/* * STMicroelectronics accelerometers driver * * Copyright 2012-2013 STMicroelectronics Inc. * * Denis Ciocca * * Licensed under the GPL-2. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "st_accel.h" #define ST_ACCEL_NUMBER_DATA_CHANNELS 3 /* DEFAULT VALUE FOR SENSORS */ #define ST_ACCEL_DEFAULT_OUT_X_L_ADDR 0x28 #define ST_ACCEL_DEFAULT_OUT_Y_L_ADDR 0x2a #define ST_ACCEL_DEFAULT_OUT_Z_L_ADDR 0x2c /* FULLSCALE */ #define ST_ACCEL_FS_AVL_2G 2 #define ST_ACCEL_FS_AVL_4G 4 #define ST_ACCEL_FS_AVL_6G 6 #define ST_ACCEL_FS_AVL_8G 8 #define ST_ACCEL_FS_AVL_16G 16 #define ST_ACCEL_FS_AVL_100G 100 #define ST_ACCEL_FS_AVL_200G 200 #define ST_ACCEL_FS_AVL_400G 400 static const struct iio_chan_spec st_accel_8bit_channels[] = { ST_SENSORS_LSM_CHANNELS(IIO_ACCEL, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 8, 8, ST_ACCEL_DEFAULT_OUT_X_L_ADDR+1), ST_SENSORS_LSM_CHANNELS(IIO_ACCEL, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 8, 8, ST_ACCEL_DEFAULT_OUT_Y_L_ADDR+1), ST_SENSORS_LSM_CHANNELS(IIO_ACCEL, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 8, 8, ST_ACCEL_DEFAULT_OUT_Z_L_ADDR+1), IIO_CHAN_SOFT_TIMESTAMP(3) }; static const struct iio_chan_spec st_accel_12bit_channels[] = { ST_SENSORS_LSM_CHANNELS(IIO_ACCEL, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 12, 16, ST_ACCEL_DEFAULT_OUT_X_L_ADDR), ST_SENSORS_LSM_CHANNELS(IIO_ACCEL, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 12, 16, ST_ACCEL_DEFAULT_OUT_Y_L_ADDR), ST_SENSORS_LSM_CHANNELS(IIO_ACCEL, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 12, 16, ST_ACCEL_DEFAULT_OUT_Z_L_ADDR), IIO_CHAN_SOFT_TIMESTAMP(3) }; static const struct iio_chan_spec st_accel_16bit_channels[] = { ST_SENSORS_LSM_CHANNELS(IIO_ACCEL, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 16, 16, ST_ACCEL_DEFAULT_OUT_X_L_ADDR), ST_SENSORS_LSM_CHANNELS(IIO_ACCEL, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 16, 16, ST_ACCEL_DEFAULT_OUT_Y_L_ADDR), ST_SENSORS_LSM_CHANNELS(IIO_ACCEL, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 16, 16, ST_ACCEL_DEFAULT_OUT_Z_L_ADDR), IIO_CHAN_SOFT_TIMESTAMP(3) }; static const struct st_sensor_settings st_accel_sensors_settings[] = { { .wai = 0x33, .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, .sensors_supported = { [0] = LIS3DH_ACCEL_DEV_NAME, [1] = LSM303DLHC_ACCEL_DEV_NAME, [2] = LSM330D_ACCEL_DEV_NAME, [3] = LSM330DL_ACCEL_DEV_NAME, [4] = LSM330DLC_ACCEL_DEV_NAME, [5] = LSM303AGR_ACCEL_DEV_NAME, [6] = LIS2DH12_ACCEL_DEV_NAME, [7] = LIS3DE_ACCEL_DEV_NAME, }, .ch = (struct iio_chan_spec *)st_accel_12bit_channels, .odr = { .addr = 0x20, .mask = 0xf0, .odr_avl = { { .hz = 1, .value = 0x01, }, { .hz = 10, .value = 0x02, }, { .hz = 25, .value = 0x03, }, { .hz = 50, .value = 0x04, }, { .hz = 100, .value = 0x05, }, { .hz = 200, .value = 0x06, }, { .hz = 400, .value = 0x07, }, { .hz = 1600, .value = 0x08, }, }, }, .pw = { .addr = 0x20, .mask = 0xf0, .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, }, .enable_axis = { .