// SPDX-License-Identifier: GPL-2.0-or-later /* * Hardware monitoring driver for PMBus devices * * Copyright (c) 2010, 2011 Ericsson AB. * Copyright (c) 2012 Guenter Roeck */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pmbus.h" /* * Number of additional attribute pointers to allocate * with each call to krealloc */ #define PMBUS_ATTR_ALLOC_SIZE 32 #define PMBUS_NAME_SIZE 24 struct pmbus_sensor { struct pmbus_sensor *next; char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */ struct device_attribute attribute; u8 page; /* page number */ u8 phase; /* phase number, 0xff for all phases */ u16 reg; /* register */ enum pmbus_sensor_classes class; /* sensor class */ bool update; /* runtime sensor update needed */ bool convert; /* Whether or not to apply linear/vid/direct */ int data; /* Sensor data. Negative if there was a read error */ }; #define to_pmbus_sensor(_attr) \ container_of(_attr, struct pmbus_sensor, attribute) struct pmbus_boolean { char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */ struct sensor_device_attribute attribute; struct pmbus_sensor *s1; struct pmbus_sensor *s2; }; #define to_pmbus_boolean(_attr) \ container_of(_attr, struct pmbus_boolean, attribute) struct pmbus_label { char name[PMBUS_NAME_SIZE]; /* sysfs label name */ struct device_attribute attribute; char label[PMBUS_NAME_SIZE]; /* label */ }; #define to_pmbus_label(_attr) \ container_of(_attr, struct pmbus_label, attribute) /* Macros for converting between sensor index and register/page/status mask */ #define PB_STATUS_MASK 0xffff #define PB_REG_SHIFT 16 #define PB_REG_MASK 0x3ff #define PB_PAGE_SHIFT 26 #define PB_PAGE_MASK 0x3f #define pb_reg_to_index(page, reg, mask) (((page) << PB_PAGE_SHIFT) | \ ((reg) << PB_REG_SHIFT) | (mask)) #define pb_index_to_page(index) (((index) >> PB_PAGE_SHIFT) & PB_PAGE_MASK) #define pb_index_to_reg(index) (((index) >> PB_REG_SHIFT) & PB_REG_MASK) #define pb_index_to_mask(index) ((index) & PB_STATUS_MASK) struct pmbus_data { struct device *dev; struct device *hwmon_dev; struct regulator_dev **rdevs; u32 flags; /* from platform data */ u8 revision; /* The PMBus revision the device is compliant with */ int exponent[PMBUS_PAGES]; /* linear mode: exponent for output voltages */ const struct pmbus_driver_info *info; int max_attributes; int num_attributes; struct attribute_group group; const struct attribute_group **groups; struct dentry *debugfs; /* debugfs device directory */ struct pmbus_sensor *sensors; struct mutex update_lock; bool has_status_word; /* device uses STATUS_WORD register */ int (*read_status)(struct i2c_client *client, int page); s16 currpage; /* current page, -1 for unknown/unset */ s16 currphase; /* current phase, 0xff for all, -1 for unknown/unset */ int vout_low[PMBUS_PAGES]; /* voltage low margin */ int vout_high[PMBUS_PAGES]; /* voltage high margin */ }; struct pmbus_debugfs_entry { struct i2c_client *client; u8 page; u8 reg; }; static const int pmbus_fan_rpm_mask[] = { PB_FAN_1_RPM, PB_FAN_2_RPM, PB_FAN_1_RPM, PB_FAN_2_RPM, }; static const int pmbus_fan_config_registers[] = { PMBUS_FAN_CONFIG_12, PMBUS_FAN_CONFIG_12, PMBUS_FAN_CONFIG_34, PMBUS_FAN_CONFIG_34 }; static const int pmbus_fan_command_registers[] = { PMBUS_FAN_COMMAND_1, PMBUS_FAN_COMMAND_2, PMBUS_FAN_COMMAND_3, PMBUS_FAN_COMMAND_4, }; void pmbus_clear_cache(struct i2c_client *client) { struct pmbus_data *data = i2c_get_clientdata(client); struct pmbus_sensor *sensor; for (sensor = data->sensors; sensor; sensor = sensor->next) sensor->data = -ENODATA; } EXPORT_SYMBOL_NS_GPL(pmbus_clear_cache, PMBUS); void pmbus_set_update(struct i2c_client *client, u8 reg, bool update) { struct pmbus_data *data = i2c_get_clientdata(client); struct pmbus_sensor *sensor; for (sensor = data->sensors; sensor; sensor = sensor->next) if (sensor->reg == reg) sensor->update = update; } EXPORT_SYMBOL_NS_GPL(pmbus_set_update, PMBUS); int pmbus_set_page(struct i2c_client *client, int page, int phase) { struct pmbus_data *data = i2c_get_clientdata(client); int rv; if (page < 0) return 0; if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) && data->info->pages > 1 && page != data->currpage) { rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page); if (rv < 0) return rv; rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE); if (rv < 0) return rv; if (rv != page) return -EIO; } data->currpage = page; if (data->info->phases[page] && data->currphase != phase && !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) { rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE, phase); if (rv) return rv; } data->currphase = phase; return 0; } EXPORT_SYMBOL_NS_GPL(pmbus_set_page, PMBUS); int pmbus_write_byte(struct i2c_client *client, int page, u8 value) { int rv; rv = pmbus_set_page(client, page, 0xff); if (rv < 0) return rv; return i2c_smbus_write_byte(client, value); } EXPORT_SYMBOL_NS_GPL(pmbus_write_byte, PMBUS); /* * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if * a device specific mapping function exists and calls it if necessary. */ static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value) { struct pmbus_data *data = i2c_get_clientdata(client); const struct pmbus_driver_info *info = data->info; int status; if (info->write_byte) { status = info->write_byte(client, page, value); if (status != -ENODATA) return status; } return pmbus_write_byte(client, page, value); } int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg, u16 word) { int rv; rv = pmbus_set_page(client, page, 0xff); if (rv < 0) return rv; return i2c_smbus_write_word_data(client, reg, word); } EXPORT_SYMBOL_NS_GPL(pmbus_write_word_data, PMBUS); static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg, u16 word) { int bit; int id; int rv; switch (reg) { case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4: id = reg - PMBUS_VIRT_FAN_TARGET_1; bit = pmbus_fan_rpm_mask[id]; rv = pmbus_update_fan(client, page, id, bit, bit, word); break; default: rv = -ENXIO; break; } return rv; } /* * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if * a device specific mapping function exists and calls it if necessary. */ static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg, u16 word) { struct pmbus_data *data = i2c_get_clientdata(client); const struct pmbus_driver_info *info = data->info; int status; if (info->write_word_data) { status = info->write_word_data(client, page, reg, word); if (status != -ENODATA) return status; } if (reg >= PMBUS_VIRT_BASE) return pmbus_write_virt_reg(client, page, reg, word); return pmbus_write_word_data(client, page, reg, word); } /* * _pmbus_write_byte_data() is similar to pmbus_write_byte_data(), but checks if * a device specific mapping function exists and calls it if necessary. */ static int _pmbus_write_byte_data(struct i2c_client *client, int page, int reg, u8 value) { struct pmbus_data *data = i2c_get_clientdata(client); const struct pmbus_driver_info *info = data->info; int status; if (info->write_byte_data) { status = info->write_byte_data(client, page, reg, value); if (status != -ENODATA) return status; } return pmbus_write_byte_data(client, page, reg, value); } /* * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if * a device specific mapping function exists and calls it if necessary. */ static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg) { struct pmbus_data *data = i2c_get_clientdata(client); const struct pmbus_driver_info *info = data->info; int status; if (info->read_byte_data) { status = info->read_byte_data(client, page, reg); if (status != -ENODATA) return status; } return pmbus_read_byte_data(client, page, reg); } int pmbus_update_fan(struct i2c_client *client, int page, int id, u8 config, u8 mask, u16 command) { int from; int rv; u8 to; from = _pmbus_read_byte_data(client, page, pmbus_fan_config_registers[id]); if (from < 0) return from; to = (from & ~mask) | (config & mask); if (to != from) { rv = _pmbus_write_byte_data(client, page, pmbus_fan_config_registers[id], to); if (rv < 0) return rv; } return _pmbus_write_word_data(client, page, pmbus_fan_command_registers[id], command); } EXPORT_SYMBOL_NS_GPL(pmbus_update_fan, PMBUS); int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg) { int rv; rv = pmbus_set_page(client, page, phase); if (rv < 0) return rv; return i2c_smbus_read_word_data(client, reg); } EXPORT_SYMBOL_NS_GPL(pmbus_read_word_data, PMBUS); static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg) { int rv; int id; switch (reg) { case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4: id = reg - PMBUS_VIRT_FAN_TARGET_1; rv = pmbus_get_fan_rate_device(client, page, id, rpm); break; default: rv = -ENXIO; break; } return rv; } /* * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if * a device specific mapping function exists and calls it if necessary. */ static int _pmbus_read_word_data(struct i2c_client *client, int page, int phase, int reg) { struct pmbus_data *data = i2c_get_clientdata(client); const struct pmbus_driver_info *info = data->info; int status; if (info->read_word_data) { status = info->read_word_data(client, page, phase, reg); if (status != -ENODATA) return status; } if (reg >= PMBUS_VIRT_BASE) return pmbus_read_virt_reg(client, page, reg); return pmbus_read_word_data(client, page, phase, reg); } /* Same as above, but without phase parameter, for use in check functions */ static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg) { return _pmbus_read_word_data(client, page, 0xff, reg); } int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg) { int rv; rv = pmbus_set_page(client, page, 0xff); if (rv < 0) return rv; return i2c_smbus_read_byte_data(client, reg); } EXPORT_SYMBOL_NS_GPL(pmbus_read_byte_data, PMBUS); int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value) { int rv; rv = pmbus_set_page(client, page, 0xff); if (rv < 0) return rv; return i2c_smbus_write_byte_data(client, reg, value); } EXPORT_SYMBOL_NS_GPL(pmbus_write_byte_data, PMBUS); int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg, u8 mask, u8 value) { unsigned int tmp; int rv; rv = _pmbus_read_byte_data(client, page, reg); if (rv < 0) return rv; tmp = (rv & ~mask) | (value & mask); if (tmp != rv) rv = _pmbus_write_byte_data(client, page, reg, tmp); return rv; } EXPORT_SYMBOL_NS_GPL(pmbus_update_byte_data, PMBUS); static int pmbus_read_block_data(struct i2c_client *client, int page, u8 reg, char *data_buf) { int rv; rv = pmbus_set_page(client, page, 0xff); if (rv < 0) return rv; return i2c_smbus_read_block_data(client, reg, data_buf); } static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page, int reg) { struct pmbus_sensor *sensor; for (sensor = data->sensors; sensor; sensor = sensor->next) { if (sensor->page == page && sensor->reg == reg) return sensor; } return ERR_PTR(-EINVAL); } static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id, enum pmbus_fan_mode mode, bool from_cache) { struct pmbus_data *data = i2c_get_clientdata(client); bool want_rpm, have_rpm; struct pmbus_sensor *s; int config; int reg; want_rpm = (mode == rpm); if (from_cache) { reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1; s = pmbus_find_sensor(data, page, reg + id); if (IS_ERR(s)) return PTR_ERR(s); return s->data; } config = _pmbus_read_byte_data(client, page, pmbus_fan_config_registers[id]); if (config < 0) return config; have_rpm = !!