_mode[chan->channel] = mode + 1; ret = ad5064_sync_powerdown_mode(st, chan->channel); mutex_unlock(&indio_dev->mlock); return ret; } static const struct iio_enum ad5064_powerdown_mode_enum = { .items = ad5064_powerdown_modes, .num_items = ARRAY_SIZE(ad5064_powerdown_modes), .get = ad5064_get_powerdown_mode, .set = ad5064_set_powerdown_mode, }; static ssize_t ad5064_read_dac_powerdown(struct iio_dev *indio_dev, uintptr_t private, const struct iio_chan_spec *chan, char *buf) { struct ad5064_state *st = iio_priv(indio_dev); return sprintf(buf, "%d\n", st->pwr_down[chan->channel]); } static ssize_t ad5064_write_dac_powerdown(struct iio_dev *indio_dev, uintptr_t private, const struct iio_chan_spec *chan, const char *buf, size_t len) { struct ad5064_state *st = iio_priv(indio_dev); bool pwr_down; int ret; ret = strtobool(buf, &pwr_down); if (ret) return ret; mutex_lock(&indio_dev->mlock); st->pwr_down[chan->channel] = pwr_down; ret = ad5064_sync_powerdown_mode(st, chan->channel); mutex_unlock(&indio_dev->mlock); return ret ? ret : len; } static int ad5064_get_vref(struct ad5064_state *st, struct iio_chan_spec const *chan) { unsigned int i; if (st->use_internal_vref) return st->chip_info->internal_vref; i = st->chip_info->shared_vref ? 0 : chan->channel; return regulator_get_voltage(st->vref_reg[i].consumer); } static int ad5064_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long m) { struct ad5064_state *st = iio_priv(indio_dev); int scale_uv; switch (m) { case IIO_CHAN_INFO_RAW: *val = st->dac_cache[chan->channel]; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: scale_uv = ad5064_get_vref(st, chan); if (scale_uv < 0) return scale_uv; scale_uv = (scale_uv * 100) >> chan->scan_type.realbits; *val = scale_uv / 100000; *val2 = (scale_uv % 100000) * 10; return IIO_VAL_INT_PLUS_MICRO; default: break; } return -EINVAL; } static int ad5064_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct ad5064_state *st = iio_priv(indio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_RAW: if (val > (1 << chan->scan_type.realbits) || val < 0) return -EINVAL; mutex_lock(&indio_dev->mlock); ret = ad5064_write(st, AD5064_CMD_WRITE_INPUT_N_UPDATE_N, chan->address, val, chan->scan_type.shift); if (ret == 0) st->dac_cache[chan->channel] = val; mutex_unlock(&indio_dev->mlock); break; default: ret = -EINVAL; } return ret; } static const struct iio_info ad5064_info = { .read_raw = ad5064_read_raw, .write_raw = ad5064_write_raw, .driver_module = THIS_MODULE, }; static const struct iio_chan_spec_ext_info ad5064_ext_info[] = { { .name = "powerdown", .read = ad5064_read_dac_powerdown, .write = ad5064_write_dac_powerdown, }, IIO_ENUM("powerdown_mode", false, &ad5064_powerdown_mode_enum), IIO_ENUM_AVAILABLE("powerdown_mode", &ad5064_powerdown_mode_enum), { }, }; #define AD5064_CHANNEL(chan, bits) { \ .type = IIO_VOLTAGE, \ .indexed = 1, \ .output = 1, \ .channel = (chan), \ .info_mask = IIO_CHAN_INFO_RAW_SEPARATE_BIT | \ IIO_CHAN_INFO_SCALE_SEPARATE_BIT, \ .address = AD5064_ADDR_DAC(chan), \ .scan_type = IIO_ST('u', (bits), 16, 20 - (bits)), \ .ext_info = ad5064_ext_info, \ } #define DECLARE_AD5064_CHANNELS(name, bits) \ const struct iio_chan_spec name[] = { \ AD5064_CHANNEL(0, bits), \ AD5064_CHANNEL(1, bits), \ AD5064_CHANNEL(2, bits), \ AD5064_CHANNEL(3, bits), \ AD5064_CHANNEL(4, bits), \ AD5064_CHANNEL(5, bits), \ AD5064_CHANNEL(6, bits), \ AD5064_CHANNEL(7, bits), \ } static DECLARE_AD5064_CHANNELS(ad5024_channels, 12); static DECLARE_AD5064_CHANNELS(ad5044_channels, 14); static DECLARE_AD5064_CHANNELS(ad5064_channels, 16); static const struct ad5064_chip_info ad5064_chip_info_tbl[] = { [ID_AD5024] = { .shared_vref = false, .channels = ad5024_channels, .num_channels = 4, }, [ID_AD5025] = { .shared_vref = false, .channels = ad5024_channels, .num_channels = 2, }, [ID_AD5044] = { .shared_vref = false, .channels = ad5044_channels, .num_channels = 4, }, [ID_AD5045] = { .shared_vref = false, .channels = ad5044_channels, .num_channels = 2, }, [ID_AD5064] = { .shared_vref = false, .channels = ad5064_channels, .num_channels = 4, }, [ID_AD5064_1] = { .shared_vref = true, .channels = ad5064_channels, .num_channels = 4, }, [ID_AD5065] = { .shared_vref = false, .channels = ad5064_channels, .num_channels = 2, }, [ID_AD5628_1] = { .shared_vref = true, .internal_vref = 2500000, .channels = ad5024_channels, .num_channels = 8, }, [ID_AD5628_2] = { .shared_vref = true, .internal_vref = 5000000, .channels = ad5024_channels, .num_channels = 8, }, [ID_AD5648_1] = { .shared_vref = true, .internal_vref = 2500000, .channels = ad5044_channels, .num_channels = 8, }, [ID_AD5648_2] = { .shared_vref = true, .internal_vref = 5000000, .channels = ad5044_channels, .num_channels = 8, }, [ID_AD5666_1] = { .shared_vref = true, .internal_vref = 2500000, .channels = ad5064_channels, .num_channels = 4, }, [ID_AD5666_2] = { .shared_vref = true, .internal_vref = 5000000, .channels = ad5064_channels, .num_channels = 4, }, [ID_AD5668_1] = { .shared_vref = true, .internal_vref = 2500000, .channels = ad5064_channels, .num_channels = 8, }, [ID_AD5668_2] = { .shared_vref = true, .internal_vref = 5000000, .channels = ad5064_channels, .num_channels = 8, }, }; static inline unsigned int ad5064_num_vref(struct ad5064_state *st) { return st->chip_info->shared_vref ? 1 : st->chip_info->num_channels; } static const char * const ad5064_vref_names[] = { "vrefA", "vrefB", "vrefC", "vrefD", }; static const char * const ad5064_vref_name(struct ad5064_state *st, unsigned int vref) { return st->chip_info->shared_vref ? "vref" : ad5064_vref_names[vref]; } static int __devinit ad5064_probe(struct device *dev, enum ad5064_type type, const char *name, ad5064_write_func write) { struct iio_dev *indio_dev; struct ad5064_state *st; unsigned int i; int ret; indio_dev = iio_device_alloc(sizeof(*st)); if (indio_dev == NULL) return -ENOMEM; st = iio_priv(indio_dev); dev_set_drvdata(dev, indio_dev); st->chip_info = &ad5064_chip_info_tbl[type]; st->dev = dev; st->write = write; for (i = 0; i < ad5064_num_vref(st); ++i) st->vref_reg[i].supply = ad5064_vref_name(st, i); ret = regulator_bulk_get(dev, ad5064_num_vref(st), st->vref_reg); if (ret) { if (!st->chip_info->internal_vref) goto error_free; st->use_internal_vref = true; ret = ad5064_write(st, AD5064_CMD_CONFIG, 0, AD5064_CONFIG_INT_VREF_ENABLE, 0); if (ret) { dev_err(dev, "Failed to enable internal vref: %d\n", ret); goto error_free; } } else { ret = regulator_bulk_enable(ad5064_num_vref(st), st->vref_reg); if (ret) goto error_free_reg; } for (i = 0; i < st->chip_info->num_channels; ++i) { st->pwr_down_mode[i] = AD5064_LDAC_PWRDN_1K; st->dac_cache[i] = 0x8000; } indio_dev->dev.parent = dev; indio_dev->name = name; indio_dev->info = &ad5064_info; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = st->chip_info->channels; indio_dev->num_channels = st->chip_info->num_channels; ret = iio_device_register(indio_dev); if (ret) goto error_disable_reg; return 0; error_disable_reg: if (!st->use_internal_vref) regulator_bulk_disable(ad5064_num_vref(st), st->vref_reg); error_free_reg: if (!st->use_internal_vref) regulator_bulk_free(ad5064_num_vref(st), st->vref_reg); error_free: iio_device_free(indio_dev); return ret; } static int __devexit ad5064_remove(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct ad5064_state *st = iio_priv(indio_dev); iio_device_unregister(indio_dev); if (!st->use_internal_vref) { regulator_bulk_disable(ad5064_num_vref(st), st->vref_reg); regulator_bulk_free(ad5064_num_vref(st), st->vref_reg); } iio_device_free(indio_dev); return 