// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) Fuzhou Rockchip Electronics Co.Ltd * Author:Mark Yao */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_DRM_ANALOGIX_DP #include #endif #include "rockchip_drm_drv.h" #include "rockchip_drm_gem.h" #include "rockchip_drm_fb.h" #include "rockchip_drm_vop.h" #include "rockchip_rgb.h" #define VOP_WIN_SET(vop, win, name, v) \ vop_reg_set(vop, &win->phy->name, win->base, ~0, v, #name) #define VOP_SCL_SET(vop, win, name, v) \ vop_reg_set(vop, &win->phy->scl->name, win->base, ~0, v, #name) #define VOP_SCL_SET_EXT(vop, win, name, v) \ vop_reg_set(vop, &win->phy->scl->ext->name, \ win->base, ~0, v, #name) #define VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, name, v) \ do { \ if (win_yuv2yuv && win_yuv2yuv->name.mask) \ vop_reg_set(vop, &win_yuv2yuv->name, 0, ~0, v, #name); \ } while (0) #define VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop, win_yuv2yuv, name, v) \ do { \ if (win_yuv2yuv && win_yuv2yuv->phy->name.mask) \ vop_reg_set(vop, &win_yuv2yuv->phy->name, win_yuv2yuv->base, ~0, v, #name); \ } while (0) #define VOP_INTR_SET_MASK(vop, name, mask, v) \ vop_reg_set(vop, &vop->data->intr->name, 0, mask, v, #name) #define VOP_REG_SET(vop, group, name, v) \ vop_reg_set(vop, &vop->data->group->name, 0, ~0, v, #name) #define VOP_HAS_REG(vop, group, name) \ (!!(vop->data->group->name.mask)) #define VOP_INTR_SET_TYPE(vop, name, type, v) \ do { \ int i, reg = 0, mask = 0; \ for (i = 0; i < vop->data->intr->nintrs; i++) { \ if (vop->data->intr->intrs[i] & type) { \ reg |= (v) << i; \ mask |= 1 << i; \ } \ } \ VOP_INTR_SET_MASK(vop, name, mask, reg); \ } while (0) #define VOP_INTR_GET_TYPE(vop, name, type) \ vop_get_intr_type(vop, &vop->data->intr->name, type) #define VOP_WIN_GET(vop, win, name) \ vop_read_reg(vop, win->base, &win->phy->name) #define VOP_WIN_HAS_REG(win, name) \ (!!(win->phy->name.mask)) #define VOP_WIN_GET_YRGBADDR(vop, win) \ vop_readl(vop, win->base + win->phy->yrgb_mst.offset) #define VOP_WIN_TO_INDEX(vop_win) \ ((vop_win) - (vop_win)->vop->win) #define VOP_AFBC_SET(vop, name, v) \ do { \ if ((vop)->data->afbc) \ vop_reg_set((vop), &(vop)->data->afbc->name, \ 0, ~0, v, #name); \ } while (0) #define to_vop(x) container_of(x, struct vop, crtc) #define to_vop_win(x) container_of(x, struct vop_win, base) #define AFBC_FMT_RGB565 0x0 #define AFBC_FMT_U8U8U8U8 0x5 #define AFBC_FMT_U8U8U8 0x4 #define AFBC_TILE_16x16 BIT(4) /* * The coefficients of the following matrix are all fixed points. * The format is S2.10 for the 3x3 part of the matrix, and S9.12 for the offsets. * They are all represented in two's complement. */ static const uint32_t bt601_yuv2rgb[] = { 0x4A8, 0x0, 0x662, 0x4A8, 0x1E6F, 0x1CBF, 0x4A8, 0x812, 0x0, 0x321168, 0x0877CF, 0x2EB127 }; enum vop_pending { VOP_PENDING_FB_UNREF, }; struct vop_win { struct drm_plane base; const struct vop_win_data *data; const struct vop_win_yuv2yuv_data *yuv2yuv_data; struct vop *vop; }; struct rockchip_rgb; struct vop { struct drm_crtc crtc; struct device *dev; struct drm_device *drm_dev; bool is_enabled; struct completion dsp_hold_completion; unsigned int win_enabled; /* protected by dev->event_lock */ struct drm_pending_vblank_event *event; struct drm_flip_work fb_unref_work; unsigned long pending; struct completion line_flag_completion; const struct vop_data *data; uint32_t *regsbak; void __iomem *regs; void __iomem *lut_regs; /* physical map length of vop register */ uint32_t len; /* one time only one process allowed to config the register */ spinlock_t reg_lock; /* lock vop irq reg */ spinlock_t irq_lock; /* protects crtc enable/disable */ struct mutex vop_lock; unsigned int irq; /* vop AHP clk */ struct clk *hclk; /* vop dclk */ struct clk *dclk; /* vop share memory frequency */ struct clk *aclk; /* vop dclk reset */ struct reset_control *dclk_rst; /* optional internal rgb encoder */ struct rockchip_rgb *rgb; struct vop_win win[]; }; static inline uint32_t vop_readl(struct vop *vop, uint32_t offset) { return readl(vop->regs + offset); } static inline uint32_t vop_read_reg(struct vop *vop, uint32_t base, const struct vop_reg *reg) { return (vop_readl(vop, base + reg->offset) >> reg->shift) & reg->mask; } static void vop_reg_set(struct vop *vop, const struct vop_reg *reg, uint32_t _offset, uint32_t _mask, uint32_t v, const char *reg_name) { int offset, mask, shift; if (!reg || !reg->mask) { DRM_DEV_DEBUG(vop->dev, "Warning: not support %s\n", reg_name); return; } offset = reg->offset + _offset; mask = reg->mask & _mask; shift = reg->shift; if (reg->write_mask) { v = ((v << shift) & 0xffff) | (mask << (shift + 16)); } else { uint32_t cached_val = vop->regsbak[offset >> 2]; v = (cached_val & ~(mask << shift)) | ((v & mask) << shift); vop->regsbak[offset >> 2] = v; } if (reg->relaxed) writel_relaxed(v, vop->regs + offset); else writel(v, vop->regs + offset); } static inline uint32_t vop_get_intr_type(struct vop *vop, const struct vop_reg *reg, int type) { uint32_t i, ret = 0; uint32_t regs = vop_read_reg(vop, 0, reg); for (i = 0; i < vop->data->intr->nintrs; i++) { if ((type & vop->data->intr->intrs[i]) && (regs & 1 << i)) ret |= vop->data->intr->intrs[i]; } return ret; } static inline void vop_cfg_done(struct