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, .mask = ST_SENSORS_DEFAULT_AXIS_MASK, }, .fs = { .addr = 0x23, .mask = 0x30, .fs_avl = { [0] = { .num = ST_ACCEL_FS_AVL_2G, .value = 0x00, .gain = IIO_G_TO_M_S_2(1000), }, [1] = { .num = ST_ACCEL_FS_AVL_4G, .value = 0x01, .gain = IIO_G_TO_M_S_2(2000), }, [2] = { .num = ST_ACCEL_FS_AVL_8G, .value = 0x02, .gain = IIO_G_TO_M_S_2(4000), }, [3] = { .num = ST_ACCEL_FS_AVL_16G, .value = 0x03, .gain = IIO_G_TO_M_S_2(12000), }, }, }, .bdu = { .addr = 0x23, .mask = 0x80, }, .drdy_irq = { .int1 = { .addr = 0x22, .mask = 0x10, }, .addr_ihl = 0x25, .mask_ihl = 0x02, .stat_drdy = { .addr = ST_SENSORS_DEFAULT_STAT_ADDR, .mask = 0x07, }, }, .sim = { .addr = 0x23, .value = BIT(0), }, .multi_read_bit = true, .bootime = 2, }, { .wai = 0x32, .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, .sensors_supported = { [0] = LIS331DLH_ACCEL_DEV_NAME, [1] = LSM303DL_ACCEL_DEV_NAME, [2] = LSM303DLH_ACCEL_DEV_NAME, [3] = LSM303DLM_ACCEL_DEV_NAME, }, .ch = (struct iio_chan_spec *)st_accel_12bit_channels, .odr = { .addr = 0x20, .mask = 0x18, .odr_avl = { { .hz = 50, .value = 0x00, }, { .hz = 100, .value = 0x01, }, { .hz = 400, .value = 0x02, }, { .hz = 1000, .value = 0x03, }, }, }, .pw = { .addr = 0x20, .mask = 0xe0, .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, }, .enable_axis = { .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, .mask = ST_SENSORS_DEFAULT_AXIS_MASK, }, .fs = { .addr = 0x23, .mask = 0x30, .fs_avl = { [0] = { .num = ST_ACCEL_FS_AVL_2G, .value = 0x00, .gain = IIO_G_TO_M_S_2(1000), }, [1] = { .num = ST_ACCEL_FS_AVL_4G, .value = 0x01, .gain = IIO_G_TO_M_S_2(2000), }, [2] = { .num = ST_ACCEL_FS_AVL_8G, .value = 0x03, .gain = IIO_G_TO_M_S_2(3900), }, }, }, .bdu = { .addr = 0x23, .mask = 0x80, }, .drdy_irq = { .int1 = { .addr = 0x22, .mask = 0x02, .addr_od = 0x22, .mask_od = 0x40, }, .int2 = { .addr = 0x22, .mask = 0x10, .addr_od = 0x22, .mask_od = 0x40, }, .addr_ihl = 0x22, .mask_ihl = 0x80, .stat_drdy = { .addr = ST_SENSORS_DEFAULT_STAT_ADDR, .mask = 0x07, }, }, .sim = { .addr = 0x23, .value = BIT(0), }, .multi_read_bit = true, .bootime = 2, }, { .wai = 0x40, .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, .sensors_supported = { [0] = LSM330_ACCEL_DEV_NAME, }, .ch = (struct iio_chan_spec *)st_accel_16bit_channels, .odr = { .addr = 0x20, .mask = 0xf0, .odr_avl = { { .hz = 3, .value = 0x01, }, { .hz = 6, .value = 0x02, }, { .hz = 12, .value = 0x03, }, { .hz = 25, .value = 0x04, }, { .hz = 50, .value = 0x05, }, { .hz = 100, .value = 0x06, }, { .hz = 200, .value = 0x07, }, { .hz = 400, .value = 0x08, }, { .hz = 800, .value = 0x09, }, { .hz = 1600, .value = 0x0a, }, }, }, .pw = { .addr = 0x20, .mask = 0xf0, .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, }, .enable_axis = { .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, .mask = ST_SENSORS_DEFAULT_AXIS_MASK, }, .fs = { .addr = 0x24, .mask = 0x38, .fs_avl = { [0] = { .num = ST_ACCEL_FS_AVL_2G, .value = 0x00, .gain = IIO_G_TO_M_S_2(61), }, [1] = { .num = ST_ACCEL_FS_AVL_4G, .value = 0x01, .gain = IIO_G_TO_M_S_2(122), }, [2] = { .num = ST_ACCEL_FS_AVL_6G, .value = 0x02, .gain = IIO_G_TO_M_S_2(183), }, [3] = { .num = ST_ACCEL_FS_AVL_8G, .value = 0x03, .gain = IIO_G_TO_M_S_2(244), }, [4] = { .num = ST_ACCEL_FS_AVL_16G, .value = 0x04, .gain = IIO_G_TO_M_S_2(732), }, }, }, .bdu = { .addr = 0x20, .mask = 0x08, }, .drdy_irq = { .int1 = { .addr = 0x23, .mask = 0x80, }, .addr_ihl = 0x23, .mask_ihl = 0x40, .stat_drdy = { .addr = ST_SENSORS_DEFAULT_STAT_ADDR, .mask = 0x07, }, .ig1 = { .en_addr = 0x23, .en_mask = 0x08, }, }, .sim = { .addr = 0x24, .value = BIT(0), }, .multi_read_bit = false, .bootime = 2, }, { .wai = 0x3a, .