/* * Copyright (c) 2009, Microsoft Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 59 Temple * Place - Suite 330, Boston, MA 02111-1307 USA. * * Authors: * Haiyang Zhang * Hank Janssen * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include "hyperv_vmbus.h" /* The one and only */ struct hv_context hv_context = { .synic_initialized = false, .hypercall_page = NULL, }; #define HV_TIMER_FREQUENCY (10 * 1000 * 1000) /* 100ns period */ #define HV_MAX_MAX_DELTA_TICKS 0xffffffff #define HV_MIN_DELTA_TICKS 1 /* * query_hypervisor_info - Get version info of the windows hypervisor */ unsigned int host_info_eax; unsigned int host_info_ebx; unsigned int host_info_ecx; unsigned int host_info_edx; static int query_hypervisor_info(void) { unsigned int eax; unsigned int ebx; unsigned int ecx; unsigned int edx; unsigned int max_leaf; unsigned int op; /* * Its assumed that this is called after confirming that Viridian * is present. Query id and revision. */ eax = 0; ebx = 0; ecx = 0; edx = 0; op = HVCPUID_VENDOR_MAXFUNCTION; cpuid(op, &eax, &ebx, &ecx, &edx); max_leaf = eax; if (max_leaf >= HVCPUID_VERSION) { eax = 0; ebx = 0; ecx = 0; edx = 0; op = HVCPUID_VERSION; cpuid(op, &eax, &ebx, &ecx, &edx); host_info_eax = eax; host_info_ebx = ebx; host_info_ecx = ecx; host_info_edx = edx; } return max_leaf; } /* * hv_do_hypercall- Invoke the specified hypercall */ u64 hv_do_hypercall(u64 control, void *input, void *output) { u64 input_address = (input) ? virt_to_phys(input) : 0; u64 output_address = (output) ? virt_to_phys(output) : 0; void *hypercall_page = hv_context.hypercall_page; #ifdef CONFIG_X86_64 u64 hv_status = 0; if (!hypercall_page) return (u64)ULLONG_MAX; __asm__ __volatile__("mov %0, %%r8" : : "r" (output_address) : "r8"); __asm__ __volatile__("call *%3" : "=a" (hv_status) : "c" (control), "d" (input_address), "m" (hypercall_page)); return hv_status; #else u32 control_hi = control >> 32; u32 control_lo = control & 0xFFFFFFFF; u32 hv_status_hi = 1; u32 hv_status_lo = 1; u32 input_address_hi = input_address >> 32; u32 input_address_lo = input_address & 0xFFFFFFFF; u32 output_address_hi = output_address >> 32; u32 output_address_lo = output_address & 0xFFFFFFFF; if (!hypercall_page) return (u64)ULLONG_MAX; __asm__ __volatile__ ("call *%8" : "=d"(hv_status_hi), "=a"(hv_status_lo) : "d" (control_hi), "a" (control_lo), "b" (input_address_hi), "c" (input_address_lo), "D"(output_address_hi), "S"(output_address_lo), "m" (hypercall_page)); return hv_status_lo | ((u64)hv_status_hi << 32); #endif /* !x86_64 */ } EXPORT_SYMBOL_GPL(hv_do_hypercall); #ifdef CONFIG_X86_64 static u64 read_hv_clock_tsc(struct clocksource *arg) { u64 current_tick; struct ms_hyperv_tsc_page *tsc_pg = hv_context.tsc_page; if (tsc_pg->tsc_sequence != 0) { /* * Use the tsc page to compute the value. */ while (1) { u64 tmp; u32 sequence = tsc_pg->tsc_sequence; u64 cur_tsc; u64 scale = tsc_pg->tsc_scale; s64 offset = tsc_pg->tsc_offset; rdtscll(cur_tsc); /* current_tick = ((cur_tsc *scale) >> 64) + offset */ asm("mulq %3" : "=d" (current_tick), "=a" (tmp) : "a" (cur_tsc), "r" (scale)); current_tick += offset; if (tsc_pg->tsc_sequence == sequence) return current_tick; if (tsc_pg->tsc_sequence != 0) continue; /* * Fallback using MSR method. */ break; } } rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick); return current_tick; } static struct clocksource hyperv_cs_tsc = { .name = "hyperv_clocksource_tsc_page", .rating = 425, .read = read_hv_clock_tsc, .mask = CLOCKSOURCE_MASK(64), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; #endif /* * hv_init - Main initialization routine. * * This routine must be called before any other routines in here are called */ int hv_init(void) { int max_leaf; union hv_x64_msr_hypercall_contents hypercall_msr; memset(hv_context.synic_event_page, 0, sizeof(void *) * NR_CPUS); memset(hv_context.synic_message_page, 0, sizeof(void *) * NR_CPUS); memset(hv_context.post_msg_page, 0, sizeof(void *) * NR_CPUS); memset(hv_context.vp_index, 0, sizeof(int) * NR_CPUS); memset(hv_context.event_dpc, 0, sizeof(void *) * NR_CPUS); memset(hv_context.msg_dpc, 0, sizeof(void *) * NR_CPUS); memset(hv_context.clk_evt, 0, sizeof(void *) * NR_CPUS); max_leaf = query_hypervisor_info(); /* See if the hypercall page is already set */ hypercall_msr.as_uint64 = 0; rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64); if (!hypercall_msr.enable) return -ENOTSUPP; hv_context.hypercall_page = hv_hypercall_pg; #ifdef CONFIG_X86_64 if (ms_hyperv.features & HV_X64_MSR_REFERENCE_TSC_AVAILABLE) { union hv_x64_msr_hypercall_contents tsc_msr; void *va_tsc; va_tsc = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL); if (!va_tsc) goto cleanup; hv_context.tsc_page = va_tsc; rdmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64); tsc_msr.enable = 1; tsc_msr.guest_physical_address = vmalloc_to_pfn(va_tsc); wrmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64); clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100); } #endif return 0; cleanup: return -ENOTSUPP; } /* * hv_cleanup - Cleanup routine. * * This routine is called normally during driver unloading or exiting. */ void hv_cleanup(bool crash) { #ifdef CONFIG_X86_64 union hv_x64_msr_hypercall_contents hypercall_msr; /* * Cleanup the TSC page based CS. */ if (ms_hyperv.features & HV_X64_MSR_REFERENCE_TSC_AVAILABLE) { /* * Crash can happen in an interrupt context and unregistering * a clocksource is impossible and redundant in this case. */ if (!oops_in_progress) { clocksource_change_rating(&hyperv_cs_tsc, 10); clocksource_unregister(&hyperv_cs_tsc); } hypercall_msr.as_uint64 = 0; wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64); if (!crash) { vfree(hv_context.tsc_page); hv_context.tsc_page = NULL; } } #endif } /* * hv_post_message - Post a message using the hypervisor message IPC. * * This involves a hypercall. */ int hv_post_message(union hv_connection_id connection_id, enum hv_message_type message_type, void *payload, size_t payload_size) { struct hv_input_post_message *aligned_msg; u64 status; if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) return -EMSGSIZE; aligned_msg = (struct hv_input_post_message *) hv_context.post_msg_page[get_cpu()]; aligned_msg->connectionid = connection_id; aligned_msg->reserved = 0; aligned_msg->message_type = message_type; aligned_msg->payload_size = payload_size; memcpy((void *)aligned_msg->payload, payload, payload_size); status = hv_do_hypercall(HVCALL_POST_MESSAGE, aligned_msg, NULL); put_cpu(); return status & 0xFFFF; } static int hv_ce_set_next_event(unsigned long delta, struct clock_event_device *evt) { u64 current_tick; WARN_ON(!clockevent_state_oneshot(evt)); rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick); current_tick += delta; wrmsrl(HV_X64_MSR_STIMER0_COUNT, current_tick); return 0; } static int hv_ce_shutdown(struct clock_event_device *evt) { wrmsrl(HV_X64_MSR_STIMER0_COUNT, 0); wrmsrl(HV_X64_MSR_STIMER0_CONFIG, 0); return 0; } static int hv_ce_set_oneshot(struct clock_event_device *evt) { union hv_timer_config timer_cfg; timer_cfg.enable = 1; timer_cfg.auto_enable = 1; timer_cfg.sintx = VMBUS_MESSAGE_SINT; wrmsrl(HV_X64_MSR_STIMER0_CONFIG, timer_cfg.as_uint64); return 0; } static void hv_init_clockevent_device(struct clock_event_device *dev, int cpu) { dev->name = "Hyper-V clockevent"; dev->features = CLOCK_EVT_FEAT_ONESHOT; dev->cpumask = cpumask_of(cpu); dev->rating = 1000; /* * Avoid settint dev->owner = THIS_MODULE deliberately as doing so will * result in clockevents_config_and_register() taking additional * references to the hv_vmbus module making it impossible to unload. */ dev->set_state_shutdown = hv_ce_shutdown; dev->set_state_oneshot = hv_ce_set_oneshot; dev->set_next_event = hv_ce_set_next_event; } int hv_synic_alloc(void) { size_t size = sizeof(struct tasklet_struct); size_t ced_size = sizeof(struct clock_event_device); int cpu; hv_context.hv_numa_map = kzalloc(sizeof(struct cpumask) * nr_node_ids, GFP_ATOMIC); if (hv_context.hv_numa_map == NULL) { pr_err("Unable to allocate NUMA map\n"); goto err; } for_each_present_cpu(cpu) { hv_context.event_dpc[cpu] = kmalloc(size, GFP_ATOMIC); if (hv_context.event_dpc[cpu] == NULL) { pr_err("Unable to allocate event dpc\n"); goto err; } tasklet_init(hv_context.event_dpc[cpu], vmbus_on_event, cpu); hv_context.msg_dpc[cpu] = kmalloc(size, GFP_ATOMIC); if (hv_context.msg_dpc[cpu] == NULL) { pr_err("Unable to allocate event dpc\n"); goto err; } tasklet_init(hv_context.msg_dpc[cpu], vmbus_on_msg_dpc, cpu); hv_context.clk_evt[cpu] = kzalloc(ced_size, GFP_ATOMIC); if (hv_context.clk_evt[cpu] == NULL) { pr_err("Unable to allocate clock event device\n"); goto err; } hv_init_clockevent_device(hv_context.clk_evt[cpu], cpu); hv_context.synic_message_page[cpu] = (void *)get_zeroed_page(GFP_ATOMIC); if (hv_context.synic_message_page[cpu] == NULL) { pr_err("Unable to allocate SYNIC message page\n"); goto err; } hv_context.synic_event_page[cpu] = (void *)get_zeroed_page(GFP_ATOMIC); if (hv_context.synic_event_page[cpu] == NULL) { pr_err("Unable to allocate SYNIC event page\n"); goto err; } hv_context.post_msg_page[cpu] = (void *)get_zeroed_page(GFP_ATOMIC); if (hv_context.post_msg_page[cpu] == NULL) { pr_err("Unable to allocate post msg page\n"); goto err; } INIT_LIST_HEAD(&hv_context.percpu_list[cpu]); } return 0; err: return -ENOMEM; } static void hv_synic_free_cpu(int cpu) { kfree(hv_context.event_dpc[cpu]); kfree(hv_context.msg_dpc[cpu]); kfree(hv_context.clk_evt[cpu]); if (hv_context.synic_event_page[cpu]) free_page((unsigned long)hv_context.synic_event_page[cpu]); if (hv_context.synic_message_page[cpu]) free_page((unsigned long)hv_context.synic_message_page[cpu]); if (hv_context.post_msg_page[cpu]) free_page((unsigned long)hv_context.post_msg_page[cpu]); } void hv_synic_free(void) { int cpu; kfree(hv_context.hv_numa_map); for_each_present_cpu(cpu) hv_synic_free_cpu(cpu); } /* * hv_synic_init - Initialize the Synthethic Interrupt Controller. * * If it is already initialized by another entity (ie x2v shim), we need to * retrieve the initialized message and event pages. Otherwise, we create and * initialize the message and event pages. */ int hv_synic_init(unsigned int cpu) { u64 version; union hv_synic_simp simp; union hv_synic_siefp siefp; union hv_synic_sint shared_sint; union hv_synic_scontrol sctrl; u64 vp_index; if (!hv_context.hypercall_page) return -EFAULT; /* Check the version */ rdmsrl(HV_X64_MSR_SVERSION, version); /* Setup the Synic's message page */ rdmsrl(HV_X64_MSR_SIMP, simp.as_uint64); simp.simp_enabled = 1; simp.base_simp_gpa = virt_to_phys(hv_context.synic_message_page[cpu]) >> PAGE_SHIFT; wrmsrl(HV_X64_MSR_SIMP, simp.as_uint64); /* Setup