vop *vop) { VOP_REG_SET(vop, common, cfg_done, 1); } static bool has_rb_swapped(uint32_t format) { switch (format) { case DRM_FORMAT_XBGR8888: case DRM_FORMAT_ABGR8888: case DRM_FORMAT_BGR888: case DRM_FORMAT_BGR565: return true; default: return false; } } static bool has_uv_swapped(uint32_t format) { switch (format) { case DRM_FORMAT_NV21: case DRM_FORMAT_NV61: case DRM_FORMAT_NV42: return true; default: return false; } } static enum vop_data_format vop_convert_format(uint32_t format) { switch (format) { case DRM_FORMAT_XRGB8888: case DRM_FORMAT_ARGB8888: case DRM_FORMAT_XBGR8888: case DRM_FORMAT_ABGR8888: return VOP_FMT_ARGB8888; case DRM_FORMAT_RGB888: case DRM_FORMAT_BGR888: return VOP_FMT_RGB888; case DRM_FORMAT_RGB565: case DRM_FORMAT_BGR565: return VOP_FMT_RGB565; case DRM_FORMAT_NV12: case DRM_FORMAT_NV21: return VOP_FMT_YUV420SP; case DRM_FORMAT_NV16: case DRM_FORMAT_NV61: return VOP_FMT_YUV422SP; case DRM_FORMAT_NV24: case DRM_FORMAT_NV42: return VOP_FMT_YUV444SP; default: DRM_ERROR("unsupported format[%08x]\n", format); return -EINVAL; } } static int vop_convert_afbc_format(uint32_t format) { switch (format) { case DRM_FORMAT_XRGB8888: case DRM_FORMAT_ARGB8888: case DRM_FORMAT_XBGR8888: case DRM_FORMAT_ABGR8888: return AFBC_FMT_U8U8U8U8; case DRM_FORMAT_RGB888: case DRM_FORMAT_BGR888: return AFBC_FMT_U8U8U8; case DRM_FORMAT_RGB565: case DRM_FORMAT_BGR565: return AFBC_FMT_RGB565; default: DRM_DEBUG_KMS("unsupported AFBC format[%08x]\n", format); return -EINVAL; } } static uint16_t scl_vop_cal_scale(enum scale_mode mode, uint32_t src, uint32_t dst, bool is_horizontal, int vsu_mode, int *vskiplines) { uint16_t val = 1 << SCL_FT_DEFAULT_FIXPOINT_SHIFT; if (vskiplines) *vskiplines = 0; if (is_horizontal) { if (mode == SCALE_UP) val = GET_SCL_FT_BIC(src, dst); else if (mode == SCALE_DOWN) val = GET_SCL_FT_BILI_DN(src, dst); } else { if (mode == SCALE_UP) { if (vsu_mode == SCALE_UP_BIL) val = GET_SCL_FT_BILI_UP(src, dst); else val = GET_SCL_FT_BIC(src, dst); } else if (mode == SCALE_DOWN) { if (vskiplines) { *vskiplines = scl_get_vskiplines(src, dst); val = scl_get_bili_dn_vskip(src, dst, *vskiplines); } else { val = GET_SCL_FT_BILI_DN(src, dst); } } } return val; } static void scl_vop_cal_scl_fac(struct vop *vop, const struct vop_win_data *win, uint32_t src_w, uint32_t src_h, uint32_t dst_w, uint32_t dst_h, const struct drm_format_info *info) { uint16_t yrgb_hor_scl_mode, yrgb_ver_scl_mode; uint16_t cbcr_hor_scl_mode = SCALE_NONE; uint16_t cbcr_ver_scl_mode = SCALE_NONE; bool is_yuv = false; uint16_t cbcr_src_w = src_w / info->hsub; uint16_t cbcr_src_h = src_h / info->vsub; uint16_t vsu_mode; uint16_t lb_mode; uint32_t val; int vskiplines; if (info->is_yuv) is_yuv = true; if (dst_w > 3840) { DRM_DEV_ERROR(vop->dev, "Maximum dst width (3840) exceeded\n"); return; } if (!win->phy->scl->ext) { VOP_SCL_SET(vop, win, scale_yrgb_x, scl_cal_scale2(src_w, dst_w)); VOP_SCL_SET(vop, win, scale_yrgb_y, scl_cal_scale2(src_h, dst_h)); if (is_yuv) { VOP_SCL_SET(vop, win, scale_cbcr_x, scl_cal_scale2(cbcr_src_w, dst_w)); VOP_SCL_SET(vop, win, scale_cbcr_y, scl_cal_scale2(cbcr_src_h, dst_h)); } return; } yrgb_hor_scl_mode = scl_get_scl_mode(src_w, dst_w); yrgb_ver_scl_mode = scl_get_scl_mode(src_h, dst_h); if (is_yuv) { cbcr_hor_scl_mode = scl_get_scl_mode(cbcr_src_w, dst_w); cbcr_ver_scl_mode = scl_get_scl_mode(cbcr_src_h, dst_h); if (cbcr_hor_scl_mode == SCALE_DOWN) lb_mode = scl_vop_cal_lb_mode(dst_w, true); else lb_mode = scl_vop_cal_lb_mode(cbcr_src_w, true); } else { if (yrgb_hor_scl_mode == SCALE_DOWN) lb_mode = scl_vop_cal_lb_mode(dst_w, false); else lb_mode = scl_vop_cal_lb_mode(src_w, false); } VOP_SCL_SET_EXT(vop, win, lb_mode, lb_mode); if (lb_mode == LB_RGB_3840X2) { if (yrgb_ver_scl_mode != SCALE_NONE) { DRM_DEV_ERROR(vop->dev, "not allow yrgb ver scale\n"); return; } if (cbcr_ver_scl_mode != SCALE_NONE) { DRM_DEV_ERROR(vop->dev, "not allow cbcr ver scale\n"); return; } vsu_mode = SCALE_UP_BIL; } else if (lb_mode == LB_RGB_2560X4) { vsu_mode = SCALE_UP_BIL; } else { vsu_mode = SCALE_UP_BIC; } val = scl_vop_cal_scale(yrgb_hor_scl_mode, src_w, dst_w, true, 0, NULL); VOP_SCL_SET(vop, win, scale_yrgb_x, val); val = scl_vop_cal_scale(yrgb_ver_scl_mode, src_h, dst_h, false, vsu_mode, &vskiplines); VOP_SCL_SET(vop, win, scale_yrgb_y, val); VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt4, vskiplines == 4); VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt2, vskiplines == 2); VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, yrgb_hor_scl_mode); VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, yrgb_ver_scl_mode); VOP_SCL_SET_EXT(vop, win, yrgb_hsd_mode, SCALE_DOWN_BIL); VOP_SCL_SET_EXT(vop, win, yrgb_vsd_mode, SCALE_DOWN_BIL); VOP_SCL_SET_EXT(vop, win, yrgb_vsu_mode, vsu_mode); if (is_yuv) { val = scl_vop_cal_scale(cbcr_hor_scl_mode, cbcr_src_w, dst_w, true, 0, NULL); VOP_SCL_SET(vop, win, scale_cbcr_x, val); val = scl_vop_cal_scale(cbcr_ver_scl_mode, cbcr_src_h, dst_h, false, vsu_mode, &vskiplines); VOP_SCL_SET(vop, win, scale_cbcr_y, val); VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt4, vskiplines == 4); VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt2, vskiplines == 2); VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, cbcr_hor_scl_mode); VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, cbcr_ver_scl_mode); VOP_SCL_SET_EXT(vop, win, cbcr_hsd_mode, SCALE_DOWN_BIL); VOP_SCL_SET_EXT(vop, win, cbcr_vsd_mode, SCALE_DOWN_BIL); VOP_SCL_SET_EXT(vop, win, cbcr_vsu_mode, vsu_mode); } } static void vop_dsp_hold_valid_irq_enable(struct vop *vop) { unsigned long flags; if (WARN_ON(!vop->is_enabled)) return; spin_lock_irqsave(&vop->irq_lock, flags); VOP_INTR_SET_TYPE(vop, clear, DSP_HOLD_VALID_INTR, 1); VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 1); spin_unlock_irqrestore(&vop->irq_lock, flags); } static void vop_dsp_hold_valid_irq_disable(struct vop *vop) { unsigned long flags; if (WARN_ON(!vop->is_enabled)) return; spin_lock_irqsave(&vop->irq_lock, flags); VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 0); spin_unlock_irqrestore(&vop->irq_lock, flags); } /* * (1) each frame starts at the start of the Vsync pulse which is signaled by * the "FRAME_SYNC" interrupt. * (2) the active data region of each frame ends at dsp_vact_end * (3) we should program this same number (dsp_vact_end) into dsp_line_frag_num, * to get "LINE_FLAG" interrupt at the end of the active on screen data. * * VOP_INTR_CTRL0.dsp_line_frag_num = VOP_DSP_VACT_ST_END.dsp_vact_end * Interrupts * LINE_FLAG -------------------------------+ * FRAME_SYNC ----+ | * | | * v v * | Vsync | Vbp | Vactive | Vfp | * ^ ^ ^ ^ * | | | | * | | | | * dsp_vs_end ------------+ | | | VOP_DSP_VTOTAL_VS_END * dsp_vact_start --------------+ | | VOP_DSP_VACT_ST_END * dsp_vact_end ----------------------------+ | VOP_DSP_VACT_ST_END * dsp_total -------------------------------------+ VOP_DSP_VTOTAL_VS_END */ static bool vop_line_flag_irq_is_enabled(struct vop *vop) { uint32_t line_flag_irq; unsigned long flags; spin_lock_irqsave(&vop->irq_lock, flags); line_flag_irq = VOP_INTR_GET_TYPE(vop, enable, LINE_FLAG_INTR); spin_unlock_irqrestore(&vop->irq_lock, flags); return !!line_flag_irq; } static void vop_line_flag_irq_enable(struct vop *vop) { unsigned long flags; if (WARN_ON(!vop->is_enabled)) return; spin_lock_irqsave(&vop->irq_lock, flags); VOP_INTR_SET_TYPE(vop, clear, LINE_FLAG_INTR, 1); VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 1); spin_unlock_irqrestore(&vop->irq_lock, flags); } static void vop_line_flag_irq_disable(struct vop *vop) { unsigned long flags; if (WARN_ON(!vop->is_enabled)) return; spin_lock_irqsave(&vop->irq_lock, flags); VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 0); spin_unlock_irqrestore(&vop->irq_lock, flags); } static int vop_core_clks_enable(struct vop *vop) { int ret; ret = clk_enable(vop->hclk); if (ret < 0) return ret; ret = clk_enable(vop->aclk); if (ret < 0) goto err_disable_hclk; return 0; err_disable_hclk: clk_disable(vop->hclk); return ret; } static void vop_core_clks_disable(struct vop *vop) { clk_disable(vop->aclk); clk_disable(vop->hclk); } static void vop_win_disable(struct vop *vop, const struct vop_win *vop_win) { const struct vop_win_data *win = vop_win->data; if (win->phy->scl && win->phy->scl->ext) { VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, SCALE_NONE); VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, SCALE_NONE); VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, SCALE_NONE); VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, SCALE_NONE); } VOP_WIN_SET(vop, win, enable, 0); vop->win_enabled &= ~BIT(VOP_WIN_TO_INDEX(vop_win)); } static int vop_enable(struct drm_crtc *crtc, struct drm_crtc_state *old_state) { struct vop *vop = to_vop(crtc); int ret, i; ret = pm_runtime_resume_and_get(vop->dev); if (ret < 0) { DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret); return ret; } ret = vop_core_clks_enable(vop); if (WARN_ON(ret < 0)) goto err_put_pm_runtime; ret = clk_enable(vop->dclk); if (WARN_ON(ret < 0)) goto err_disable_core; /* * Slave iommu shares power, irq and clock with vop. It was associated * automatically with this master device via common driver code. * Now that we have enabled the clock we attach it to the shared drm * mapping. */ ret = rockchip_drm_dma_attach_device(vop->drm_dev, vop->dev); if (ret) { DRM_DEV_ERROR(vop->dev, "failed to attach dma mapping, %d\n", ret); goto err_disable_dclk; } spin_lock(&vop->reg_lock); for (i = 0; i < vop->len; i += 4) writel_relaxed(vop->regsbak[i / 4], vop->regs + i); /* * We need to make sure that all windows are disabled before we * enable the crtc. Otherwise we might try to scan from a destroyed * buffer later. * * In the case of enable-after-PSR, we don't need to worry about this * case since the buffer is guaranteed to be valid and disabling the * window will result in screen glitches on PSR exit. */ if (!old_state || !old_state->self_refresh_active) { for (i = 0; i < vop->data->win_size; i++) { struct vop_win *vop_win = &vop->win[i]; vop_win_disable(vop, vop_win); } } if (vop->data->afbc) { struct rockchip_crtc_state *s; /* * Disable AFBC and forget there was a vop window with AFBC */ VOP_AFBC_SET(vop, enable, 0); s = to_rockchip_crtc_state(crtc->state); s->enable_afbc = false; } vop_cfg_done(vop); spin_unlock(&vop->reg_lock); /* * At here, vop clock & iommu is enable, R/W vop regs would be safe. */ vop->is_enabled = true; spin_lock(&vop->reg_lock); VOP_REG_SET(vop, common, standby, 1); spin_unlock(&vop->reg_lock); drm_crtc_vblank_on(crtc); return 0; err_disable_dclk: clk_disable(vop->dclk); err_disable_core: vop_core_clks_disable(vop); err_put_pm_runtime: pm_runtime_put_sync(vop->dev); return ret; } static void rockchip_drm_set_win_enabled(struct drm_crtc *crtc, bool enabled) { struct vop *vop = to_vop(crtc); int i; spin_lock(&vop->reg_lock); for (i = 0; i < vop->data->win_size; i++) { struct vop_win *vop_win = &vop->win[i]; const struct vop_win_data *win = vop_win->data; VOP_WIN_SET(vop, win, enable, enabled && (vop->win_enabled & BIT(i))); } vop_cfg_done(vop); spin_unlock(&vop->reg_lock); } static void vop_crtc_atomic_disable(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct vop *vop = to_vop(crtc); WARN_ON(vop->event); if (crtc->state->self_refresh_active) rockchip_drm_set_win_enabled(crtc, false); if (crtc->state->self_refresh_active) goto out; mutex_lock(&vop->vop_lock); drm_crtc_vblank_off(crtc); /* * Vop standby will take effect at end of current frame, * if dsp hold valid irq happen, it means standby complete. * * we must wait standby complete when we want to disable aclk, * if not, memory bus maybe dead. */ reinit_completion(&vop->dsp_hold_completion); vop_dsp_hold_valid_irq_enable(vop); spin_lock(&vop->reg_lock); VOP_REG_SET(vop, common, standby, 1); spin_unlock(&vop->reg_lock); if (!wait_for_completion_timeout(&vop->dsp_hold_completion, msecs_to_jiffies(200))) WARN(1, "%s: timed out waiting for DSP hold", crtc->name); vop_dsp_hold_valid_irq_disable(vop); vop->is_enabled = false; /* * vop standby complete, so iommu detach is safe. */ rockchip_drm_dma_detach_device(vop->drm_dev, vop->dev); clk_disable(vop->dclk); vop_core_clks_disable(vop); pm_runtime_put(vop->dev); mutex_unlock(&vop->vop_lock); out: if (crtc->state->event && !crtc->state->active) { spin_lock_irq(&crtc->dev->event_lock); drm_crtc_send_vblank_event(crtc, crtc->state->event); spin_unlock_irq(&crtc->dev->event_lock); crtc->state->event = NULL; } } static void vop_plane_destroy(struct drm_plane *plane) { drm_plane_cleanup(plane); } static inline bool rockchip_afbc(u64 modifier) { return modifier == ROCKCHIP_AFBC_MOD; } static bool rockchip_mod_supported(struct drm_plane *plane, u32 format, u64 modifier) { if (modifier == DRM_FORMAT_MOD_LINEAR) return true; if (!rockchip_afbc(modifier)) { DRM_DEBUG_KMS("Unsupported format modifier 0x%llx\n", modifier); return false; } return vop_convert_afbc_format(format) >= 0; } static int vop_plane_atomic_check(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state, plane); struct drm_crtc *crtc = new_plane_state->crtc; struct drm_crtc_state *crtc_state; struct drm_framebuffer *fb = new_plane_state->fb; struct vop_win *vop_win = to_vop_win(plane); const struct vop_win_data *win = vop_win->data; int ret; int min_scale = win->phy->scl ? FRAC_16_16(1, 8) : DRM_PLANE_NO_SCALING; int max_scale = win->phy->scl ? FRAC_16_16(8, 1) : DRM_PLANE_NO_SCALING; if (!crtc || WARN_ON(!fb)) return 0; crtc_state = drm_atomic_get_existing_crtc_state(state, crtc); if (WARN_ON(!crtc_state)) return -EINVAL; ret = drm_atomic_helper_check_plane_state(new_plane_state, crtc_state, min_scale, max_scale, true, true); if (ret) return ret; if (!new_plane_state->visible) return 0; ret = vop_convert_format(fb->format->format); if (ret < 0) return ret; /* * Src.x1 can be odd when do clip, but yuv plane start point * need align with 2 pixel. */ if (fb->format->is_yuv && ((new_plane_state->src.x1 >> 16) % 2)) { DRM_DEBUG_KMS("Invalid Source: Yuv format not support odd xpos\n"); return -EINVAL; } if (fb->format->is_yuv && new_plane_state->rotation & DRM_MODE_REFLECT_Y) { DRM_DEBUG_KMS("Invalid Source: Yuv format does not support this rotation\n"); return -EINVAL; } if (rockchip_afbc(fb->modifier)) { struct vop *vop = to_vop(crtc); if (!vop->data->afbc) { DRM_DEBUG_KMS("vop does not support AFBC\n"); return -EINVAL; } ret = vop_convert_afbc_format(fb->format->format); if (ret < 0) return ret; if (new_plane_state->src.x1 || new_plane_state->src.y1) { DRM_DEBUG_KMS("AFBC does not support offset display, " \ "xpos=%d, ypos=%d, offset=%d\n", new_plane_state->src.x1, new_plane_state->src.y1, fb->offsets[0]); return -EINVAL; } if (new_plane_state->rotation && new_plane_state->rotation != DRM_MODE_ROTATE_0) { DRM_DEBUG_KMS("No rotation support in AFBC, rotation=%d\n", new_plane_state->rotation); return -EINVAL; } } return 0; } static void vop_plane_atomic_disable(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state, plane); struct vop_win *vop_win = to_vop_win(plane); struct vop *vop = to_vop(old_state->crtc); if (!old_state->crtc) return; spin_lock(&vop->reg_lock); vop_win_disable(vop, vop_win); spin_unlock(&vop->reg_lock); } static void vop_plane_atomic_update(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane); struct drm_crtc *crtc = new_state->crtc; struct vop_win *vop_win = to_vop_win(plane); const struct vop_win_data *win = vop_win->data; const struct vop_win_yuv2yuv_data *win_yuv2yuv = vop_win->yuv2yuv_data; struct vop *vop = to_vop(new_state->crtc); struct drm_framebuffer *fb = new_state->fb; unsigned int actual_w, actual_h; unsigned