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, .sensors_supported = { [0] = LIS3LV02DL_ACCEL_DEV_NAME, }, .ch = (struct iio_chan_spec *)st_accel_12bit_channels, .odr = { .addr = 0x20, .mask = 0x30, /* DF1 and DF0 */ .odr_avl = { { .hz = 40, .value = 0x00, }, { .hz = 160, .value = 0x01, }, { .hz = 640, .value = 0x02, }, { .hz = 2560, .value = 0x03, }, }, }, .pw = { .addr = 0x20, .mask = 0xc0, .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, }, .enable_axis = { .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, .mask = ST_SENSORS_DEFAULT_AXIS_MASK, }, .fs = { .addr = 0x21, .mask = 0x80, .fs_avl = { [0] = { .num = ST_ACCEL_FS_AVL_2G, .value = 0x00, .gain = IIO_G_TO_M_S_2(1000), }, [1] = { .num = ST_ACCEL_FS_AVL_6G, .value = 0x01, .gain = IIO_G_TO_M_S_2(3000), }, }, }, .bdu = { .addr = 0x21, .mask = 0x40, }, /* * Data Alignment Setting - needs to be set to get * left-justified data like all other sensors. */ .das = { .addr = 0x21, .mask = 0x01, }, .drdy_irq = { .int1 = { .addr = 0x21, .mask = 0x04, }, .stat_drdy = { .addr = ST_SENSORS_DEFAULT_STAT_ADDR, .mask = 0x07, }, }, .sim = { .addr = 0x21, .value = BIT(1), }, .multi_read_bit = true, .bootime = 2, /* guess */ }, { .wai = 0x3b, .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, .sensors_supported = { [0] = LIS331DL_ACCEL_DEV_NAME, }, .ch = (struct iio_chan_spec *)st_accel_8bit_channels, .odr = { .addr = 0x20, .mask = 0x80, .odr_avl = { { .hz = 100, .value = 0x00, }, { .hz = 400, .value = 0x01, }, }, }, .pw = { .addr = 0x20, .mask = 0x40, .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, }, .enable_axis = { .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, .mask = ST_SENSORS_DEFAULT_AXIS_MASK, }, .fs = { .addr = 0x20, .mask = 0x20, /* * TODO: check these resulting gain settings, these are * not in the datsheet */ .fs_avl = { [0] = { .num = ST_ACCEL_FS_AVL_2G, .value = 0x00, .gain = IIO_G_TO_M_S_2(18000), }, [1] = { .num = ST_ACCEL_FS_AVL_8G, .value = 0x01, .gain = IIO_G_TO_M_S_2(72000), }, }, }, .drdy_irq = { .int1 = { .addr = 0x22, .mask = 0x04, .addr_od = 0x22, .mask_od = 0x40, }, .int2 = { .addr = 0x22, .mask = 0x20, .addr_od = 0x22, .mask_od = 0x40, }, .addr_ihl = 0x22, .mask_ihl = 0x80, .stat_drdy = { .addr = ST_SENSORS_DEFAULT_STAT_ADDR, .mask = 0x07, }, }, .sim = { .addr = 0x21, .value = BIT(7), }, .multi_read_bit = false, .bootime = 2, /* guess */ }, { .wai = 0x32, .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, .sensors_supported = { [0] = H3LIS331DL_ACCEL_DEV_NAME, }, .ch = (struct iio_chan_spec *)st_accel_12bit_channels, .odr = { .addr = 0x20, .mask = 0x18, .odr_avl = { { .hz = 50, .value = 0x00, }, { .hz = 100, .value = 0x01, }, { .hz = 400, .value = 0x02, }, { .hz = 1000, .value = 0x03, }, }, }, .pw = { .addr = 0x20, .mask = 0x20, .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, }, .enable_axis = { .