(config & pmbus_fan_rpm_mask[id]); if (want_rpm == have_rpm) return pmbus_read_word_data(client, page, 0xff, pmbus_fan_command_registers[id]); /* Can't sensibly map between RPM and PWM, just return zero */ return 0; } int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id, enum pmbus_fan_mode mode) { return pmbus_get_fan_rate(client, page, id, mode, false); } EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_device, PMBUS); int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id, enum pmbus_fan_mode mode) { return pmbus_get_fan_rate(client, page, id, mode, true); } EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_cached, PMBUS); static void pmbus_clear_fault_page(struct i2c_client *client, int page) { _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS); } void pmbus_clear_faults(struct i2c_client *client) { struct pmbus_data *data = i2c_get_clientdata(client); int i; for (i = 0; i < data->info->pages; i++) pmbus_clear_fault_page(client, i); } EXPORT_SYMBOL_NS_GPL(pmbus_clear_faults, PMBUS); static int pmbus_check_status_cml(struct i2c_client *client) { struct pmbus_data *data = i2c_get_clientdata(client); int status, status2; status = data->read_status(client, -1); if (status < 0 || (status & PB_STATUS_CML)) { status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML); if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND)) return -EIO; } return 0; } static bool pmbus_check_register(struct i2c_client *client, int (*func)(struct i2c_client *client, int page, int reg), int page, int reg) { int rv; struct pmbus_data *data = i2c_get_clientdata(client); rv = func(client, page, reg); if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK)) rv = pmbus_check_status_cml(client); if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK)) data->read_status(client, -1); if (reg < PMBUS_VIRT_BASE) pmbus_clear_fault_page(client, -1); return rv >= 0; } static bool pmbus_check_status_register(struct i2c_client *client, int page) { int status; struct pmbus_data *data = i2c_get_clientdata(client); status = data->read_status(client, page); if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) && (status & PB_STATUS_CML)) { status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML); if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND)) status = -EIO; } pmbus_clear_fault_page(client, -1); return status >= 0; } bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg) { return pmbus_check_register(client, _pmbus_read_byte_data, page, reg); } EXPORT_SYMBOL_NS_GPL(pmbus_check_byte_register, PMBUS); bool pmbus_check_word_register(struct i2c_client *client, int page, int reg) { return pmbus_check_register(client, __pmbus_read_word_data, page, reg); } EXPORT_SYMBOL_NS_GPL(pmbus_check_word_register, PMBUS); static bool __maybe_unused pmbus_check_block_register(struct i2c_client *client, int page, int reg) { int rv; struct pmbus_data *data = i2c_get_clientdata(client); char data_buf[I2C_SMBUS_BLOCK_MAX + 2]; rv = pmbus_read_block_data(client, page, reg, data_buf); if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK)) rv = pmbus_check_status_cml(client); if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK)) data->read_status(client, -1); pmbus_clear_fault_page(client, -1); return rv >= 0; } const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client) { struct pmbus_data *data = i2c_get_clientdata(client); return data->info; } EXPORT_SYMBOL_NS_GPL(pmbus_get_driver_info, PMBUS); static int pmbus_get_status(struct i2c_client *client, int page, int reg) { struct pmbus_data *data = i2c_get_clientdata(client); int status; switch (reg) { case PMBUS_STATUS_WORD: status = data->read_status(client, page); break; default: status = _pmbus_read_byte_data(client, page, reg); break; } if (status < 0) pmbus_clear_faults(client); return status; } static void pmbus_update_sensor_data(struct i2c_client *client, struct pmbus_sensor *sensor) { if (sensor->data < 0 || sensor->update) sensor->data = _pmbus_read_word_data(client, sensor->page, sensor->phase, sensor->reg); } /* * Convert ieee754 sensor values to milli- or micro-units * depending on sensor type. * * ieee754 data format: * bit 15: sign * bit 10..14: exponent * bit 0..9: mantissa * exponent=0: * v=(−1)^signbit * 2^(−14) * 0.significantbits * exponent=1..30: * v=(−1)^signbit * 2^(exponent - 15) * 1.significantbits * exponent=31: * v=NaN * * Add the number mantissa bits into the calculations for simplicity. * To do that, add '10' to the exponent. By doing that, we can just add * 0x400 to normal values and get the expected result. */ static long pmbus_reg2data_ieee754(struct pmbus_data *data, struct pmbus_sensor *sensor) { int exponent; bool sign; long val; /* only support half precision for now */ sign = sensor->data & 0x8000; exponent = (sensor->data >> 10) & 0x1f; val = sensor->data & 0x3ff; if (exponent == 0) { /* subnormal */ exponent = -(14 + 10); } else if (exponent == 0x1f) { /* NaN, convert to min/max */ exponent = 0; val = 65504; } else { exponent -= (15 + 10); /* normal */ val |= 0x400; } /* scale result to milli-units for all sensors except fans */ if (sensor->class != PSC_FAN) val = val * 1000L; /* scale result to micro-units for power sensors */ if (sensor->class == PSC_POWER) val = val * 1000L; if (exponent >= 0) val <<= exponent; else val >>= -exponent; if (sign) val = -val; return val; } /* * Convert linear sensor values to milli- or micro-units * depending on sensor type. */ static s64 pmbus_reg2data_linear(struct pmbus_data *data, struct pmbus_sensor *sensor) { s16 exponent; s32 mantissa; s64 val; if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */ exponent = data->exponent[sensor->page]; mantissa = (u16) sensor->data; } else { /* LINEAR11 */ exponent = ((s16)sensor->data) >> 11; mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5; } val = mantissa; /* scale result to milli-units for all sensors except fans */ if (sensor->class != PSC_FAN) val = val * 1000LL; /* scale result to micro-units for power sensors */ if (sensor->class == PSC_POWER) val = val * 1000LL; if (exponent >= 0) val <<= exponent; else val >>= -exponent; return val; } /* * Convert direct sensor values to milli- or micro-units * depending on sensor type. */ static s64 pmbus_reg2data_direct(struct pmbus_data *data, struct pmbus_sensor *sensor) { s64 b, val = (s16)sensor->data; s32 m, R; m = data->info->m[sensor->class]; b = data->info->b[sensor->class]; R = data->info->R[sensor->class]; if (m == 0) return 0; /* X = 1/m * (Y * 10^-R - b) */ R = -R; /* scale result to milli-units for everything but fans */ if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) { R += 3; b *= 1000; } /* scale result to micro-units for power sensors */ if (sensor->class == PSC_POWER) { R += 3; b *= 1000; } while (R > 0) { val *= 10; R--; } while (R < 0) { val = div_s64(val + 5LL, 10L); /* round closest */ R++; } val = div_s64(val - b, m); return val; } /* * Convert VID sensor values to milli- or micro-units * depending on sensor type. */ static s64 pmbus_reg2data_vid(struct pmbus_data *data, struct pmbus_sensor *sensor) { long val = sensor->data; long rv = 0; switch (data->info->vrm_version[sensor->page]) { case vr11: if (val >= 0x02 && val <= 0xb2) rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100); break; case vr12: if (val >= 0x01) rv = 250 + (val - 1) * 5; break; case vr13: if (val >= 0x01) rv = 500 + (val - 1) * 10; break; case imvp9: if (val >= 0x01) rv = 200 + (val - 1) * 10; break; case amd625mv: if (val >= 0x0 && val <= 0xd8) rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100); break; } return rv; } static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor) { s64 val; if (!sensor->convert) return sensor->data; switch (data->info->format[sensor->class]) { case direct: val = pmbus_reg2data_direct(data, sensor); break; case vid: val = pmbus_reg2data_vid(data, sensor); break; case ieee754: val = pmbus_reg2data_ieee754(data, sensor); break; case linear: default: val = pmbus_reg2data_linear(data, sensor); break; } return val; } #define MAX_IEEE_MANTISSA (0x7ff * 1000) #define MIN_IEEE_MANTISSA (0x400 * 1000) static u16 pmbus_data2reg_ieee754(struct pmbus_data *data, struct pmbus_sensor *sensor, long val) { u16 exponent = (15 + 10); long mantissa; u16 sign = 0; /* simple case */ if (val == 0) return 0; if (val < 0) { sign = 0x8000; val = -val; } /* Power is in uW. Convert to mW before converting. */ if (sensor->class == PSC_POWER) val = DIV_ROUND_CLOSEST(val, 1000L); /* * For simplicity, convert fan data to milli-units * before calculating the exponent. */ if (sensor->class == PSC_FAN) val = val * 1000; /* Reduce large mantissa until it fits into 10 bit */ while (val > MAX_IEEE_MANTISSA && exponent < 30) { exponent++; val >>= 1; } /* * Increase small mantissa to generate valid 'normal' * number */ while (val < MIN_IEEE_MANTISSA && exponent > 1) { exponent--; val <<= 1; } /* Convert mantissa from milli-units to units */ mantissa = DIV_ROUND_CLOSEST(val, 1000); /* * Ensure that the resulting number is within range. * Valid range is 0x400..0x7ff, where bit 10 reflects * the implied high bit in normalized ieee754 numbers. * Set the range to 0x400..0x7ff to reflect this. * The upper bit is then removed by the mask against * 0x3ff in the final assignment. */ if (mantissa > 0x7ff) mantissa = 0x7ff; else if (mantissa < 0x400) mantissa = 0x400; /* Convert to sign, 5 bit exponent, 10 bit mantissa */ return sign | (mantissa & 0x3ff) | ((exponent << 10) & 0x7c00); } #define MAX_LIN_MANTISSA (1023 * 1000) #define MIN_LIN_MANTISSA (511 * 1000) static u16 pmbus_data2reg_linear(struct pmbus_data *data, struct pmbus_sensor *sensor, s64 val) { s16 exponent = 0, mantissa; bool negative = false; /* simple case */ if (val == 0) return 0; if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 does not support negative voltages */ if (val < 0) return 0; /* * For a static exponents, we don't have a choice * but to adjust the value to it. */ if (data->exponent[sensor->page] < 0) val <<= -data->exponent[sensor->page]; else val >>= data->exponent[sensor->page]; val = DIV_ROUND_CLOSEST_ULL(val, 1000); return clamp_val(val, 0, 0xffff); } if (val < 0) { negative = true; val = -val; } /* Power is in uW. Convert to mW before converting. */ if (sensor->class == PSC_POWER) val = DIV_ROUND_CLOSEST_ULL(val, 1000); /* * For simplicity, convert fan data to milli-units * before calculating the exponent. */ if (sensor->class == PSC_FAN) val = val * 1000LL; /* Reduce large mantissa until it fits into 10 bit */ while (val >= MAX_LIN_MANTISSA && exponent < 15) { exponent++; val >>= 1; } /* Increase small mantissa to improve precision */ while (val < MIN_LIN_MANTISSA && exponent > -15) { exponent--; val <<= 1; } /* Convert mantissa from milli-units to units */ mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff); /* restore sign */ if (negative) mantissa = -mantissa; /* Convert to 5 bit exponent, 11 bit mantissa */ return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800); } static u16 pmbus_data2reg_direct(struct pmbus_data *data, struct pmbus_sensor *sensor, s64 val) { s64 b; s32 m, R; m = data->info->m[sensor->class]; b = data->info->b[sensor->class]; R = data->info->R[sensor->class]; /* Power is in uW. Adjust R and b. */ if (sensor->class == PSC_POWER) { R -= 3; b *= 1000; } /* Calculate Y = (m * X + b) * 10^R */ if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) { R -= 3; /* Adjust R and b for data in milli-units */ b *= 1000; } val = val * m + b; while (R > 0) { val *= 10; R--; } while (R < 0) { val = div_s64(val + 5LL, 10L); /* round closest */ R++; } return (u16)clamp_val(val, S16_MIN, S16_MAX); } static u16 pmbus_data2reg_vid(struct pmbus_data *data, struct pmbus_sensor *sensor, s64 val) { val = clamp_val(val, 500, 1600); return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625); } static u16 pmbus_data2reg(struct pmbus_data *data, struct pmbus_sensor *sensor, s64 val) { u16 regval; if (!sensor->convert) return val; switch (data->info->format[sensor->class]) { case direct: regval = pmbus_data2reg_direct(data, sensor, val); break; case vid: regval = pmbus_data2reg_vid(data, sensor, val); break; case ieee754: regval = pmbus_data2reg_ieee754(data, sensor, val); break; case linear: default: regval = pmbus_data2reg_linear(data, sensor, val); break; } return regval; } /* * Return boolean calculated from converted data. * defines a status register index and mask. * The mask is in the lower 8 bits, the register index is in bits 8..23. * * The associated pmbus_boolean structure contains optional pointers to two * sensor attributes. If specified, those attributes are compared against each * other to determine if a limit has been exceeded. * * If the sensor attribute pointers are NULL, the function returns true if * (status[reg] & mask) is true. * * If sensor attribute pointers are provided, a comparison against a specified * limit has to be performed to determine the boolean result. * In this case, the function returns true if v1 >= v2 (where v1 and v2 are * sensor values referenced by sensor attribute pointers s1 and s2). * * To determine if an object exceeds upper limits, specify = . * To determine if an object exceeds lower limits, specify = . * * If a negative value is stored in any of the referenced registers, this value * reflects an error code which will be returned. */ static int pmbus_get_boolean(struct i2c_client *client, struct pmbus_boolean *b, int index) { struct pmbus_data *data = i2c_get_clientdata(client); struct pmbus_sensor *s1 = b->s1; struct pmbus_sensor *s2 = b->s2; u16 mask = pb_index_to_mask(index); u8 page = pb_index_to_page(index); u16 reg = pb_index_to_reg(index); int ret, status; u16 regval; mutex_lock(&data->update_lock); status = pmbus_get_status(client, page, reg); if (status < 0) { ret = status; goto unlock; } if (s1) pmbus_update_sensor_data(client, s1); if (s2) pmbus_update_sensor_data(client, s2); regval = status & mask; if (regval) { if (data->revision >= PMBUS_REV_12) { ret = _pmbus_write_byte_data(client, page, reg, regval); if (ret) goto unlock; } else { pmbus_clear_fault_page(client, page); } } if (s1 && s2) { s64 v1, v2; if (s1->data < 0) { ret = s1->data; goto unlock; } if (s2->data < 0) { ret = s2->data; goto unlock; } v1 = pmbus_reg2data(data, s1); v2 = pmbus_reg2data(data, s2); ret = !!(regval && v1 >= v2); } else { ret = !!regval; } unlock: mutex_unlock(&data->update_lock); return ret; } static ssize_t pmbus_show_boolean(struct device *dev, struct device_attribute *da, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct pmbus_boolean *boolean = to_pmbus_boolean(attr); struct i2c_client *client = to_i2c_client(dev->parent); int val; val = pmbus_get_boolean(client, boolean, attr->index); if (val < 0) return val; return sysfs_emit(buf, "%d\n", val); } static ssize_t pmbus_show_sensor(struct device *dev, struct device_attribute *devattr, char *buf) { struct i2c_client *client = to_i2c_client(dev->parent); struct pmbus_sensor *sensor = to_pmbus_sensor(devattr); struct pmbus_data *data = i2c_get_clientdata(client); ssize_t ret; mutex_lock(&data->update_lock); pmbus_update_sensor_data(client, sensor); if (sensor->data < 0) ret = sensor->data; else ret = sysfs_emit(buf, "%lld\n", pmbus_reg2data(data, sensor)); mutex_unlock(&data->update_lock); return ret; } static ssize_t pmbus_set_sensor(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev->parent); struct pmbus_data *data = i2c_get_clientdata(client); struct pmbus_sensor *sensor = to_pmbus_sensor(devattr); ssize_t rv = count; s64 val; int ret; u16 regval; if (kstrtos64(buf, 10, &val) < 0) return -EINVAL; mutex_lock(&data->update_lock); regval = pmbus_data2reg(data, sensor, val); ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval); if (ret < 0) rv = ret; else sensor->data = -ENODATA; mutex_unlock(&data->update_lock); return rv; } static ssize_t pmbus_show_label(struct device *dev, struct device_attribute *da, char *buf) { struct pmbus_label *label = to_pmbus_label(da); return sysfs_emit(buf, "%s\n", label->label); } static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr) { if (data->num_attributes >= data->max_attributes - 1) { int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE; void *new_attrs = devm_krealloc_array(data->dev, data->group.attrs, new_max_attrs, sizeof(void *), GFP_KERNEL); if (!new_attrs) return -ENOMEM; data->group.attrs = new_attrs; data->max_attributes = new_max_attrs; } data->group.attrs[data->num_attributes++] = attr; data->group.attrs[data->num_attributes] = NULL; return 0; } static void pmbus_dev_attr_init(struct device_attribute *dev_attr, const char *name, umode_t mode, ssize_t (*show)(struct device *dev, struct device_attribute *attr, char *buf), ssize_t (*store)(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)) { sysfs_attr_init(&dev_attr->attr); dev_attr->attr.name = name; dev_attr->attr.mode = mode; dev_attr->show = show; dev_attr->store = store; } static void pmbus_attr_init(struct sensor_device_attribute *a, const char *name, umode_t mode, ssize_t (*show)(struct device *dev, struct device_attribute *attr, char *buf), ssize_t (*store)(struct device *dev, struct device_attribute *attr, const char *buf, size_t count), int idx) { pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store); a->index = idx; } static int pmbus_add_boolean(struct pmbus_data *data, const char *name, const char *type, int seq, struct pmbus_sensor *s1, struct pmbus_sensor *s2, u8 page, u16 reg, u16 mask) { struct pmbus_boolean *boolean; struct sensor_device_attribute *a; if (WARN((s1 && !s2) || (!s1 && s2), "Bad s1/s2 parameters\n")) return -EINVAL; boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL); if (!boolean) return -ENOMEM; a = &boolean->attribute; snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s", name, seq, type); boolean->s1 = s1; boolean->s2 = s2; pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL, pb_reg_to_index(page, reg, mask)); return pmbus_add_attribute(data, &a->dev_attr.attr); } /* of thermal for pmbus temperature sensors */ struct pmbus_thermal_data { struct pmbus_data *pmbus_data; struct pmbus_sensor *sensor; }; static int pmbus_thermal_get_temp(struct thermal_zone_device *tz, int *temp) { struct pmbus_thermal_data *tdata = thermal_zone_device_priv(tz); struct pmbus_sensor *sensor = tdata->sensor; struct pmbus_data *pmbus_data = tdata->pmbus_data; struct i2c_client *client = to_i2c_client(pmbus_data->dev); struct device *dev = pmbus_data->hwmon_dev; int ret = 0; if (!dev) { /* May not even get to hwmon yet */ *temp = 0; return 0; } mutex_lock(&pmbus_data->update_lock); pmbus_update_sensor_data(client, sensor); if (sensor->data < 0) ret = sensor->data; else *temp = (int)pmbus_reg2data(pmbus_data, sensor); mutex_unlock(&pmbus_data->update_lock); return ret; } static const struct thermal_zone_device_ops pmbus_thermal_ops = { .get_temp = pmbus_thermal_get_temp, }; static int pmbus_thermal_add_sensor(struct pmbus_data *pmbus_data, struct pmbus_sensor *sensor, int index) { struct device *dev = pmbus_data->dev; struct pmbus_thermal_data *tdata; struct thermal_zone_device *tzd; tdata = devm_kzalloc(dev, sizeof(*tdata), GFP_KERNEL); if (!tdata) return -ENOMEM; tdata->sensor = sensor; tdata->pmbus_data = pmbus_data; tzd = devm_thermal_of_zone_register(dev, index, tdata, &pmbus_thermal_ops); /* * If CONFIG_THERMAL_OF is disabled, this returns -ENODEV, * so ignore that error but forward any other error. */ if (IS_ERR(tzd) && (PTR_ERR(tzd) != -ENODEV)) return PTR_ERR(tzd); return 0; } static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data, const char *name, const char *type, int seq, int page, int phase, int reg, enum pmbus_sensor_classes class, bool update, bool readonly, bool convert) { struct pmbus_sensor *sensor; struct device_attribute *a; sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL); if (!sensor) return NULL; a = &sensor->attribute; if (type) snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s", name, seq, type); else snprintf(sensor->name, sizeof(sensor->name), "%s%d", name, seq); if (data->flags & PMBUS_WRITE_PROTECTED) readonly = true; sensor->page = page; sensor->phase = phase; sensor->reg = reg; sensor->class = class; sensor->update = update; sensor->convert = convert; sensor->data = -ENODATA; pmbus_dev_attr_init(a, sensor->name, readonly ? 0444 : 0644, pmbus_show_sensor, pmbus_set_sensor); if (pmbus_add_attribute(data, &a->attr)) return NULL; sensor->next = data->sensors; data->sensors = sensor; /* temperature sensors with _input values are registered with thermal */ if (class == PSC_TEMPERATURE && strcmp(type, "input") == 0) pmbus_thermal_add_sensor(data, sensor, seq); return sensor; } static int pmbus_add_label(struct pmbus_data *data, const char *name, int seq, const char *lstring, int index, int phase) { struct pmbus_label *label; struct device_attribute *a; label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL); if (!label) return -ENOMEM; a = &label->attribute; snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq); if (!index) { if (phase == 0xff) strncpy(label->label, lstring, sizeof(label->label) - 1); else snprintf(label->label, sizeof(label->label), "%s.