int dsp_stx, dsp_sty; uint32_t act_info, dsp_info, dsp_st; struct drm_rect *src = &new_state->src; struct drm_rect *dest = &new_state->dst; struct drm_gem_object *obj, *uv_obj; struct rockchip_gem_object *rk_obj, *rk_uv_obj; unsigned long offset; dma_addr_t dma_addr; uint32_t val; bool rb_swap, uv_swap; int win_index = VOP_WIN_TO_INDEX(vop_win); int format; int is_yuv = fb->format->is_yuv; int i; /* * can't update plane when vop is disabled. */ if (WARN_ON(!crtc)) return; if (WARN_ON(!vop->is_enabled)) return; if (!new_state->visible) { vop_plane_atomic_disable(plane, state); return; } obj = fb->obj[0]; rk_obj = to_rockchip_obj(obj); actual_w = drm_rect_width(src) >> 16; actual_h = drm_rect_height(src) >> 16; act_info = (actual_h - 1) << 16 | ((actual_w - 1) & 0xffff); dsp_info = (drm_rect_height(dest) - 1) << 16; dsp_info |= (drm_rect_width(dest) - 1) & 0xffff; dsp_stx = dest->x1 + crtc->mode.htotal - crtc->mode.hsync_start; dsp_sty = dest->y1 + crtc->mode.vtotal - crtc->mode.vsync_start; dsp_st = dsp_sty << 16 | (dsp_stx & 0xffff); offset = (src->x1 >> 16) * fb->format->cpp[0]; offset += (src->y1 >> 16) * fb->pitches[0]; dma_addr = rk_obj->dma_addr + offset + fb->offsets[0]; /* * For y-mirroring we need to move address * to the beginning of the last line. */ if (new_state->rotation & DRM_MODE_REFLECT_Y) dma_addr += (actual_h - 1) * fb->pitches[0]; format = vop_convert_format(fb->format->format); spin_lock(&vop->reg_lock); if (rockchip_afbc(fb->modifier)) { int afbc_format = vop_convert_afbc_format(fb->format->format); VOP_AFBC_SET(vop, format, afbc_format | AFBC_TILE_16x16); VOP_AFBC_SET(vop, hreg_block_split, 0); VOP_AFBC_SET(vop, win_sel, VOP_WIN_TO_INDEX(vop_win)); VOP_AFBC_SET(vop, hdr_ptr, dma_addr); VOP_AFBC_SET(vop, pic_size, act_info); } VOP_WIN_SET(vop, win, format, format); VOP_WIN_SET(vop, win, yrgb_vir, DIV_ROUND_UP(fb->pitches[0], 4)); VOP_WIN_SET(vop, win, yrgb_mst, dma_addr); VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, y2r_en, is_yuv); VOP_WIN_SET(vop, win, y_mir_en, (new_state->rotation & DRM_MODE_REFLECT_Y) ? 1 : 0); VOP_WIN_SET(vop, win, x_mir_en, (new_state->rotation & DRM_MODE_REFLECT_X) ? 1 : 0); if (is_yuv) { int hsub = fb->format->hsub; int vsub = fb->format->vsub; int bpp = fb->format->cpp[1]; uv_obj = fb->obj[1]; rk_uv_obj = to_rockchip_obj(uv_obj); offset = (src->x1 >> 16) * bpp / hsub; offset += (src->y1 >> 16) * fb->pitches[1] / vsub; dma_addr = rk_uv_obj->dma_addr + offset + fb->offsets[1]; VOP_WIN_SET(vop, win, uv_vir, DIV_ROUND_UP(fb->pitches[1], 4)); VOP_WIN_SET(vop, win, uv_mst, dma_addr); for (i = 0; i < NUM_YUV2YUV_COEFFICIENTS; i++) { VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop, win_yuv2yuv, y2r_coefficients[i], bt601_yuv2rgb[i]); } uv_swap = has_uv_swapped(fb->format->format); VOP_WIN_SET(vop, win, uv_swap, uv_swap); } if (win->phy->scl) scl_vop_cal_scl_fac(vop, win, actual_w, actual_h, drm_rect_width(dest), drm_rect_height(dest), fb->format); VOP_WIN_SET(vop, win, act_info, act_info); VOP_WIN_SET(vop, win, dsp_info, dsp_info); VOP_WIN_SET(vop, win, dsp_st, dsp_st); rb_swap = has_rb_swapped(fb->format->format); VOP_WIN_SET(vop, win, rb_swap, rb_swap); /* * Blending win0 with the background color doesn't seem to work * correctly. We only get the background color, no matter the contents * of the win0 framebuffer. However, blending pre-multiplied color * with the default opaque black default background color is a no-op, * so we can just disable blending to get the correct result. */ if (fb->format->has_alpha && win_index > 0) { VOP_WIN_SET(vop, win, dst_alpha_ctl, DST_FACTOR_M0(ALPHA_SRC_INVERSE)); val = SRC_ALPHA_EN(1) | SRC_COLOR_M0(ALPHA_SRC_PRE_MUL) | SRC_ALPHA_M0(ALPHA_STRAIGHT) | SRC_BLEND_M0(ALPHA_PER_PIX) | SRC_ALPHA_CAL_M0(ALPHA_NO_SATURATION) | SRC_FACTOR_M0(ALPHA_ONE); VOP_WIN_SET(vop, win, src_alpha_ctl, val); VOP_WIN_SET(vop, win, alpha_pre_mul, ALPHA_SRC_PRE_MUL); VOP_WIN_SET(vop, win, alpha_mode, ALPHA_PER_PIX); VOP_WIN_SET(vop, win, alpha_en, 1); } else { VOP_WIN_SET(vop, win, src_alpha_ctl, SRC_ALPHA_EN(0)); VOP_WIN_SET(vop, win, alpha_en, 0); } VOP_WIN_SET(vop, win, enable, 1); vop->win_enabled |= BIT(win_index); spin_unlock(&vop->reg_lock); } static int vop_plane_atomic_async_check(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state, plane); struct vop_win *vop_win = to_vop_win(plane); const struct vop_win_data *win = vop_win->data; int min_scale = win->phy->scl ? FRAC_16_16(1, 8) : DRM_PLANE_NO_SCALING; int max_scale = win->phy->scl ? FRAC_16_16(8, 1) : DRM_PLANE_NO_SCALING; struct drm_crtc_state *crtc_state; if (plane != new_plane_state->crtc->cursor) return -EINVAL; if (!plane->state) return -EINVAL; if (!plane->state->fb) return -EINVAL; if (state) crtc_state = drm_atomic_get_existing_crtc_state(state, new_plane_state->crtc); else /* Special case for asynchronous cursor updates. */ crtc_state = plane->crtc->state; return drm_atomic_helper_check_plane_state(plane->state, crtc_state, min_scale, max_scale, true, true); } static void vop_plane_atomic_async_update(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane); struct vop *vop = to_vop(plane->state->crtc); struct drm_framebuffer *old_fb = plane->state->fb; plane->state->crtc_x = new_state->crtc_x; plane->state->crtc_y = new_state->crtc_y; plane->state->crtc_h = new_state->crtc_h; plane->state->crtc_w = new_state->crtc_w; plane->state->src_x = new_state->src_x; plane->state->src_y = new_state->src_y; plane->state->src_h = new_state->src_h; plane->state->src_w = new_state->src_w; swap(plane->state->fb, new_state->fb); if (vop->is_enabled) { vop_plane_atomic_update(plane, state); spin_lock(&vop->reg_lock); vop_cfg_done(vop); spin_unlock(&vop->reg_lock); /* * A scanout can still be occurring, so we can't drop the * reference to the old framebuffer. To solve this we get a * reference to old_fb and set a worker to release it later. * FIXME: if we perform 500 async_update calls before the * vblank, then we can have 500 different framebuffers waiting * to be released. */ if (old_fb && plane->state->fb != old_fb) { drm_framebuffer_get(old_fb); WARN_ON(drm_crtc_vblank_get(plane->state->crtc) != 0); drm_flip_work_queue(&vop->fb_unref_work, old_fb); set_bit(VOP_PENDING_FB_UNREF, &vop->pending); } } } static const struct drm_plane_helper_funcs plane_helper_funcs = { .atomic_check = vop_plane_atomic_check, .atomic_update = vop_plane_atomic_update, .atomic_disable = vop_plane_atomic_disable, .atomic_async_check = vop_plane_atomic_async_check, .atomic_async_update = vop_plane_atomic_async_update, }; static const struct drm_plane_funcs vop_plane_funcs = { .update_plane = drm_atomic_helper_update_plane, .disable_plane = drm_atomic_helper_disable_plane, .destroy = vop_plane_destroy, .reset = drm_atomic_helper_plane_reset, .atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state, .atomic_destroy_state = drm_atomic_helper_plane_destroy_state, .format_mod_supported = rockchip_mod_supported, }; static int vop_crtc_enable_vblank(struct drm_crtc *crtc) { struct vop *vop = to_vop(crtc); unsigned long flags; if (WARN_ON(!vop->is_enabled)) return -EPERM; spin_lock_irqsave(&vop->irq_lock, flags); VOP_INTR_SET_TYPE(vop, clear, FS_INTR, 1); VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 1); spin_unlock_irqrestore(&vop->irq_lock, flags); return 0; } static void vop_crtc_disable_vblank(struct drm_crtc *crtc) { struct vop *vop = to_vop(crtc); unsigned long flags; if (WARN_ON(!vop->is_enabled)) return; spin_lock_irqsave(&vop->irq_lock, flags); VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 0); spin_unlock_irqrestore(&vop->irq_lock, flags); } static enum drm_mode_status vop_crtc_mode_valid(struct drm_crtc *crtc, const struct drm_display_mode *mode) { struct vop *vop = to_vop(crtc); if (vop->data->max_output.width && mode->hdisplay > vop->data->max_output.width) return MODE_BAD_HVALUE; return MODE_OK; } static bool vop_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct vop *vop = to_vop(crtc); unsigned long rate; /* * Clock craziness. * * Key points: * * - DRM works in kHz. * - Clock framework works in Hz. * - Rockchip's clock driver picks the clock rate that is the * same _OR LOWER_ than the one requested. * * Action plan: * * 1. Try to set the exact rate first, and confirm the clock framework * can provide it. * * 2. If the clock framework cannot provide the exact rate, we should * add 999 Hz to the requested rate. That way if the clock we need * is 60000001 Hz (~60 MHz) and DRM tells us to make 60000 kHz then * the clock framework will actually give us the right clock. * * 3. Get the clock framework to round the rate for us to tell us * what it will actually make. * * 4. Store the rounded up rate so that we don't need to worry about * this in the actual clk_set_rate(). */ rate = clk_round_rate(vop->dclk, adjusted_mode->clock * 1000); if (rate / 1000 != adjusted_mode->clock) rate = clk_round_rate(vop->dclk, adjusted_mode->clock * 1000 + 999); adjusted_mode->clock = DIV_ROUND_UP(rate, 1000); return true; } static bool vop_dsp_lut_is_enabled(struct vop *vop) { return vop_read_reg(vop, 0, &vop->data->common->dsp_lut_en); } static u32 vop_lut_buffer_index(struct vop *vop) { return vop_read_reg(vop, 0, &vop->data->common->lut_buffer_index); } static void vop_crtc_write_gamma_lut(struct vop *vop, struct drm_crtc *crtc) { struct drm_color_lut *lut = crtc->state->gamma_lut->data; unsigned int i, bpc = ilog2(vop->data->lut_size); for (i = 0; i < crtc->gamma_size; i++) { u32 word; word = (drm_color_lut_extract(lut[i].red, bpc) << (2 * bpc)) | (drm_color_lut_extract(lut[i].green, bpc) << bpc) | drm_color_lut_extract(lut[i].blue, bpc); writel(word, vop->lut_regs + i * 4); } } static void vop_crtc_gamma_set(struct vop *vop, struct drm_crtc *crtc, struct drm_crtc_state *old_state) { struct drm_crtc_state *state = crtc->state; unsigned int idle; u32 lut_idx, old_idx; int ret; if (!vop->lut_regs) return; if (!state->gamma_lut || !VOP_HAS_REG(vop, common, update_gamma_lut)) { /* * To disable gamma (gamma_lut is null) or to write * an update to the LUT, clear dsp_lut_en. */ spin_lock(&vop->reg_lock); VOP_REG_SET(vop, common, dsp_lut_en, 0); vop_cfg_done(vop); spin_unlock(&vop->reg_lock); /* * In order to write the LUT to the internal memory, * we need to first make sure the dsp_lut_en bit is cleared. */ ret = readx_poll_timeout(vop_dsp_lut_is_enabled, vop, idle, !idle, 5, 30 * 1000); if (ret) { DRM_DEV_ERROR(vop->dev, "display LUT RAM enable timeout!