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, .mask = ST_SENSORS_DEFAULT_AXIS_MASK, }, .fs = { .addr = 0x23, .mask = 0x30, .fs_avl = { [0] = { .num = ST_ACCEL_FS_AVL_100G, .value = 0x00, .gain = IIO_G_TO_M_S_2(49000), }, [1] = { .num = ST_ACCEL_FS_AVL_200G, .value = 0x01, .gain = IIO_G_TO_M_S_2(98000), }, [2] = { .num = ST_ACCEL_FS_AVL_400G, .value = 0x03, .gain = IIO_G_TO_M_S_2(195000), }, }, }, .bdu = { .addr = 0x23, .mask = 0x80, }, .drdy_irq = { .int1 = { .addr = 0x22, .mask = 0x02, }, .int2 = { .addr = 0x22, .mask = 0x10, }, .addr_ihl = 0x22, .mask_ihl = 0x80, }, .sim = { .addr = 0x23, .value = BIT(0), }, .multi_read_bit = true, .bootime = 2, }, { /* No WAI register present */ .sensors_supported = { [0] = LIS3L02DQ_ACCEL_DEV_NAME, }, .ch = (struct iio_chan_spec *)st_accel_12bit_channels, .odr = { .addr = 0x20, .mask = 0x30, .odr_avl = { { .hz = 280, .value = 0x00, }, { .hz = 560, .value = 0x01, }, { .hz = 1120, .value = 0x02, }, { .hz = 4480, .value = 0x03, }, }, }, .pw = { .addr = 0x20, .mask = 0xc0, .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, }, .enable_axis = { .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, .mask = ST_SENSORS_DEFAULT_AXIS_MASK, }, .fs = { .fs_avl = { [0] = { .num = ST_ACCEL_FS_AVL_2G, .gain = IIO_G_TO_M_S_2(488), }, }, }, /* * The part has a BDU bit but if set the data is never * updated so don't set it. */ .bdu = { }, .drdy_irq = { .int1 = { .addr = 0x21, .mask = 0x04, }, .stat_drdy = { .addr = ST_SENSORS_DEFAULT_STAT_ADDR, .mask = 0x07, }, }, .sim = { .addr = 0x21, .value = BIT(1), }, .multi_read_bit = false, .bootime = 2, }, { .wai = 0x33, .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, .sensors_supported = { [0] = LNG2DM_ACCEL_DEV_NAME, }, .ch = (struct iio_chan_spec *)st_accel_8bit_channels, .odr = { .addr = 0x20, .mask = 0xf0, .odr_avl = { { .hz = 1, .value = 0x01, }, { .hz = 10, .value = 0x02, }, { .hz = 25, .value = 0x03, }, { .hz = 50, .value = 0x04, }, { .hz = 100, .value = 0x05, }, { .hz = 200, .value = 0x06, }, { .hz = 400, .value = 0x07, }, { .hz = 1600, .value = 0x08, }, }, }, .pw = { .addr = 0x20, .mask = 0xf0, .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, }, .enable_axis = { .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, .mask = ST_SENSORS_DEFAULT_AXIS_MASK, }, .fs = { .addr = 0x23, .mask = 0x30, .fs_avl = { [0] = { .num = ST_ACCEL_FS_AVL_2G, .value = 0x00, .gain = IIO_G_TO_M_S_2(15600), }, [1] = { .num = ST_ACCEL_FS_AVL_4G, .value = 0x01, .gain = IIO_G_TO_M_S_2(31200), }, [2] = { .num = ST_ACCEL_FS_AVL_8G, .value = 0x02, .gain = IIO_G_TO_M_S_2(62500), }, [3] = { .num = ST_ACCEL_FS_AVL_16G, .value = 0x03, .gain = IIO_G_TO_M_S_2(187500), }, }, }, .drdy_irq = { .int1 = { .addr = 0x22, .mask = 0x10, }, .addr_ihl = 0x25, .mask_ihl = 0x02, .stat_drdy = { .addr = ST_SENSORS_DEFAULT_STAT_ADDR, .mask = 0x07, }, }, .sim = { .addr = 0x23, .value = BIT(0), }, .multi_read_bit = true, .bootime = 2, }, { .wai = 0x44, .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, .sensors_supported = { [0] = LIS2DW12_ACCEL_DEV_NAME, }, .ch = (struct iio_chan_spec *)st_accel_12bit_channels, .odr = { .addr = 0x20, .mask = 0xf0, .odr_avl = { { .hz = 1, .value = 0x01, }, { .hz = 12, .value = 0x02, }, { .hz = 25, .value = 0x03, }, { .hz = 50, .value = 0x04, }, { .hz = 100, .value = 0x05, }, { .hz = 200, .value = 0x06, }, }, }, .pw = { .addr = 0x20, .mask = 0xf0, .