%d", lstring, phase); } else { if (phase == 0xff) snprintf(label->label, sizeof(label->label), "%s%d", lstring, index); else snprintf(label->label, sizeof(label->label), "%s%d.%d", lstring, index, phase); } pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL); return pmbus_add_attribute(data, &a->attr); } /* * Search for attributes. Allocate sensors, booleans, and labels as needed. */ /* * The pmbus_limit_attr structure describes a single limit attribute * and its associated alarm attribute. */ struct pmbus_limit_attr { u16 reg; /* Limit register */ u16 sbit; /* Alarm attribute status bit */ bool update; /* True if register needs updates */ bool low; /* True if low limit; for limits with compare functions only */ const char *attr; /* Attribute name */ const char *alarm; /* Alarm attribute name */ }; /* * The pmbus_sensor_attr structure describes one sensor attribute. This * description includes a reference to the associated limit attributes. */ struct pmbus_sensor_attr { u16 reg; /* sensor register */ u16 gbit; /* generic status bit */ u8 nlimit; /* # of limit registers */ enum pmbus_sensor_classes class;/* sensor class */ const char *label; /* sensor label */ bool paged; /* true if paged sensor */ bool update; /* true if update needed */ bool compare; /* true if compare function needed */ u32 func; /* sensor mask */ u32 sfunc; /* sensor status mask */ int sreg; /* status register */ const struct pmbus_limit_attr *limit;/* limit registers */ }; /* * Add a set of limit attributes and, if supported, the associated * alarm attributes. * returns 0 if no alarm register found, 1 if an alarm register was found, * < 0 on errors. */ static int pmbus_add_limit_attrs(struct i2c_client *client, struct pmbus_data *data, const struct pmbus_driver_info *info, const char *name, int index, int page, struct pmbus_sensor *base, const struct pmbus_sensor_attr *attr) { const struct pmbus_limit_attr *l = attr->limit; int nlimit = attr->nlimit; int have_alarm = 0; int i, ret; struct pmbus_sensor *curr; for (i = 0; i < nlimit; i++) { if (pmbus_check_word_register(client, page, l->reg)) { curr = pmbus_add_sensor(data, name, l->attr, index, page, 0xff, l->reg, attr->class, attr->update || l->update, false, true); if (!curr) return -ENOMEM; if (l->sbit && (info->func[page] & attr->sfunc)) { ret = pmbus_add_boolean(data, name, l->alarm, index, attr->compare ? l->low ? curr : base : NULL, attr->compare ? l->low ? base : curr : NULL, page, attr->sreg, l->sbit); if (ret) return ret; have_alarm = 1; } } l++; } return have_alarm; } static int pmbus_add_sensor_attrs_one(struct i2c_client *client, struct pmbus_data *data, const struct pmbus_driver_info *info, const char *name, int index, int page, int phase, const struct pmbus_sensor_attr *attr, bool paged) { struct pmbus_sensor *base; bool upper = !!(attr->gbit & 0xff00); /* need to check STATUS_WORD */ int ret; if (attr->label) { ret = pmbus_add_label(data, name, index, attr->label, paged ? page + 1 : 0, phase); if (ret) return ret; } base = pmbus_add_sensor(data, name, "input", index, page, phase, attr->reg, attr->class, true, true, true); if (!base) return -ENOMEM; /* No limit and alarm attributes for phase specific sensors */ if (attr->sfunc && phase == 0xff) { ret = pmbus_add_limit_attrs(client, data, info, name, index, page, base, attr); if (ret < 0) return ret; /* * Add generic alarm attribute only if there are no individual * alarm attributes, if there is a global alarm bit, and if * the generic status register (word or byte, depending on * which global bit is set) for this page is accessible. */ if (!ret && attr->gbit && (!upper || data->has_status_word) && pmbus_check_status_register(client, page)) { ret = pmbus_add_boolean(data, name, "alarm", index, NULL, NULL, page, PMBUS_STATUS_WORD, attr->gbit); if (ret) return ret; } } return 0; } static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info, const struct pmbus_sensor_attr *attr) { int p; if (attr->paged) return true; /* * Some attributes may be present on more than one page despite * not being marked with the paged attribute. If that is the case, * then treat the sensor as being paged and add the page suffix to the * attribute name. * We don't just add the paged attribute to all such attributes, in * order to maintain the un-suffixed labels in the case where the * attribute is only on page 0. */ for (p = 1; p < info->pages; p++) { if (info->func[p] & attr->func) return true; } return false; } static int pmbus_add_sensor_attrs(struct i2c_client *client, struct pmbus_data *data, const char *name, const struct pmbus_sensor_attr *attrs, int nattrs) { const struct pmbus_driver_info *info = data->info; int index, i; int ret; index = 1; for (i = 0; i < nattrs; i++) { int page, pages; bool paged = pmbus_sensor_is_paged(info, attrs); pages = paged ? info->pages : 1; for (page = 0; page < pages; page++) { if (info->func[page] & attrs->func) { ret = pmbus_add_sensor_attrs_one(client, data, info, name, index, page, 0xff, attrs, paged); if (ret) return ret; index++; } if (info->phases[page]) { int phase; for (phase = 0; phase < info->phases[page]; phase++) { if (!(info->pfunc[phase] & attrs->func)) continue; ret = pmbus_add_sensor_attrs_one(client, data, info, name, index, page, phase, attrs, paged); if (ret) return ret; index++; } } } attrs++; } return 0; } static const struct pmbus_limit_attr vin_limit_attrs[] = { { .reg = PMBUS_VIN_UV_WARN_LIMIT, .attr = "min", .alarm = "min_alarm", .sbit = PB_VOLTAGE_UV_WARNING, }, { .reg = PMBUS_VIN_UV_FAULT_LIMIT, .attr = "lcrit", .alarm = "lcrit_alarm", .sbit = PB_VOLTAGE_UV_FAULT | PB_VOLTAGE_VIN_OFF, }, { .reg = PMBUS_VIN_OV_WARN_LIMIT, .attr = "max", .alarm = "max_alarm", .sbit = PB_VOLTAGE_OV_WARNING, }, { .reg = PMBUS_VIN_OV_FAULT_LIMIT, .attr = "crit", .alarm = "crit_alarm", .sbit = PB_VOLTAGE_OV_FAULT, }, { .reg = PMBUS_VIRT_READ_VIN_AVG, .update = true, .attr = "average", }, { .reg = PMBUS_VIRT_READ_VIN_MIN, .update = true, .attr = "lowest", }, { .reg = PMBUS_VIRT_READ_VIN_MAX, .update = true, .attr = "highest", }, { .reg = PMBUS_VIRT_RESET_VIN_HISTORY, .attr = "reset_history", }, { .reg = PMBUS_MFR_VIN_MIN, .attr = "rated_min", }, { .reg = PMBUS_MFR_VIN_MAX, .attr = "rated_max", }, }; static const struct pmbus_limit_attr vmon_limit_attrs[] = { { .reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT, .attr = "min", .alarm = "min_alarm", .sbit = PB_VOLTAGE_UV_WARNING, }, { .reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT, .attr = "lcrit", .alarm = "lcrit_alarm", .sbit = PB_VOLTAGE_UV_FAULT, }, { .reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT, .attr = "max", .alarm = "max_alarm", .sbit = PB_VOLTAGE_OV_WARNING, }, { .reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT, .attr = "crit", .alarm = "crit_alarm", .sbit = PB_VOLTAGE_OV_FAULT, } }; static const struct pmbus_limit_attr vout_limit_attrs[] = { { .reg = PMBUS_VOUT_UV_WARN_LIMIT, .attr = "min", .alarm = "min_alarm", .sbit = PB_VOLTAGE_UV_WARNING, }, { .reg = PMBUS_VOUT_UV_FAULT_LIMIT, .attr = "lcrit", .alarm = "lcrit_alarm", .sbit = PB_VOLTAGE_UV_FAULT, }, { .reg = PMBUS_VOUT_OV_WARN_LIMIT, .attr = "max", .alarm = "max_alarm", .sbit = PB_VOLTAGE_OV_WARNING, }, { .reg = PMBUS_VOUT_OV_FAULT_LIMIT, .attr = "crit", .alarm = "crit_alarm", .sbit = PB_VOLTAGE_OV_FAULT, }, { .reg = PMBUS_VIRT_READ_VOUT_AVG, .update = true, .attr = "average", }, { .reg = PMBUS_VIRT_READ_VOUT_MIN, .update = true, .attr = "lowest", }, { .reg = PMBUS_VIRT_READ_VOUT_MAX, .update = true, .attr = "highest", }, { .reg = PMBUS_VIRT_RESET_VOUT_HISTORY, .attr = "reset_history", }, { .reg = PMBUS_MFR_VOUT_MIN, .attr = "rated_min", }, { .reg = PMBUS_MFR_VOUT_MAX, .attr = "rated_max", }, }; static const struct pmbus_sensor_attr voltage_attributes[] = { { .reg = PMBUS_READ_VIN, .class = PSC_VOLTAGE_IN, .label = "vin", .func = PMBUS_HAVE_VIN, .sfunc = PMBUS_HAVE_STATUS_INPUT, .sreg = PMBUS_STATUS_INPUT, .gbit = PB_STATUS_VIN_UV, .limit = vin_limit_attrs, .nlimit = ARRAY_SIZE(vin_limit_attrs), }, { .reg = PMBUS_VIRT_READ_VMON, .class = PSC_VOLTAGE_IN, .label = "vmon", .func = PMBUS_HAVE_VMON, .sfunc = PMBUS_HAVE_STATUS_VMON, .sreg = PMBUS_VIRT_STATUS_VMON, .limit = vmon_limit_attrs, .nlimit = ARRAY_SIZE(vmon_limit_attrs), }, { .reg = PMBUS_READ_VCAP, .class = PSC_VOLTAGE_IN, .label = "vcap", .func = PMBUS_HAVE_VCAP, }, { .reg = PMBUS_READ_VOUT, .class = PSC_VOLTAGE_OUT, .label = "vout", .paged = true, .func = PMBUS_HAVE_VOUT, .sfunc = PMBUS_HAVE_STATUS_VOUT, .sreg = PMBUS_STATUS_VOUT, .gbit = PB_STATUS_VOUT_OV, .limit = vout_limit_attrs, .nlimit = ARRAY_SIZE(vout_limit_attrs), } }; /* Current attributes */ static const struct pmbus_limit_attr iin_limit_attrs[] = { { .reg = PMBUS_IIN_OC_WARN_LIMIT, .attr = "max", .alarm = "max_alarm", .sbit = PB_IIN_OC_WARNING, }, { .reg = PMBUS_IIN_OC_FAULT_LIMIT, .attr = "crit", .alarm = "crit_alarm", .sbit = PB_IIN_OC_FAULT, }, { .reg = PMBUS_VIRT_READ_IIN_AVG, .update = true, .attr = "average", }, { .reg = PMBUS_VIRT_READ_IIN_MIN, .update = true, .attr = "lowest", }, { .reg = PMBUS_VIRT_READ_IIN_MAX, .update = true, .attr = "highest", }, { .reg = PMBUS_VIRT_RESET_IIN_HISTORY, .attr = "reset_history", }, { .reg = PMBUS_MFR_IIN_MAX, .attr = "rated_max", }, }; static const struct pmbus_limit_attr iout_limit_attrs[] = { { .reg = PMBUS_IOUT_OC_WARN_LIMIT, .attr = "max", .alarm = "max_alarm", .sbit = PB_IOUT_OC_WARNING, }, { .reg = PMBUS_IOUT_UC_FAULT_LIMIT, .attr = "lcrit", .alarm = "lcrit_alarm", .sbit = PB_IOUT_UC_FAULT, }, { .reg = PMBUS_IOUT_OC_FAULT_LIMIT, .attr = "crit", .alarm = "crit_alarm", .sbit = PB_IOUT_OC_FAULT, }, { .reg = PMBUS_VIRT_READ_IOUT_AVG, .update = true, .attr = "average", }, { .reg = PMBUS_VIRT_READ_IOUT_MIN, .update = true, .attr = "lowest", }, { .reg = PMBUS_VIRT_READ_IOUT_MAX, .update = true, .attr = "highest", }, { .reg = PMBUS_VIRT_RESET_IOUT_HISTORY, .attr = "reset_history", }, { .reg = PMBUS_MFR_IOUT_MAX, .attr = "rated_max", }, }; static const struct pmbus_sensor_attr current_attributes[] = { { .reg = PMBUS_READ_IIN, .class = PSC_CURRENT_IN, .label = "iin", .func = PMBUS_HAVE_IIN, .sfunc = PMBUS_HAVE_STATUS_INPUT, .sreg = PMBUS_STATUS_INPUT, .gbit = PB_STATUS_INPUT, .limit = iin_limit_attrs, .nlimit = ARRAY_SIZE(iin_limit_attrs), }, { .reg = PMBUS_READ_IOUT, .class = PSC_CURRENT_OUT, .label = "iout", .paged = true, .func = PMBUS_HAVE_IOUT, .sfunc = PMBUS_HAVE_STATUS_IOUT, .sreg = PMBUS_STATUS_IOUT, .gbit = PB_STATUS_IOUT_OC, .limit = iout_limit_attrs, .nlimit = ARRAY_SIZE(iout_limit_attrs), } }; /* Power attributes */ static const struct pmbus_limit_attr pin_limit_attrs[] = { { .reg = PMBUS_PIN_OP_WARN_LIMIT, .attr = "max", .alarm = "alarm", .sbit = PB_PIN_OP_WARNING, }, { .reg = PMBUS_VIRT_READ_PIN_AVG, .update = true, .attr = "average", }, { .reg = PMBUS_VIRT_READ_PIN_MIN, .update = true, .attr = "input_lowest", }, { .reg = PMBUS_VIRT_READ_PIN_MAX, .update = true, .attr = "input_highest", }, { .reg = PMBUS_VIRT_RESET_PIN_HISTORY, .attr = "reset_history", }, { .reg = PMBUS_MFR_PIN_MAX, .attr = "rated_max", }, }; static const struct pmbus_limit_attr pout_limit_attrs[] = { { .reg = PMBUS_POUT_MAX, .attr = "cap", .alarm = "cap_alarm", .sbit = PB_POWER_LIMITING, }, { .reg = PMBUS_POUT_OP_WARN_LIMIT, .attr = "max", .alarm = "max_alarm", .sbit = PB_POUT_OP_WARNING, }, { .reg = PMBUS_POUT_OP_FAULT_LIMIT, .attr = "crit", .alarm = "crit_alarm", .sbit = PB_POUT_OP_FAULT, }, { .reg = PMBUS_VIRT_READ_POUT_AVG, .update = true, .attr = "average", }, { .reg = PMBUS_VIRT_READ_POUT_MIN, .update = true, .attr = "input_lowest", }, { .reg = PMBUS_VIRT_READ_POUT_MAX, .update = true, .attr = "input_highest", }, { .reg = PMBUS_VIRT_RESET_POUT_HISTORY, .attr = "reset_history", }, { .reg = PMBUS_MFR_POUT_MAX, .attr = "rated_max", }, }; static const struct pmbus_sensor_attr power_attributes[] = { { .reg = PMBUS_READ_PIN, .class = PSC_POWER, .label = "pin", .func = PMBUS_HAVE_PIN, .sfunc = PMBUS_HAVE_STATUS_INPUT, .sreg = PMBUS_STATUS_INPUT, .gbit = PB_STATUS_INPUT, .limit = pin_limit_attrs, .nlimit = ARRAY_SIZE(pin_limit_attrs), }, { .reg = PMBUS_READ_POUT, .class = PSC_POWER, .label = "pout", .paged = true, .func = PMBUS_HAVE_POUT, .sfunc = PMBUS_HAVE_STATUS_IOUT, .sreg = PMBUS_STATUS_IOUT, .limit = pout_limit_attrs, .nlimit = ARRAY_SIZE(pout_limit_attrs), } }; /* Temperature atributes */ static const struct pmbus_limit_attr temp_limit_attrs[] = { { .reg = PMBUS_UT_WARN_LIMIT, .low = true, .attr = "min", .alarm = "min_alarm", .sbit = PB_TEMP_UT_WARNING, }, { .reg = PMBUS_UT_FAULT_LIMIT, .low = true, .attr = "lcrit", .alarm = "lcrit_alarm", .sbit = PB_TEMP_UT_FAULT, }, { .reg = PMBUS_OT_WARN_LIMIT, .attr = "max", .alarm = "max_alarm", .sbit = PB_TEMP_OT_WARNING, }, { .reg = PMBUS_OT_FAULT_LIMIT, .attr = "crit", .alarm = "crit_alarm", .sbit = PB_TEMP_OT_FAULT, }, { .reg = PMBUS_VIRT_READ_TEMP_MIN, .attr = "lowest", }, { .reg = PMBUS_VIRT_READ_TEMP_AVG, .attr = "average", }, { .reg = PMBUS_VIRT_READ_TEMP_MAX, .attr = "highest", }, { .reg = PMBUS_VIRT_RESET_TEMP_HISTORY, .attr = "reset_history", }, { .reg = PMBUS_MFR_MAX_TEMP_1, .attr = "rated_max", }, }; static const struct pmbus_limit_attr temp_limit_attrs2[] = { { .reg = PMBUS_UT_WARN_LIMIT, .low = true, .attr = "min", .alarm = "min_alarm", .sbit = PB_TEMP_UT_WARNING, }, { .reg = PMBUS_UT_FAULT_LIMIT, .low = true, .attr = "lcrit", .alarm = "lcrit_alarm", .sbit = PB_TEMP_UT_FAULT, }, { .reg = PMBUS_OT_WARN_LIMIT, .attr = "max", .alarm = "max_alarm", .sbit = PB_TEMP_OT_WARNING, }, { .reg = PMBUS_OT_FAULT_LIMIT, .attr = "crit", .alarm = "crit_alarm", .sbit = PB_TEMP_OT_FAULT, }, { .reg = PMBUS_VIRT_READ_TEMP2_MIN, .attr = "lowest", }, { .reg = PMBUS_VIRT_READ_TEMP2_AVG, .attr = "average", }, { .reg = PMBUS_VIRT_READ_TEMP2_MAX, .attr = "highest", }, { .reg = PMBUS_VIRT_RESET_TEMP2_HISTORY, .attr = "reset_history", }, { .reg = PMBUS_MFR_MAX_TEMP_2, .attr = "rated_max", }, }; static const struct pmbus_limit_attr temp_limit_attrs3[] = { { .reg = PMBUS_UT_WARN_LIMIT, .low = true, .attr = "min", .alarm = "min_alarm", .sbit = PB_TEMP_UT_WARNING, }, { .reg = PMBUS_UT_FAULT_LIMIT, .low = true, .attr = "lcrit", .alarm = "lcrit_alarm", .sbit = PB_TEMP_UT_FAULT, }, { .reg = PMBUS_OT_WARN_LIMIT, .attr = "max", .alarm = "max_alarm", .sbit = PB_TEMP_OT_WARNING, }, { .reg = PMBUS_OT_FAULT_LIMIT, .attr = "crit", .alarm = "crit_alarm", .sbit = PB_TEMP_OT_FAULT, }, { .reg = PMBUS_MFR_MAX_TEMP_3, .attr = "rated_max", }, }; static const struct pmbus_sensor_attr temp_attributes[] = { { .reg = PMBUS_READ_TEMPERATURE_1, .class = PSC_TEMPERATURE, .paged = true, .update = true, .compare = true, .func = PMBUS_HAVE_TEMP, .sfunc = PMBUS_HAVE_STATUS_TEMP, .sreg = PMBUS_STATUS_TEMPERATURE, .gbit = PB_STATUS_TEMPERATURE, .limit = temp_limit_attrs, .nlimit = ARRAY_SIZE(temp_limit_attrs), }, { .reg = PMBUS_READ_TEMPERATURE_2, .class = PSC_TEMPERATURE, .paged = true, .update = true, .compare = true, .func = PMBUS_HAVE_TEMP2, .sfunc = PMBUS_HAVE_STATUS_TEMP, .sreg = PMBUS_STATUS_TEMPERATURE, .gbit = PB_STATUS_TEMPERATURE, .limit = temp_limit_attrs2, .nlimit = ARRAY_SIZE(temp_limit_attrs2), }, { .reg = PMBUS_READ_TEMPERATURE_3, .class = PSC_TEMPERATURE, .paged = true, .update = true, .compare = true, .func = PMBUS_HAVE_TEMP3, .sfunc = PMBUS_HAVE_STATUS_TEMP, .sreg = PMBUS_STATUS_TEMPERATURE, .gbit = PB_STATUS_TEMPERATURE, .limit = temp_limit_attrs3, .nlimit = ARRAY_SIZE(temp_limit_attrs3), } }; static const int pmbus_fan_registers[] = { PMBUS_READ_FAN_SPEED_1, PMBUS_READ_FAN_SPEED_2, PMBUS_READ_FAN_SPEED_3, PMBUS_READ_FAN_SPEED_4 }; static const int pmbus_fan_status_registers[] = { PMBUS_STATUS_FAN_12, PMBUS_STATUS_FAN_12, PMBUS_STATUS_FAN_34, PMBUS_STATUS_FAN_34 }; static const u32 pmbus_fan_flags[] = { PMBUS_HAVE_FAN12, PMBUS_HAVE_FAN12, PMBUS_HAVE_FAN34, PMBUS_HAVE_FAN34 }; static const u32 pmbus_fan_status_flags[] = { PMBUS_HAVE_STATUS_FAN12, PMBUS_HAVE_STATUS_FAN12, PMBUS_HAVE_STATUS_FAN34, PMBUS_HAVE_STATUS_FAN34 }; /* Fans */ /* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */ static int pmbus_add_fan_ctrl(struct i2c_client *client, struct pmbus_data *data, int index, int page, int id, u8 config) { struct pmbus_sensor *sensor; sensor = pmbus_add_sensor(data, "fan", "target", index, page, 0xff, PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN, false, false, true); if (!sensor) return -ENOMEM; if (!((data->info->func[page] & PMBUS_HAVE_PWM12) || (data->info->func[page] & PMBUS_HAVE_PWM34))) return 0; sensor = pmbus_add_sensor(data, "pwm", NULL, index, page, 0xff, PMBUS_VIRT_PWM_1 + id, PSC_PWM, false, false, true); if (!sensor) return -ENOMEM; sensor = pmbus_add_sensor(data, "pwm", "enable", index, page, 0xff, PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM, true, false, false); if (!sensor) return -ENOMEM; return 0; } static int pmbus_add_fan_attributes(struct i2c_client *client, struct pmbus_data *data) { const struct pmbus_driver_info *info = data->info; int index = 1; int page; int ret; for (page = 0; page < info->pages; page++) { int f; for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) { int regval; if (!(info->func[page] & pmbus_fan_flags[f])) break; if (!pmbus_check_word_register(client, page, pmbus_fan_registers[f])) break; /* * Skip fan if not installed. * Each fan configuration register covers multiple fans, * so we have to do some magic. */ regval = _pmbus_read_byte_data(client, page, pmbus_fan_config_registers[f]); if (regval < 0 || (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4))))) continue; if (pmbus_add_sensor(data, "fan", "input", index, page, 0xff, pmbus_fan_registers[f], PSC_FAN, true, true, true) == NULL) return -ENOMEM; /* Fan control */ if (pmbus_check_word_register(client, page, pmbus_fan_command_registers[f])) { ret = pmbus_add_fan_ctrl(client, data, index, page, f, regval); if (ret < 0) return ret; } /* * Each fan status register covers multiple fans, * so we have to do some magic. */ if ((info->func[page] & pmbus_fan_status_flags[f]) && pmbus_check_byte_register(client, page, pmbus_fan_status_registers[f])) { int reg; if (f > 1) /* fan 3, 4 */ reg = PMBUS_STATUS_FAN_34; else reg = PMBUS_STATUS_FAN_12; ret = pmbus_add_boolean(data, "fan", "alarm", index, NULL, NULL, page, reg, PB_FAN_FAN1_WARNING >> (f & 1)); if (ret) return ret; ret = pmbus_add_boolean(data, "fan", "fault", index, NULL, NULL, page, reg, PB_FAN_FAN1_FAULT >> (f & 1)); if (ret) return ret; } index++; } } return 0; } struct pmbus_samples_attr { int reg; char *name; }; struct pmbus_samples_reg { int page; struct pmbus_samples_attr *attr; struct device_attribute dev_attr; }; static struct pmbus_samples_attr pmbus_samples_registers[] = { { .reg = PMBUS_VIRT_SAMPLES, .name = "samples", }, { .reg = PMBUS_VIRT_IN_SAMPLES, .name = "in_samples", }, { .reg = PMBUS_VIRT_CURR_SAMPLES, .name = "curr_samples", }, { .reg = PMBUS_VIRT_POWER_SAMPLES, .name = "power_samples", }, { .reg = PMBUS_VIRT_TEMP_SAMPLES, .name = "temp_samples", } }; #define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr) static ssize_t pmbus_show_samples(struct device *dev, struct device_attribute *devattr, char *buf) { int val; struct i2c_client *client = to_i2c_client(dev->parent); struct pmbus_samples_reg *reg = to_samples_reg(devattr); struct pmbus_data *data = i2c_get_clientdata(client); mutex_lock(&data->update_lock); val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg); mutex_unlock(&data->update_lock); if (val < 0) return val; return sysfs_emit(buf, "%d\n", val); } static ssize_t pmbus_set_samples(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { int ret; long val; struct i2c_client *client = to_i2c_client(dev->parent); struct pmbus_samples_reg *reg = to_samples_reg(devattr); struct pmbus_data *data = i2c_get_clientdata(client); if (kstrtol(buf, 0, &val) < 0) return -EINVAL; mutex_lock(&data->update_lock); ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val); mutex_unlock(&data->update_lock); return ret ? : count; } static int pmbus_add_samples_attr(struct pmbus_data *data, int page, struct pmbus_samples_attr *attr) { struct pmbus_samples_reg *reg; reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL); if (!reg) return -ENOMEM; reg->attr = attr; reg->page = page; pmbus_dev_attr_init(®->dev_attr, attr->name, 0644, pmbus_show_samples, pmbus_set_samples); return pmbus_add_attribute(data, ®->dev_attr.attr); } static int pmbus_add_samples_attributes(struct i2c_client *client, struct pmbus_data *data) { const struct pmbus_driver_info *info = data->info; int s; if (!