\n"); return; } if (!state->gamma_lut) return; } else { /* * On RK3399 the gamma LUT can updated without clearing dsp_lut_en, * by setting update_gamma_lut then waiting for lut_buffer_index change */ old_idx = vop_lut_buffer_index(vop); } spin_lock(&vop->reg_lock); vop_crtc_write_gamma_lut(vop, crtc); VOP_REG_SET(vop, common, dsp_lut_en, 1); VOP_REG_SET(vop, common, update_gamma_lut, 1); vop_cfg_done(vop); spin_unlock(&vop->reg_lock); if (VOP_HAS_REG(vop, common, update_gamma_lut)) { ret = readx_poll_timeout(vop_lut_buffer_index, vop, lut_idx, lut_idx != old_idx, 5, 30 * 1000); if (ret) { DRM_DEV_ERROR(vop->dev, "gamma LUT update timeout!\n"); return; } /* * update_gamma_lut is auto cleared by HW, but write 0 to clear the bit * in our backup of the regs. */ spin_lock(&vop->reg_lock); VOP_REG_SET(vop, common, update_gamma_lut, 0); spin_unlock(&vop->reg_lock); } } static void vop_crtc_atomic_begin(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc); struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc); struct vop *vop = to_vop(crtc); /* * Only update GAMMA if the 'active' flag is not changed, * otherwise it's updated by .atomic_enable. */ if (crtc_state->color_mgmt_changed && !crtc_state->active_changed) vop_crtc_gamma_set(vop, crtc, old_crtc_state); } static void vop_crtc_atomic_enable(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, crtc); struct vop *vop = to_vop(crtc); const struct vop_data *vop_data = vop->data; struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc->state); struct drm_display_mode *adjusted_mode = &crtc->state->adjusted_mode; u16 hsync_len = adjusted_mode->hsync_end - adjusted_mode->hsync_start; u16 hdisplay = adjusted_mode->hdisplay; u16 htotal = adjusted_mode->htotal; u16 hact_st = adjusted_mode->htotal - adjusted_mode->hsync_start; u16 hact_end = hact_st + hdisplay; u16 vdisplay = adjusted_mode->vdisplay; u16 vtotal = adjusted_mode->vtotal; u16 vsync_len = adjusted_mode->vsync_end - adjusted_mode->vsync_start; u16 vact_st = adjusted_mode->vtotal - adjusted_mode->vsync_start; u16 vact_end = vact_st + vdisplay; uint32_t pin_pol, val; int dither_bpc = s->output_bpc ? s->output_bpc : 10; int ret; if (old_state && old_state->self_refresh_active) { drm_crtc_vblank_on(crtc); rockchip_drm_set_win_enabled(crtc, true); return; } mutex_lock(&vop->vop_lock); WARN_ON(vop->event); ret = vop_enable(crtc, old_state); if (ret) { mutex_unlock(&vop->vop_lock); DRM_DEV_ERROR(vop->dev, "Failed to enable vop (%d)\n", ret); return; } pin_pol = (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) ? BIT(HSYNC_POSITIVE) : 0; pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) ? BIT(VSYNC_POSITIVE) : 0; VOP_REG_SET(vop, output, pin_pol, pin_pol); VOP_REG_SET(vop, output, mipi_dual_channel_en, 0); switch (s->output_type) { case DRM_MODE_CONNECTOR_LVDS: VOP_REG_SET(vop, output, rgb_dclk_pol, 1); VOP_REG_SET(vop, output, rgb_pin_pol, pin_pol); VOP_REG_SET(vop, output, rgb_en, 1); break; case DRM_MODE_CONNECTOR_eDP: VOP_REG_SET(vop, output, edp_dclk_pol, 1); VOP_REG_SET(vop, output, edp_pin_pol, pin_pol); VOP_REG_SET(vop, output, edp_en, 1); break; case DRM_MODE_CONNECTOR_HDMIA: VOP_REG_SET(vop, output, hdmi_dclk_pol, 1); VOP_REG_SET(vop, output, hdmi_pin_pol, pin_pol); VOP_REG_SET(vop, output, hdmi_en, 1); break; case DRM_MODE_CONNECTOR_DSI: VOP_REG_SET(vop, output, mipi_dclk_pol, 1); VOP_REG_SET(vop, output, mipi_pin_pol, pin_pol); VOP_REG_SET(vop, output, mipi_en, 1); VOP_REG_SET(vop, output, mipi_dual_channel_en, !!(s->output_flags & ROCKCHIP_OUTPUT_DSI_DUAL)); break; case DRM_MODE_CONNECTOR_DisplayPort: VOP_REG_SET(vop, output, dp_dclk_pol, 0); VOP_REG_SET(vop, output, dp_pin_pol, pin_pol); VOP_REG_SET(vop, output, dp_en, 1); break; default: DRM_DEV_ERROR(vop->dev, "unsupported connector_type [%d]\n", s->output_type); } /* * if vop is not support RGB10 output, need force RGB10 to RGB888. */ if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA && !(vop_data->feature & VOP_FEATURE_OUTPUT_RGB10)) s->output_mode = ROCKCHIP_OUT_MODE_P888; if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA && dither_bpc <= 8) VOP_REG_SET(vop, common, pre_dither_down, 1); else VOP_REG_SET(vop, common, pre_dither_down, 0); if (dither_bpc == 6) { VOP_REG_SET(vop, common, dither_down_sel, DITHER_DOWN_ALLEGRO); VOP_REG_SET(vop, common, dither_down_mode, RGB888_TO_RGB666); VOP_REG_SET(vop, common, dither_down_en, 1); } else { VOP_REG_SET(vop, common, dither_down_en, 0); } VOP_REG_SET(vop, common, out_mode, s->output_mode); VOP_REG_SET(vop, modeset, htotal_pw, (htotal << 16) | hsync_len); val = hact_st << 16; val |= hact_end; VOP_REG_SET(vop, modeset, hact_st_end, val); VOP_REG_SET(vop, modeset, hpost_st_end, val); VOP_REG_SET(vop, modeset, vtotal_pw, (vtotal << 16) | vsync_len); val = vact_st << 16; val |= vact_end; VOP_REG_SET(vop, modeset, vact_st_end, val); VOP_REG_SET(vop, modeset, vpost_st_end, val); VOP_REG_SET(vop, intr, line_flag_num[0], vact_end); clk_set_rate(vop->dclk, adjusted_mode->clock * 1000); VOP_REG_SET(vop, common, standby, 0); mutex_unlock(&vop->vop_lock); /* * If we have a GAMMA LUT in the state, then let's make sure * it's updated. We might be coming out of suspend, * which means the