the Synic's event page */ rdmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64); siefp.siefp_enabled = 1; siefp.base_siefp_gpa = virt_to_phys(hv_context.synic_event_page[cpu]) >> PAGE_SHIFT; wrmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64); /* Setup the shared SINT. */ rdmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64); shared_sint.as_uint64 = 0; shared_sint.vector = HYPERVISOR_CALLBACK_VECTOR; shared_sint.masked = false; shared_sint.auto_eoi = true; wrmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64); /* Enable the global synic bit */ rdmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64); sctrl.enable = 1; wrmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64); hv_context.synic_initialized = true; /* * Setup the mapping between Hyper-V's notion * of cpuid and Linux' notion of cpuid. * This array will be indexed using Linux cpuid. */ rdmsrl(HV_X64_MSR_VP_INDEX, vp_index); hv_context.vp_index[cpu] = (u32)vp_index; /* * Register the per-cpu clockevent source. */ if (ms_hyperv.features & HV_X64_MSR_SYNTIMER_AVAILABLE) clockevents_config_and_register(hv_context.clk_evt[cpu], HV_TIMER_FREQUENCY, HV_MIN_DELTA_TICKS, HV_MAX_MAX_DELTA_TICKS); return 0; } /* * hv_synic_clockevents_cleanup - Cleanup clockevent devices */ void hv_synic_clockevents_cleanup(void) { int cpu; if (!(ms_hyperv.features & HV_X64_MSR_SYNTIMER_AVAILABLE)) return; for_each_present_cpu(cpu) clockevents_unbind_device(hv_context.clk_evt[cpu], cpu); } /* * hv_synic_cleanup - Cleanup routine for hv_synic_init(). */ int hv_synic_cleanup(unsigned int cpu) { union hv_synic_sint shared_sint; union hv_synic_simp simp; union hv_synic_siefp siefp; union hv_synic_scontrol sctrl; struct vmbus_channel *channel, *sc; bool channel_found = false; unsigned long flags; if (!hv_context.synic_initialized) return -EFAULT; /* * Search for channels which are bound to the CPU we're about to * cleanup. In case we find one and vmbus is still connected we need to * fail, this will effectively prevent CPU offlining. There is no way * we can re-bind channels to different CPUs for now. */ mutex_lock(&vmbus_connection.channel_mutex); list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { if (channel->target_cpu == cpu) { channel_found = true; break; } spin_lock_irqsave(&channel->lock, flags); list_for_each_entry(sc, &channel->sc_list, sc_list) { if (sc->target_cpu == cpu) { channel_found = true; break; } } spin_unlock_irqrestore(&channel->lock, flags); if (channel_found) break; } mutex_unlock(&vmbus_connection.channel_mutex); if (channel_found && vmbus_connection.conn_state == CONNECTED) return -EBUSY; /* Turn off clockevent device */ if (ms_hyperv.features & HV_X64_MSR_SYNTIMER_AVAILABLE) { clockevents_unbind_device(hv_context.clk_evt[cpu], cpu); hv_ce_shutdown(hv_context.clk_evt[cpu]); } rdmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64); shared_sint.masked = 1; /* Need to correctly cleanup in the case of SMP!!! */ /* Disable the interrupt */ wrmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64); rdmsrl(HV_X64_MSR_SIMP, simp.as_uint64); simp.simp_enabled = 0; simp.base_simp_gpa = 0; wrmsrl(HV_X64_MSR_SIMP, simp.as_uint64); rdmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64); siefp.siefp_enabled = 0; siefp.base_siefp_gpa = 0; wrmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64); /* Disable the global synic bit */ rdmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64); sctrl.enable = 0; wrmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64); return 0; }