(info->func[0] & PMBUS_HAVE_SAMPLES)) return 0; for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) { struct pmbus_samples_attr *attr; int ret; attr = &pmbus_samples_registers[s]; if (!pmbus_check_word_register(client, 0, attr->reg)) continue; ret = pmbus_add_samples_attr(data, 0, attr); if (ret) return ret; } return 0; } static int pmbus_find_attributes(struct i2c_client *client, struct pmbus_data *data) { int ret; /* Voltage sensors */ ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes, ARRAY_SIZE(voltage_attributes)); if (ret) return ret; /* Current sensors */ ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes, ARRAY_SIZE(current_attributes)); if (ret) return ret; /* Power sensors */ ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes, ARRAY_SIZE(power_attributes)); if (ret) return ret; /* Temperature sensors */ ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes, ARRAY_SIZE(temp_attributes)); if (ret) return ret; /* Fans */ ret = pmbus_add_fan_attributes(client, data); if (ret) return ret; ret = pmbus_add_samples_attributes(client, data); return ret; } /* * The pmbus_class_attr_map structure maps one sensor class to * it's corresponding sensor attributes array. */ struct pmbus_class_attr_map { enum pmbus_sensor_classes class; int nattr; const struct pmbus_sensor_attr *attr; }; static const struct pmbus_class_attr_map class_attr_map[] = { { .class = PSC_VOLTAGE_IN, .attr = voltage_attributes, .nattr = ARRAY_SIZE(voltage_attributes), }, { .class = PSC_VOLTAGE_OUT, .attr = voltage_attributes, .nattr = ARRAY_SIZE(voltage_attributes), }, { .class = PSC_CURRENT_IN, .attr = current_attributes, .nattr = ARRAY_SIZE(current_attributes), }, { .class = PSC_CURRENT_OUT, .attr = current_attributes, .nattr = ARRAY_SIZE(current_attributes), }, { .class = PSC_POWER, .attr = power_attributes, .nattr = ARRAY_SIZE(power_attributes), }, { .class = PSC_TEMPERATURE, .attr = temp_attributes, .nattr = ARRAY_SIZE(temp_attributes), } }; /* * Read the coefficients for direct mode. */ static int pmbus_read_coefficients(struct i2c_client *client, struct pmbus_driver_info *info, const struct pmbus_sensor_attr *attr) { int rv; union i2c_smbus_data data; enum pmbus_sensor_classes class = attr->class; s8 R; s16 m, b; data.block[0] = 2; data.block[1] = attr->reg; data.block[2] = 0x01; rv = i2c_smbus_xfer(client->adapter, client->addr, client->flags, I2C_SMBUS_WRITE, PMBUS_COEFFICIENTS, I2C_SMBUS_BLOCK_PROC_CALL, &data); if (rv < 0) return rv; if (data.block[0] != 5) return -EIO; m = data.block[1] | (data.block[2] << 8); b = data.block[3] | (data.block[4] << 8); R = data.block[5]; info->m[class] = m; info->b[class] = b; info->R[class] = R; return rv; } static int pmbus_init_coefficients(struct i2c_client *client, struct pmbus_driver_info *info) { int i, n, ret = -EINVAL; const struct pmbus_class_attr_map *map; const struct pmbus_sensor_attr *attr; for (i = 0; i < ARRAY_SIZE(class_attr_map); i++) { map = &class_attr_map[i]; if (info->format[map->class] != direct) continue; for (n = 0; n < map->nattr; n++) { attr = &map->attr[n]; if (map->class != attr->class) continue; ret = pmbus_read_coefficients(client, info, attr); if (ret >= 0) break; } if (ret < 0) { dev_err(&client->dev, "No coefficients found for sensor class %d\n", map->class); return -EINVAL; } } return 0; } /* * Identify chip parameters. * This function is called for all chips. */ static int pmbus_identify_common(struct i2c_client *client, struct pmbus_data *data, int page) { int vout_mode = -1; if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE)) vout_mode = _pmbus_read_byte_data(client, page, PMBUS_VOUT_MODE); if (vout_mode >= 0 && vout_mode != 0xff) { /* * Not all chips support the VOUT_MODE command, * so a failure to read it is not an error. */ switch (vout_mode >> 5) { case 0: /* linear mode */ if (data->info->format[PSC_VOLTAGE_OUT] != linear) return -ENODEV; data->exponent[page] = ((s8)(vout_mode << 3)) >> 3; break; case 1: /* VID mode */ if (data->info->format[PSC_VOLTAGE_OUT] != vid) return -ENODEV; break; case 2: /* direct mode */ if (data->info->format[PSC_VOLTAGE_OUT] != direct) return -ENODEV; break; case 3: /* ieee 754 half precision */ if (data->info->format[PSC_VOLTAGE_OUT] != ieee754) return -ENODEV; break; default: return -ENODEV; } } return 0; } static int pmbus_read_status_byte(struct i2c_client *client, int page) { return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE); } static int pmbus_read_status_word(struct i2c_client *client, int page) { return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD); } /* PEC attribute support */ static ssize_t pec_show(struct device *dev, struct device_attribute *dummy, char *buf) { struct i2c_client *client = to_i2c_client(dev); return sysfs_emit(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC)); } static ssize_t pec_store(struct device *dev, struct device_attribute *dummy, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); bool enable; int err; err = kstrtobool(buf, &enable); if (err < 0) return err; if (enable) client->flags |= I2C_CLIENT_PEC; else client->flags &= ~I2C_CLIENT_PEC; return count; } static DEVICE_ATTR_RW(pec); static void pmbus_remove_pec(void *dev) { device_remove_file(dev, &dev_attr_pec); } static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data, struct pmbus_driver_info *info) { struct device *dev = &client->dev; int page, ret; /* * Figure out if PEC is enabled before accessing any other register. * Make sure PEC is disabled, will be enabled later if needed. */ client->flags &= ~I2C_CLIENT_PEC; /* Enable PEC if the controller and bus supports it */ if (!(data->flags & PMBUS_NO_CAPABILITY)) { ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY); if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) { if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_PEC)) client->flags |= I2C_CLIENT_PEC; } } /* * Some PMBus chips don't support PMBUS_STATUS_WORD, so try * to use PMBUS_STATUS_BYTE instead if that is the case. * Bail out if both registers are not supported. */ data->read_status = pmbus_read_status_word; ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD); if (ret < 0 || ret == 0xffff) { data->read_status = pmbus_read_status_byte; ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE); if (ret < 0 || ret == 0xff) { dev_err(dev, "PMBus status register not found\n"); return -ENODEV; } } else { data->has_status_word = true; } /* * Check if the chip is write protected. If it is, we can not clear * faults, and we should not try it. Also, in that case, writes into * limit registers need to be disabled. */ if (!(data->flags & PMBUS_NO_WRITE_PROTECT)) { ret = i2c_smbus_read_byte_data(client, PMBUS_WRITE_PROTECT); if (ret > 0 && (ret & PB_WP_ANY)) data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK; } ret = i2c_smbus_read_byte_data(client, PMBUS_REVISION); if (ret >= 0) data->revision = ret; if (data->info->pages) pmbus_clear_faults(client); else pmbus_clear_fault_page(client, -1); if (info->identify) { ret = (*info->identify)(client, info); if (ret < 0) { dev_err(dev, "Chip identification failed\n"); return ret; } } if (info->pages <= 0 || info->pages > PMBUS_PAGES) { dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages); return -ENODEV; } for (page = 0; page < info->pages; page++) { ret = pmbus_identify_common(client, data, page); if (ret < 0) { dev_err(dev, "Failed to identify chip capabilities\n"); return ret; } } if (data->flags & PMBUS_USE_COEFFICIENTS_CMD) { if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BLOCK_PROC_CALL)) return -ENODEV; ret = pmbus_init_coefficients(client, info); if (ret < 0) return ret; } if (client->flags & I2C_CLIENT_PEC) { /* * If I2C_CLIENT_PEC is set here, both the I2C adapter and the * chip support PEC. Add 'pec' attribute to client device to let * the user control it. */ ret = device_create_file(dev, &dev_attr_pec); if (ret) return ret; ret = devm_add_action_or_reset(dev, pmbus_remove_pec, dev); if (ret) return ret; } return 0; } /* A PMBus status flag and the corresponding REGULATOR_ERROR_* and REGULATOR_EVENTS_* flag */ struct pmbus_status_assoc { int pflag, rflag, eflag; }; /* PMBus->regulator bit mappings for a PMBus status register */ struct pmbus_status_category { int func; int reg; const struct pmbus_status_assoc *bits; /* zero-terminated */ }; static const struct pmbus_status_category __maybe_unused pmbus_status_flag_map[] = { { .func = PMBUS_HAVE_STATUS_VOUT, .reg = PMBUS_STATUS_VOUT, .bits = (const struct pmbus_status_assoc[]) { { PB_VOLTAGE_UV_WARNING, REGULATOR_ERROR_UNDER_VOLTAGE_WARN, REGULATOR_EVENT_UNDER_VOLTAGE_WARN }, { PB_VOLTAGE_UV_FAULT, REGULATOR_ERROR_UNDER_VOLTAGE, REGULATOR_EVENT_UNDER_VOLTAGE }, { PB_VOLTAGE_OV_WARNING, REGULATOR_ERROR_OVER_VOLTAGE_WARN, REGULATOR_EVENT_OVER_VOLTAGE_WARN }, { PB_VOLTAGE_OV_FAULT, REGULATOR_ERROR_REGULATION_OUT, REGULATOR_EVENT_OVER_VOLTAGE_WARN }, { }, }, }, { .func = PMBUS_HAVE_STATUS_IOUT, .reg = PMBUS_STATUS_IOUT, .bits = (const struct pmbus_status_assoc[]) { { PB_IOUT_OC_WARNING, REGULATOR_ERROR_OVER_CURRENT_WARN, REGULATOR_EVENT_OVER_CURRENT_WARN }, { PB_IOUT_OC_FAULT, REGULATOR_ERROR_OVER_CURRENT, REGULATOR_EVENT_OVER_CURRENT }, { PB_IOUT_OC_LV_FAULT, REGULATOR_ERROR_OVER_CURRENT, REGULATOR_EVENT_OVER_CURRENT }, { }, }, }, { .func = PMBUS_HAVE_STATUS_TEMP, .reg = PMBUS_STATUS_TEMPERATURE, .bits = (const struct pmbus_status_assoc[]) { { PB_TEMP_OT_WARNING, REGULATOR_ERROR_OVER_TEMP_WARN, REGULATOR_EVENT_OVER_TEMP_WARN }, { PB_TEMP_OT_FAULT, REGULATOR_ERROR_OVER_TEMP, REGULATOR_EVENT_OVER_TEMP }, { }, }, }, }; static int _pmbus_is_enabled(struct i2c_client *client, u8 page) { int ret; ret = _pmbus_read_byte_data(client, page, PMBUS_OPERATION); if (ret < 0) return ret; return !!(ret & PB_OPERATION_CONTROL_ON); } static int __maybe_unused pmbus_is_enabled(struct i2c_client *client, u8 page) { struct pmbus_data *data = i2c_get_clientdata(client); int ret; mutex_lock(&data->update_lock); ret = _pmbus_is_enabled(client, page); mutex_unlock(&data->update_lock); return ret; } #define to_dev_attr(_dev_attr) \ container_of(_dev_attr, struct device_attribute, attr) static void pmbus_notify(struct pmbus_data *data, int page, int reg, int flags) { int i; for (i = 0; i < data->num_attributes; i++) { struct device_attribute *da = to_dev_attr(data->group.attrs[i]); struct sensor_device_attribute *attr = to_sensor_dev_attr(da); int index = attr->index; u16 smask = pb_index_to_mask(index); u8 spage = pb_index_to_page(index); u16 sreg = pb_index_to_reg(index); if (reg == sreg && page == spage && (smask & flags)) { dev_dbg(data->dev, "sysfs notify: %s", da->attr.name); sysfs_notify(&data->dev->kobj, NULL, da->attr.name); kobject_uevent(&data->dev->kobj, KOBJ_CHANGE); flags &= ~smask; } if (!flags) break; } } static int _pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags, unsigned int *event, bool notify) { int i, status; const struct pmbus_status_category *cat; const struct pmbus_status_assoc *bit; struct device *dev = data->dev; struct i2c_client *client = to_i2c_client(dev); int func = data->info->func[page]; *flags = 0; *event = 0; for (i = 0; i < ARRAY_SIZE(pmbus_status_flag_map); i++) { cat = &pmbus_status_flag_map[i]; if (!