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, }, .fs = { .addr = 0x25, .mask = 0x30, .fs_avl = { [0] = { .num = ST_ACCEL_FS_AVL_2G, .value = 0x00, .gain = IIO_G_TO_M_S_2(976), }, [1] = { .num = ST_ACCEL_FS_AVL_4G, .value = 0x01, .gain = IIO_G_TO_M_S_2(1952), }, [2] = { .num = ST_ACCEL_FS_AVL_8G, .value = 0x02, .gain = IIO_G_TO_M_S_2(3904), }, [3] = { .num = ST_ACCEL_FS_AVL_16G, .value = 0x03, .gain = IIO_G_TO_M_S_2(7808), }, }, }, .bdu = { .addr = 0x21, .mask = 0x08, }, .drdy_irq = { .int1 = { .addr = 0x23, .mask = 0x01, .addr_od = 0x22, .mask_od = 0x20, }, .int2 = { .addr = 0x24, .mask = 0x01, .addr_od = 0x22, .mask_od = 0x20, }, .addr_ihl = 0x22, .mask_ihl = 0x08, .stat_drdy = { .addr = ST_SENSORS_DEFAULT_STAT_ADDR, .mask = 0x01, }, }, .sim = { .addr = 0x21, .value = BIT(0), }, .multi_read_bit = false, .bootime = 2, }, { .wai = 0x11, .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, .sensors_supported = { [0] = LIS3DHH_ACCEL_DEV_NAME, }, .ch = (struct iio_chan_spec *)st_accel_16bit_channels, .odr = { /* just ODR = 1100Hz available */ .odr_avl = { { .hz = 1100, .value = 0x00, }, }, }, .pw = { .addr = 0x20, .mask = 0x80, .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, }, .fs = { .fs_avl = { [0] = { .num = ST_ACCEL_FS_AVL_2G, .gain = IIO_G_TO_M_S_2(76), }, }, }, .bdu = { .addr = 0x20, .mask = 0x01, }, .drdy_irq = { .int1 = { .addr = 0x21, .mask = 0x80, .addr_od = 0x23, .mask_od = 0x04, }, .int2 = { .addr = 0x22, .mask = 0x80, .addr_od = 0x23, .mask_od = 0x08, }, .stat_drdy = { .addr = ST_SENSORS_DEFAULT_STAT_ADDR, .mask = 0x07, }, }, .multi_read_bit = false, .bootime = 2, }, }; static int st_accel_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *ch, int *val, int *val2, long mask) { int err; struct st_sensor_data *adata = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_RAW: err = st_sensors_read_info_raw(indio_dev, ch, val); if (err < 0) goto read_error; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: *val = adata->current_fullscale->gain / 1000000; *val2 = adata->current_fullscale->gain % 1000000; return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_SAMP_FREQ: *val = adata->odr; return IIO_VAL_INT; default: return -EINVAL; } read_error: return err; } static int st_accel_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { int err; switch (mask) { case IIO_CHAN_INFO_SCALE: { int gain; gain = val * 1000000 + val2; err = st_sensors_set_fullscale_by_gain(indio_dev, gain); break; } case IIO_CHAN_INFO_SAMP_FREQ: if (val2) return -EINVAL; mutex_lock(&indio_dev->mlock); err = st_sensors_set_odr(indio_dev, val); mutex_unlock(&indio_dev->mlock); return err; default: return -EINVAL; } return err; } static ST_SENSORS_DEV_ATTR_SAMP_FREQ_AVAIL(); static ST_SENSORS_DEV_ATTR_SCALE_AVAIL(in_accel_scale_available); static struct attribute *st_accel_attributes[] = { &iio_dev_attr_sampling_frequency_available.dev_attr.attr, &iio_dev_attr_in_accel_scale_available.dev_attr.attr, NULL, }; static const struct attribute_group st_accel_attribute_group = { .attrs = st_accel_attributes, }; static const struct iio_info accel_info = { .attrs = &st_accel_attribute_group, .read_raw = &st_accel_read_raw, .write_raw = &st_accel_write_raw, .debugfs_reg_access = &st_sensors_debugfs_reg_access, }; #ifdef