0; } #if IS_ENABLED(CONFIG_SPI_MASTER) static int ad5064_spi_write(struct ad5064_state *st, unsigned int cmd, unsigned int addr, unsigned int val) { struct spi_device *spi = to_spi_device(st->dev); st->data.spi = cpu_to_be32(AD5064_CMD(cmd) | AD5064_ADDR(addr) | val); return spi_write(spi, &st->data.spi, sizeof(st->data.spi)); } static int __devinit ad5064_spi_probe(struct spi_device *spi) { const struct spi_device_id *id = spi_get_device_id(spi); return ad5064_probe(&spi->dev, id->driver_data, id->name, ad5064_spi_write); } static int __devexit ad5064_spi_remove(struct spi_device *spi) { return ad5064_remove(&spi->dev); } static const struct spi_device_id ad5064_spi_ids[] = { {"ad5024", ID_AD5024}, {"ad5025", ID_AD5025}, {"ad5044", ID_AD5044}, {"ad5045", ID_AD5045}, {"ad5064", ID_AD5064}, {"ad5064-1", ID_AD5064_1}, {"ad5065", ID_AD5065}, {"ad5628-1", ID_AD5628_1}, {"ad5628-2", ID_AD5628_2}, {"ad5648-1", ID_AD5648_1}, {"ad5648-2", ID_AD5648_2}, {"ad5666-1", ID_AD5666_1}, {"ad5666-2", ID_AD5666_2}, {"ad5668-1", ID_AD5668_1}, {"ad5668-2", ID_AD5668_2}, {"ad5668-3", ID_AD5668_2}, /* similar enough to ad5668-2 */ {} }; MODULE_DEVICE_TABLE(spi, ad5064_spi_ids); static struct spi_driver ad5064_spi_driver = { .driver = { .name = "ad5064", .owner = THIS_MODULE, }, .probe = ad5064_spi_probe, .remove = __devexit_p(ad5064_spi_remove), .id_table = ad5064_spi_ids, }; static int __init ad5064_spi_register_driver(void) { return spi_register_driver(&ad5064_spi_driver); } static void ad5064_spi_unregister_driver(void) { spi_unregister_driver(&ad5064_spi_driver); } #else static inline int ad5064_spi_register_driver(void) { return 0; } static inline void ad5064_spi_unregister_driver(void) { } #endif #if IS_ENABLED(CONFIG_I2C) static int ad5064_i2c_write(struct ad5064_state *st, unsigned int cmd, unsigned int addr, unsigned int val) { struct i2c_client *i2c = to_i2c_client(st->dev); st->data.i2c[0] = (cmd << 4) | addr; put_unaligned_be16(val, &st->data.i2c[1]); return i2c_master_send(i2c, st->data.i2c, 3); } static int __devinit ad5064_i2c_probe(struct i2c_client *i2c, const struct i2c_device_id *id) { return ad5064_probe(&i2c->dev, id->driver_data, id->name, ad5064_i2c_write); } static int __devexit ad5064_i2c_remove(struct i2c_client *i2c) { return ad5064_remove(&i2c->dev); } static const struct i2c_device_id ad5064_i2c_ids[] = { {"ad5629-1", ID_AD5628_1}, {"ad5629-2", ID_AD5628_2}, {"ad5629-3", ID_AD5628_2}, /* similar enough to ad5629-2 */ {"ad5669-1", ID_AD5668_1}, {"ad5669-2", ID_AD5668_2}, {"ad5669-3", ID_AD5668_2}, /* similar enough to ad5669-2 */ {} }; MODULE_DEVICE_TABLE(i2c, ad5064_i2c_ids); static struct i2c_driver ad5064_i2c_driver = { .driver = { .name = "ad5064", .owner = THIS_MODULE, }, .probe = ad5064_i2c_probe, .remove = __devexit_p(ad5064_i2c_remove), .id_table = ad5064_i2c_ids, }; static int __init ad5064_i2c_register_driver(void) { return i2c_add_driver(&ad5064_i2c_driver); } static void __exit ad5064_i2c_unregister_driver(void) { i2c_del_driver(&ad5064_i2c_driver); } #else static inline int ad5064_i2c_register_driver(void) { return 0; } static inline void ad5064_i2c_unregister_driver(void) { } #endif static int __init ad5064_init(void) { int ret; ret = ad5064_spi_register_driver(); if (ret) return ret; ret = ad5064_i2c_register_driver(); if (ret) { ad5064_spi_unregister_driver(); return ret; } return 0; } module_init(ad5064_init); static void __exit ad5064_exit(void) { ad5064_i2c_unregister_driver(); ad5064_spi_unregister_driver(); } module_exit(ad5064_exit); MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>"); MODULE_DESCRIPTION("Analog Devices AD5024 and similar multi-channel DACs"); MODULE_LICENSE("GPL v2");