(func & cat->func)) continue; status = _pmbus_read_byte_data(client, page, cat->reg); if (status < 0) return status; for (bit = cat->bits; bit->pflag; bit++) if (status & bit->pflag) { *flags |= bit->rflag; *event |= bit->eflag; } if (notify && status) pmbus_notify(data, page, cat->reg, status); } /* * Map what bits of STATUS_{WORD,BYTE} we can to REGULATOR_ERROR_* * bits. Some of the other bits are tempting (especially for cases * where we don't have the relevant PMBUS_HAVE_STATUS_* * functionality), but there's an unfortunate ambiguity in that * they're defined as indicating a fault *or* a warning, so we can't * easily determine whether to report REGULATOR_ERROR_ or * REGULATOR_ERROR__WARN. */ status = pmbus_get_status(client, page, PMBUS_STATUS_WORD); if (status < 0) return status; if (_pmbus_is_enabled(client, page)) { if (status & PB_STATUS_OFF) { *flags |= REGULATOR_ERROR_FAIL; *event |= REGULATOR_EVENT_FAIL; } if (status & PB_STATUS_POWER_GOOD_N) { *flags |= REGULATOR_ERROR_REGULATION_OUT; *event |= REGULATOR_EVENT_REGULATION_OUT; } } /* * Unlike most other status bits, PB_STATUS_{IOUT_OC,VOUT_OV} are * defined strictly as fault indicators (not warnings). */ if (status & PB_STATUS_IOUT_OC) { *flags |= REGULATOR_ERROR_OVER_CURRENT; *event |= REGULATOR_EVENT_OVER_CURRENT; } if (status & PB_STATUS_VOUT_OV) { *flags |= REGULATOR_ERROR_REGULATION_OUT; *event |= REGULATOR_EVENT_FAIL; } /* * If we haven't discovered any thermal faults or warnings via * PMBUS_STATUS_TEMPERATURE, map PB_STATUS_TEMPERATURE to a warning as * a (conservative) best-effort interpretation. */ if (!(*flags & (REGULATOR_ERROR_OVER_TEMP | REGULATOR_ERROR_OVER_TEMP_WARN)) && (status & PB_STATUS_TEMPERATURE)) { *flags |= REGULATOR_ERROR_OVER_TEMP_WARN; *event |= REGULATOR_EVENT_OVER_TEMP_WARN; } return 0; } static int __maybe_unused pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags, unsigned int *event, bool notify) { int ret; mutex_lock(&data->update_lock); ret = _pmbus_get_flags(data, page, flags, event, notify); mutex_unlock(&data->update_lock); return ret; } #if IS_ENABLED(CONFIG_REGULATOR) static int pmbus_regulator_is_enabled(struct regulator_dev *rdev) { struct device *dev = rdev_get_dev(rdev); struct i2c_client *client = to_i2c_client(dev->parent); return pmbus_is_enabled(client, rdev_get_id(rdev)); } static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable) { struct device *dev = rdev_get_dev(rdev); struct i2c_client *client = to_i2c_client(dev->parent); struct pmbus_data *data = i2c_get_clientdata(client); u8 page = rdev_get_id(rdev); int ret; mutex_lock(&data->update_lock); ret = pmbus_update_byte_data(client, page, PMBUS_OPERATION, PB_OPERATION_CONTROL_ON, enable ? PB_OPERATION_CONTROL_ON : 0); mutex_unlock(&data->update_lock); return ret; } static int pmbus_regulator_enable(struct regulator_dev *rdev) { return _pmbus_regulator_on_off(rdev, 1); } static int pmbus_regulator_disable(struct regulator_dev *rdev) { return _pmbus_regulator_on_off(rdev, 0); } static int pmbus_regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags) { struct device *dev = rdev_get_dev(rdev); struct i2c_client *client = to_i2c_client(dev->parent); struct pmbus_data *data = i2c_get_clientdata(client); int event; return pmbus_get_flags(data, rdev_get_id(rdev), flags, &event, false); } static int pmbus_regulator_get_status(struct regulator_dev *rdev) { struct device *dev = rdev_get_dev(rdev); struct i2c_client *client = to_i2c_client(dev->parent); struct pmbus_data *data = i2c_get_clientdata(client); u8 page = rdev_get_id(rdev); int status, ret; int event; mutex_lock(&data->update_lock); status = pmbus_get_status(client, page, PMBUS_STATUS_WORD); if (status < 0) { ret = status; goto unlock; } if (status & PB_STATUS_OFF) { ret = REGULATOR_STATUS_OFF; goto unlock; } /* If regulator is ON & reports power good then return ON */ if (!(status & PB_STATUS_POWER_GOOD_N)) { ret = REGULATOR_STATUS_ON; goto unlock; } ret = _pmbus_get_flags(data, rdev_get_id(rdev), &status, &event, false); if (ret) goto unlock; if (status & (REGULATOR_ERROR_UNDER_VOLTAGE | REGULATOR_ERROR_OVER_CURRENT | REGULATOR_ERROR_REGULATION_OUT | REGULATOR_ERROR_FAIL | REGULATOR_ERROR_OVER_TEMP)) { ret = REGULATOR_STATUS_ERROR; goto unlock; } ret = REGULATOR_STATUS_UNDEFINED; unlock: mutex_unlock(&data->update_lock); return ret; } static int pmbus_regulator_get_low_margin(struct i2c_client *client, int page) { struct pmbus_data *data = i2c_get_clientdata(client); struct pmbus_sensor s = { .page = page, .class = PSC_VOLTAGE_OUT, .convert = true, .data = -1, }; if (data->vout_low[page] < 0) { if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MIN)) s.data = _pmbus_read_word_data(client, page, 0xff, PMBUS_MFR_VOUT_MIN); if (s.data < 0) { s.data = _pmbus_read_word_data(client, page, 0xff, PMBUS_VOUT_MARGIN_LOW); if (s.data < 0) return s.data; } data->vout_low[page] = pmbus_reg2data(data, &s); } return data->vout_low[page]; } static int pmbus_regulator_get_high_margin(struct i2c_client *client, int page) { struct pmbus_data *data = i2c_get_clientdata(client); struct pmbus_sensor s = { .page = page, .class = PSC_VOLTAGE_OUT, .convert = true, .data = -1, }; if (data->vout_high[page] < 0) { if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MAX)) s.data = _pmbus_read_word_data(client, page, 0xff, PMBUS_MFR_VOUT_MAX); if (s.data < 0) { s.data = _pmbus_read_word_data(client, page, 0xff, PMBUS_VOUT_MARGIN_HIGH); if (s.data < 0) return s.data; } data->vout_high[page] = pmbus_reg2data(data, &s); } return data->vout_high[page]; } static int pmbus_regulator_get_voltage(struct regulator_dev *rdev) { struct device *dev = rdev_get_dev(rdev); struct i2c_client *client = to_i2c_client(dev->parent); struct pmbus_data *data = i2c_get_clientdata(client); struct pmbus_sensor s = { .page = rdev_get_id(rdev), .class = PSC_VOLTAGE_OUT, .convert = true, }; s.data = _pmbus_read_word_data(client, s.page, 0xff, PMBUS_READ_VOUT); if (s.data < 0) return s.data; return (int)pmbus_reg2data(data, &s) * 1000; /* unit is uV */ } static int pmbus_regulator_set_voltage(struct regulator_dev *rdev, int min_uv, int max_uv, unsigned int *selector) { struct device *dev = rdev_get_dev(rdev); struct i2c_client *client = to_i2c_client(dev->parent); struct pmbus_data *data = i2c_get_clientdata(client); struct pmbus_sensor s = { .page = rdev_get_id(rdev), .class = PSC_VOLTAGE_OUT, .convert = true, .data = -1, }; int val = DIV_ROUND_CLOSEST(min_uv, 1000); /* convert to mV */ int low, high; *selector = 0; low = pmbus_regulator_get_low_margin(client, s.page); if (low < 0) return low; high = pmbus_regulator_get_high_margin(client, s.page); if (high < 0) return high; /* Make sure we are within margins */ if (low > val) val = low; if (high < val) val = high; val = pmbus_data2reg(data, &s, val); return _pmbus_write_word_data(client, s.page, PMBUS_VOUT_COMMAND, (u16)val); } static int pmbus_regulator_list_voltage(struct regulator_dev *rdev, unsigned int selector) { struct device *dev = rdev_get_dev(rdev); struct i2c_client *client = to_i2c_client(dev->parent); int val, low, high; if (selector >= rdev->desc->n_voltages || selector < rdev->desc->linear_min_sel) return -EINVAL; selector -= rdev->desc->linear_min_sel; val = DIV_ROUND_CLOSEST(rdev->desc->min_uV + (rdev->desc->uV_step * selector), 1000); /* convert to mV */ low = pmbus_regulator_get_low_margin(client, rdev_get_id(rdev)); if (low < 0) return low; high = pmbus_regulator_get_high_margin(client, rdev_get_id(rdev)); if (high < 0) return high; if (val >= low && val <= high) return val * 1000; /* unit is uV */ return 0; } const struct regulator_ops pmbus_regulator_ops = { .enable = pmbus_regulator_enable, .disable = pmbus_regulator_disable, .is_enabled = pmbus_regulator_is_enabled, .get_error_flags = pmbus_regulator_get_error_flags, .get_status = pmbus_regulator_get_status, .get_voltage = pmbus_regulator_get_voltage, .set_voltage = pmbus_regulator_set_voltage, .list_voltage = pmbus_regulator_list_voltage, }; EXPORT_SYMBOL_NS_GPL(pmbus_regulator_ops, PMBUS); static int pmbus_regulator_register(struct pmbus_data *data) { struct device *dev = data->dev; const struct pmbus_driver_info *info = data->info; const struct pmbus_platform_data *pdata = dev_get_platdata(dev); int i; data->rdevs = devm_kzalloc(dev, sizeof(struct regulator_dev *) * info->num_regulators, GFP_KERNEL); if (!data->rdevs) return -ENOMEM; for (i = 0; i < info->num_regulators; i++) { struct regulator_config config = { }; config.dev = dev; config.driver_data = data; if (pdata && pdata->reg_init_data) config.init_data = &pdata->reg_init_data[i]; data->rdevs[i] = devm_regulator_register(dev, &info->reg_desc[i], &config); if (IS_ERR(data->rdevs[i])) return dev_err_probe(dev, PTR_ERR(data->rdevs[i]), "Failed to register %s regulator\n", info->reg_desc[i].name); } return 0; } static int pmbus_regulator_notify(struct pmbus_data *data, int page, int event) { int j; for (j = 0; j < data->info->num_regulators; j++) { if (page == rdev_get_id(data->rdevs[j])) { regulator_notifier_call_chain(data->rdevs[j], event, NULL); break; } } return 0; } #else static int pmbus_regulator_register(struct pmbus_data *data) { return 0; } static int pmbus_regulator_notify(struct pmbus_data *data, int page, int event) { return 0; } #endif static int pmbus_write_smbalert_mask(struct i2c_client *client, u8 page, u8 reg, u8 val) { return pmbus_write_word_data(client, page, PMBUS_SMBALERT_MASK, reg | (val << 8)); } static irqreturn_t pmbus_fault_handler(int irq, void *pdata) { struct pmbus_data *data = pdata; struct i2c_client *client = to_i2c_client(data->dev); int i, status, event; mutex_lock(&data->update_lock); for (i = 0; i < data->info->pages; i++) { _pmbus_get_flags(data, i, &status, &event, true); if (event) pmbus_regulator_notify(data, i, event); } pmbus_clear_faults(client); mutex_unlock(&data->update_lock); return IRQ_HANDLED; } static int pmbus_irq_setup(struct i2c_client *client, struct pmbus_data *data) { struct device *dev = &client->dev; const struct pmbus_status_category *cat; const struct pmbus_status_assoc *bit; int i, j, err, func; u8 mask; static const u8 misc_status[] = {PMBUS_STATUS_CML, PMBUS_STATUS_OTHER, PMBUS_STATUS_MFR_SPECIFIC, PMBUS_STATUS_FAN_12, PMBUS_STATUS_FAN_34}; if (!client->irq) return 0; for (i = 0; i < data->info->pages; i++) { func = data->info->func[i]; for (j = 0; j < ARRAY_SIZE(pmbus_status_flag_map); j++) { cat = &pmbus_status_flag_map[j]; if (!