CONFIG_IIO_TRIGGER static const struct iio_trigger_ops st_accel_trigger_ops = { .set_trigger_state = ST_ACCEL_TRIGGER_SET_STATE, .validate_device = st_sensors_validate_device, }; #define ST_ACCEL_TRIGGER_OPS (&st_accel_trigger_ops) #else #define ST_ACCEL_TRIGGER_OPS NULL #endif static const struct iio_mount_matrix * get_mount_matrix(const struct iio_dev *indio_dev, const struct iio_chan_spec *chan) { struct st_sensor_data *adata = iio_priv(indio_dev); return adata->mount_matrix; } static const struct iio_chan_spec_ext_info mount_matrix_ext_info[] = { IIO_MOUNT_MATRIX(IIO_SHARED_BY_ALL, get_mount_matrix), { }, }; /* Read ST-specific _ONT orientation data from ACPI and generate an * appropriate mount matrix. */ static int apply_acpi_orientation(struct iio_dev *indio_dev, struct iio_chan_spec *channels) { #ifdef CONFIG_ACPI struct st_sensor_data *adata = iio_priv(indio_dev); struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; struct acpi_device *adev; union acpi_object *ont; union acpi_object *elements; acpi_status status; int ret = -EINVAL; unsigned int val; int i, j; int final_ont[3][3] = { { 0 }, }; /* For some reason, ST's _ONT translation does not apply directly * to the data read from the sensor. Another translation must be * performed first, as described by the matrix below. Perhaps * ST required this specific translation for the first product * where the device was mounted? */ const int default_ont[3][3] = { { 0, 1, 0 }, { -1, 0, 0 }, { 0, 0, -1 }, }; adev = ACPI_COMPANION(adata->dev); if (!adev) return 0; /* Read _ONT data, which should be a package of 6 integers. */ status = acpi_evaluate_object(adev->handle, "_ONT", NULL, &buffer); if (status == AE_NOT_FOUND) { return 0; } else if (ACPI_FAILURE(status)) { dev_warn(&indio_dev->dev, "failed to execute _ONT: %d\n", status); return status; } ont = buffer.pointer; if (ont->type != ACPI_TYPE_PACKAGE || ont->package.count != 6) goto out; /* The first 3 integers provide axis order information. * e.g. 0 1 2 would indicate normal X,Y,Z ordering. * e.g. 1 0 2 indicates that data arrives in order Y,X,Z. */ elements = ont->package.elements; for (i = 0; i < 3; i++) { if (elements[i].type != ACPI_TYPE_INTEGER) goto out; val = elements[i].integer.value; if (val > 2) goto out; /* Avoiding full matrix multiplication, we simply reorder the * columns in the default_ont matrix according to the * ordering provided by _ONT. */ final_ont[0][i] = default_ont[0][val]; final_ont[1][i] = default_ont[1][val]; final_ont[2][i] = default_ont[2][val]; } /* The final 3 integers provide sign flip information. * 0 means no change, 1 means flip. * e.g. 0 0 1 means that Z data should be sign-flipped. * This is applied after the axis reordering from above. */ elements += 3; for (i = 0; i < 3; i++) { if (elements[i].type != ACPI_TYPE_INTEGER) goto out; val = elements[i].integer.value; if (val != 0 && val != 1) goto out; if (!val) continue; /* Flip the values in the indicated column */ final_ont[0][i] *= -1; final_ont[1][i] *= -1; final_ont[2][i] *= -1; } /* Convert our integer matrix to a string-based iio_mount_matrix */ adata->mount_matrix = devm_kmalloc(&indio_dev->dev, sizeof(*adata->mount_matrix), GFP_KERNEL); if (!adata->mount_matrix) { ret = -ENOMEM; goto