(func & cat->func)) continue; mask = 0; for (bit = cat->bits; bit->pflag; bit++) mask |= bit->pflag; err = pmbus_write_smbalert_mask(client, i, cat->reg, ~mask); if (err) dev_dbg_once(dev, "Failed to set smbalert for reg 0x%02x\n", cat->reg); } for (j = 0; j < ARRAY_SIZE(misc_status); j++) pmbus_write_smbalert_mask(client, i, misc_status[j], 0xff); } /* Register notifiers */ err = devm_request_threaded_irq(dev, client->irq, NULL, pmbus_fault_handler, IRQF_ONESHOT, "pmbus-irq", data); if (err) { dev_err(dev, "failed to request an irq %d\n", err); return err; } return 0; } static struct dentry *pmbus_debugfs_dir; /* pmbus debugfs directory */ #if IS_ENABLED(CONFIG_DEBUG_FS) static int pmbus_debugfs_get(void *data, u64 *val) { int rc; struct pmbus_debugfs_entry *entry = data; struct pmbus_data *pdata = i2c_get_clientdata(entry->client); rc = mutex_lock_interruptible(&pdata->update_lock); if (rc) return rc; rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg); mutex_unlock(&pdata->update_lock); if (rc < 0) return rc; *val = rc; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL, "0x%02llx\n"); static int pmbus_debugfs_get_status(void *data, u64 *val) { int rc; struct pmbus_debugfs_entry *entry = data; struct pmbus_data *pdata = i2c_get_clientdata(entry->client); rc = mutex_lock_interruptible(&pdata->update_lock); if (rc) return rc; rc = pdata->read_status(entry->client, entry->page); mutex_unlock(&pdata->update_lock); if (rc < 0) return rc; *val = rc; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status, NULL, "0x%04llx\n"); static ssize_t pmbus_debugfs_mfr_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { int rc; struct pmbus_debugfs_entry *entry = file->private_data; struct pmbus_data *pdata = i2c_get_clientdata(entry->client); char data[I2C_SMBUS_BLOCK_MAX + 2] = { 0 }; rc = mutex_lock_interruptible(&pdata->update_lock); if (rc) return rc; rc = pmbus_read_block_data(entry->client, entry->page, entry->reg, data); mutex_unlock(&pdata->update_lock); if (rc < 0) return rc; /* Add newline at the end of a read data */ data[rc] = '\n'; /* Include newline into the length */ rc += 1; return simple_read_from_buffer(buf, count, ppos, data, rc); } static const struct file_operations pmbus_debugfs_ops_mfr = { .llseek = noop_llseek, .read = pmbus_debugfs_mfr_read, .write = NULL, .open = simple_open, }; static void pmbus_remove_debugfs(void *data) { struct dentry *entry = data; debugfs_remove_recursive(entry); } static int pmbus_init_debugfs(struct i2c_client *client, struct pmbus_data *data) { int i, idx = 0; char name[PMBUS_NAME_SIZE]; struct pmbus_debugfs_entry *entries; if (!pmbus_debugfs_dir) return -ENODEV; /* * Create the debugfs directory for this device. Use the hwmon device * name to avoid conflicts (hwmon numbers are globally unique). */ data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev), pmbus_debugfs_dir); if (IS_ERR_OR_NULL(data->debugfs)) { data->debugfs = NULL; return -ENODEV; } /* * Allocate the max possible entries we need. * 6 entries device-specific * 10 entries page-specific */ entries = devm_kcalloc(data->dev, 6 + data->info->pages * 10, sizeof(*entries), GFP_KERNEL); if (!entries) return -ENOMEM; /* * Add device-specific entries. * Please note that the PMBUS standard allows all registers to be * page-specific. * To reduce the number of debugfs entries for devices with many pages * assume that values of the following registers are the same for all * pages and report values only for page 0. */ if (pmbus_check_block_register(client, 0, PMBUS_MFR_ID)) { entries[idx].client = client; entries[idx].page = 0; entries[idx].reg = PMBUS_MFR_ID; debugfs_create_file("mfr_id", 0444, data->debugfs, &entries[idx++], &pmbus_debugfs_ops_mfr); } if (pmbus_check_block_register(client, 0, PMBUS_MFR_MODEL)) { entries[idx].client = client; entries[idx].page = 0; entries[idx].reg = PMBUS_MFR_MODEL; debugfs_create_file("mfr_model", 0444, data->debugfs, &entries[idx++], &pmbus_debugfs_ops_mfr); } if (pmbus_check_block_register(client, 0, PMBUS_MFR_REVISION)) { entries[idx].client = client; entries[idx].page = 0; entries[idx].reg = PMBUS_MFR_REVISION; debugfs_create_file("mfr_revision", 0444, data->debugfs, &entries[idx++], &pmbus_debugfs_ops_mfr); } if (pmbus_check_block_register(client, 0, PMBUS_MFR_LOCATION)) { entries[idx].client = client; entries[idx].page = 0; entries[idx].reg = PMBUS_MFR_LOCATION; debugfs_create_file("mfr_location", 0444, data->debugfs, &entries[idx++], &pmbus_debugfs_ops_mfr); } if (pmbus_check_block_register(client, 0, PMBUS_MFR_DATE)) { entries[idx].client = client; entries[idx].page = 0; entries[idx].reg = PMBUS_MFR_DATE; debugfs_create_file("mfr_date", 0444, data->debugfs, &entries[idx++], &pmbus_debugfs_ops_mfr); } if (pmbus_check_block_register(client, 0, PMBUS_MFR_SERIAL)) { entries[idx].client = client; entries[idx].page = 0; entries[idx].reg = PMBUS_MFR_SERIAL; debugfs_create_file("mfr_serial", 0444, data->debugfs, &entries[idx++], &pmbus_debugfs_ops_mfr); } /* Add page specific entries */ for (i = 0; i < data->info->pages; ++i) { /* Check accessibility of status register if it's not page 0 */ if (!i || pmbus_check_status_register(client, i)) { /* No need to set reg as we have special read op. */ entries[idx].client = client; entries[idx].page = i; scnprintf(name, PMBUS_NAME_SIZE, "status%d", i); debugfs_create_file(name, 0444, data->debugfs, &entries[idx++], &pmbus_debugfs_ops_status); } if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) { entries[idx].client = client; entries[idx].page = i; entries[idx].reg = PMBUS_STATUS_VOUT; scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i); debugfs_create_file(name, 0444, data->debugfs, &entries[idx++], &pmbus_debugfs_ops); } if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) { entries[idx].client = client; entries[idx].page = i; entries[idx].reg = PMBUS_STATUS_IOUT; scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i); debugfs_create_file(name, 0444, data->debugfs, &entries[idx++], &pmbus_debugfs_ops); } if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) { entries[idx].client = client; entries[idx].page = i; entries[idx].reg = PMBUS_STATUS_INPUT; scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i); debugfs_create_file(name, 0444, data->debugfs, &entries[idx++], &pmbus_debugfs_ops); } if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) { entries[idx].client = client; entries[idx].page = i; entries[idx].reg = PMBUS_STATUS_TEMPERATURE; scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i); debugfs_create_file(name, 0444, data->debugfs, &entries[idx++], &pmbus_debugfs_ops); } if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) { entries[idx].client = client; entries[idx].page = i; entries[idx].reg = PMBUS_STATUS_CML; scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i); debugfs_create_file(name, 0444, data->debugfs, &entries[idx++], &pmbus_debugfs_ops); } if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) { entries[idx].client = client; entries[idx].page = i; entries[idx].reg = PMBUS_STATUS_OTHER; scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i); debugfs_create_file(name, 0444, data->debugfs, &entries[idx++], &pmbus_debugfs_ops); } if (pmbus_check_byte_register(client, i, PMBUS_STATUS_MFR_SPECIFIC)) { entries[idx].client = client; entries[idx].page = i; entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC; scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i); debugfs_create_file(name, 0444, data->debugfs, &entries[idx++], &pmbus_debugfs_ops); } if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) { entries[idx].client = client; entries[idx].page = i; entries[idx].reg = PMBUS_STATUS_FAN_12; scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i); debugfs_create_file(name, 0444, data->debugfs, &entries[idx++], &pmbus_debugfs_ops); } if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) { entries[idx].client = client; entries[idx].page = i; entries[idx].reg = PMBUS_STATUS_FAN_34; scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i); debugfs_create_file(name, 0444, data->debugfs, &entries[idx++], &pmbus_debugfs_ops); } } return devm_add_action_or_reset(data->dev, pmbus_remove_debugfs, data->debugfs); } #else static int pmbus_init_debugfs(struct i2c_client *client, struct pmbus_data *data) { return 0; } #endif /* IS_ENABLED(CONFIG_DEBUG_FS) */ int pmbus_do_probe(struct i2c_client *client, struct pmbus_driver_info *info) { struct device *dev = &client->dev; const struct pmbus_platform_data *pdata = dev_get_platdata(dev); struct pmbus_data *data; size_t groups_num = 0; int ret; int i; char *name; if (!info) return -ENODEV; if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE | I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA)) return -ENODEV; data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; if (info->groups) while (info->groups[groups_num]) groups_num++; data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *), GFP_KERNEL); if (!data->groups) return -ENOMEM; i2c_set_clientdata(client, data); mutex_init(&data->update_lock); data->dev = dev; if (pdata) data->flags = pdata->flags; data->info = info; data->currpage = -1; data->currphase = -1; for (i = 0; i < ARRAY_SIZE(data->vout_low); i++) { data->vout_low[i] = -1; data->vout_high[i] = -1; } ret = pmbus_init_common(client, data, info); if (ret < 0) return ret; ret = pmbus_find_attributes(client, data); if (ret) return ret; /* * If there are no attributes, something is wrong. * Bail out instead of trying to register nothing. */ if (!data->num_attributes) { dev_err(dev, "No attributes found\n"); return -ENODEV; } name = devm_kstrdup(dev, client->name, GFP_KERNEL); if (!name) return -ENOMEM; strreplace(name, '-', '_'); data->groups[0] = &data->group; memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num); data->hwmon_dev = devm_hwmon_device_register_with_groups(dev, name, data, data->groups); if (IS_ERR(data->hwmon_dev)) { dev_err(dev, "Failed to register hwmon device\n"); return PTR_ERR(data->hwmon_dev); } ret = pmbus_regulator_register(data); if (ret) return ret; ret = pmbus_irq_setup(client, data); if (ret) return ret; ret = pmbus_init_debugfs(client, data); if (ret) dev_warn(dev, "Failed to register debugfs\n"); return 0; } EXPORT_SYMBOL_NS_GPL(pmbus_do_probe, PMBUS); struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client) { struct pmbus_data *data = i2c_get_clientdata(client); return data->debugfs; } EXPORT_SYMBOL_NS_GPL(pmbus_get_debugfs_dir, PMBUS); int pmbus_lock_interruptible(struct i2c_client *client) { struct pmbus_data *data = i2c_get_clientdata(client); return mutex_lock_interruptible(&data->update_lock); } EXPORT_SYMBOL_NS_GPL(pmbus_lock_interruptible, PMBUS); void pmbus_unlock(struct i2c_client *client) { struct pmbus_data *data = i2c_get_clientdata(client); mutex_unlock(&data->update_lock); } EXPORT_SYMBOL_NS_GPL(pmbus_unlock, PMBUS); static int __init pmbus_core_init(void) { pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL); if (IS_ERR(pmbus_debugfs_dir)) pmbus_debugfs_dir = NULL; return 0; } static void __exit pmbus_core_exit(void) { debugfs_remove_recursive(pmbus_debugfs_dir); } module_init(pmbus_core_init); module_exit(pmbus_core_exit); MODULE_AUTHOR("Guenter Roeck"); MODULE_DESCRIPTION("PMBus core driver"); MODULE_LICENSE("GPL");