out; } for (i = 0; i < 3; i++) { for (j = 0; j < 3; j++) { int matrix_val = final_ont[i][j]; char *str_value; switch (matrix_val) { case -1: str_value = "-1"; break; case 0: str_value = "0"; break; case 1: str_value = "1"; break; default: goto out; } adata->mount_matrix->rotation[i * 3 + j] = str_value; } } /* Expose the mount matrix via ext_info */ for (i = 0; i < indio_dev->num_channels; i++) channels[i].ext_info = mount_matrix_ext_info; ret = 0; dev_info(&indio_dev->dev, "computed mount matrix from ACPI\n"); out: kfree(buffer.pointer); return ret; #else /* !CONFIG_ACPI */ return 0; #endif } int st_accel_common_probe(struct iio_dev *indio_dev) { struct st_sensor_data *adata = iio_priv(indio_dev); struct st_sensors_platform_data *pdata = (struct st_sensors_platform_data *)adata->dev->platform_data; int irq = adata->get_irq_data_ready(indio_dev); struct iio_chan_spec *channels; size_t channels_size; int err; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->info = &accel_info; mutex_init(&adata->tb.buf_lock); err = st_sensors_power_enable(indio_dev); if (err) return err; err = st_sensors_check_device_support(indio_dev, ARRAY_SIZE(st_accel_sensors_settings), st_accel_sensors_settings); if (err < 0) goto st_accel_power_off; adata->num_data_channels = ST_ACCEL_NUMBER_DATA_CHANNELS; adata->multiread_bit = adata->sensor_settings->multi_read_bit; indio_dev->num_channels = ST_SENSORS_NUMBER_ALL_CHANNELS; channels_size = indio_dev->num_channels * sizeof(struct iio_chan_spec); channels = devm_kmemdup(&indio_dev->dev, adata->sensor_settings->ch, channels_size, GFP_KERNEL); if (!channels) { err = -ENOMEM; goto st_accel_power_off; } if (apply_acpi_orientation(indio_dev, channels)) dev_warn(&indio_dev->dev, "failed to apply ACPI orientation data: %d\n", err); indio_dev->channels = channels; adata->current_fullscale = (struct st_sensor_fullscale_avl *) &adata->sensor_settings->fs.fs_avl[0]; adata->odr = adata->sensor_settings->odr.odr_avl[0].hz; if (!pdata) pdata = (struct st_sensors_platform_data *)&default_accel_pdata; err = st_sensors_init_sensor(indio_dev, pdata); if (err < 0) goto st_accel_power_off; err = st_accel_allocate_ring(indio_dev); if (err < 0) goto st_accel_power_off; if (irq > 0) { err = st_sensors_allocate_trigger(indio_dev, ST_ACCEL_TRIGGER_OPS); if (err < 0) goto st_accel_probe_trigger_error; } err = iio_device_register(indio_dev); if (err) goto st_accel_device_register_error; dev_info(&indio_dev->dev, "registered accelerometer %s\n", indio_dev->name); return 0; st_accel_device_register_error: if (irq > 0) st_sensors_deallocate_trigger(indio_dev); st_accel_probe_trigger_error: st_accel_deallocate_ring(indio_dev); st_accel_power_off: st_sensors_power_disable(indio_dev); return err; } EXPORT_SYMBOL(st_accel_common_probe); void st_accel_common_remove(struct iio_dev *indio_dev) { struct st_sensor_data *adata = iio_priv(indio_dev); st_sensors_power_disable(indio_dev); iio_device_unregister(indio_dev); if (adata->get_irq_data_ready(indio_dev) > 0) st_sensors_deallocate_trigger(indio_dev); st_accel_deallocate_ring(indio_dev); } EXPORT_SYMBOL(st_accel_common_remove); MODULE_AUTHOR("Denis Ciocca "); MODULE_DESCRIPTION("STMicroelectronics accelerometers driver"); MODULE_LICENSE("GPL v2");