LUT internal memory needs to be re-written. */ if (crtc->state->gamma_lut) vop_crtc_gamma_set(vop, crtc, old_state); } static bool vop_fs_irq_is_pending(struct vop *vop) { return VOP_INTR_GET_TYPE(vop, status, FS_INTR); } static void vop_wait_for_irq_handler(struct vop *vop) { bool pending; int ret; /* * Spin until frame start interrupt status bit goes low, which means * that interrupt handler was invoked and cleared it. The timeout of * 10 msecs is really too long, but it is just a safety measure if * something goes really wrong. The wait will only happen in the very * unlikely case of a vblank happening exactly at the same time and * shouldn't exceed microseconds range. */ ret = readx_poll_timeout_atomic(vop_fs_irq_is_pending, vop, pending, !pending, 0, 10 * 1000); if (ret) DRM_DEV_ERROR(vop->dev, "VOP vblank IRQ stuck for 10 ms\n"); synchronize_irq(vop->irq); } static int vop_crtc_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc); struct vop *vop = to_vop(crtc); struct drm_plane *plane; struct drm_plane_state *plane_state; struct rockchip_crtc_state *s; int afbc_planes = 0; if (vop->lut_regs && crtc_state->color_mgmt_changed && crtc_state->gamma_lut) { unsigned int len; len = drm_color_lut_size(crtc_state->gamma_lut); if (len != crtc->gamma_size) { DRM_DEBUG_KMS("Invalid LUT size; got %d, expected %d\n", len, crtc->gamma_size); return -EINVAL; } } drm_atomic_crtc_state_for_each_plane(plane, crtc_state) { plane_state = drm_atomic_get_plane_state(crtc_state->state, plane); if (IS_ERR(plane_state)) { DRM_DEBUG_KMS("Cannot get plane state for plane %s\n", plane->name); return PTR_ERR(plane_state); } if (drm_is_afbc(plane_state->fb->modifier)) ++afbc_planes; } if (afbc_planes > 1) { DRM_DEBUG_KMS("Invalid number of AFBC planes; got %d, expected at most 1\n", afbc_planes); return -EINVAL; } s = to_rockchip_crtc_state(crtc_state); s->enable_afbc = afbc_planes > 0; return 0; } static void vop_crtc_atomic_flush(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc); struct drm_atomic_state *old_state = old_crtc_state->state; struct drm_plane_state *old_plane_state, *new_plane_state; struct vop *vop = to_vop(crtc); struct drm_plane *plane; struct rockchip_crtc_state *s; int i; if (WARN_ON(!vop->is_enabled)) return; spin_lock(&vop->reg_lock); /* Enable AFBC if there is some AFBC window, disable otherwise. */ s = to_rockchip_crtc_state(crtc->state); VOP_AFBC_SET(vop, enable, s->enable_afbc); vop_cfg_done(vop); spin_unlock(&vop->reg_lock); /* * There is a (rather unlikely) possiblity that a vblank interrupt * fired before we set the cfg_done bit. To avoid spuriously * signalling flip completion we need to wait for it to finish. */ vop_wait_for_irq_handler(vop); spin_lock_irq(&crtc->dev->event_lock); if (crtc->state->event) { WARN_ON(drm_crtc_vblank_get(crtc) != 0); WARN_ON(vop->event); vop->event = crtc->state->event; crtc->state->event = NULL; } spin_unlock_irq(&crtc->dev->event_lock); for_each_oldnew_plane_in_state(old_state, plane, old_plane_state, new_plane_state, i) { if (!old_plane_state->fb) continue; if (old_plane_state->fb == new_plane_state->fb) continue; drm_framebuffer_get(old_plane_state->fb); WARN_ON(drm_crtc_vblank_get(crtc) != 0); drm_flip_work_queue(&vop->fb_unref_work, old_plane_state->fb); set_bit(VOP_PENDING_FB_UNREF, &vop->pending); } } static const struct drm_crtc_helper_funcs vop_crtc_helper_funcs = { .mode_valid = vop_crtc_mode_valid, .mode_fixup = vop_crtc_mode_fixup, .atomic_check = vop_crtc_atomic_check, .atomic_begin = vop_crtc_atomic_begin, .atomic_flush = vop_crtc_atomic_flush, .atomic_enable = vop_crtc_atomic_enable, .atomic_disable = vop_crtc_atomic_disable, }; static void vop_crtc_destroy(struct drm_crtc *crtc) { drm_crtc_cleanup(crtc); } static struct drm_crtc_state *vop_crtc_duplicate_state(struct drm_crtc *crtc) { struct rockchip_crtc_state *rockchip_state; if (WARN_ON(!crtc->state)) return NULL; rockchip_state = kmemdup(to_rockchip_crtc_state(crtc->state), sizeof(*rockchip_state), GFP_KERNEL); if (!rockchip_state) return NULL; __drm_atomic_helper_crtc_duplicate_state(crtc, &rockchip_state->base); return &rockchip_state->base; } static void vop_crtc_destroy_state(struct drm_crtc *crtc, struct drm_crtc_state *state) { struct rockchip_crtc_state *s = to_rockchip_crtc_state(state); __drm_atomic_helper_crtc_destroy_state(&s->base); kfree(s); } static void vop_crtc_reset(struct drm_crtc *crtc) { struct rockchip_crtc_state *crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL); if (crtc->state) vop_crtc_destroy_state(crtc, crtc->state); if (crtc_state) __drm_atomic_helper_crtc_reset(crtc, &crtc_state->base); else __drm_atomic_helper_crtc_reset(crtc, NULL); } #ifdef CONFIG_DRM_ANALOGIX_DP static struct drm_connector *vop_get_edp_connector(struct vop *vop) { struct drm_connector *connector; struct drm_connector_list_iter conn_iter; drm_connector_list_iter_begin(vop->drm_dev, &conn_iter); drm_for_each_connector_iter(connector, &conn_iter) { if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) { drm_connector_list_iter_end(&conn_iter); return connector; } } drm_connector_list_iter_end(&conn_iter); return NULL; } static int vop_crtc_set_crc_source(struct drm_crtc *crtc, const char *source_name) { struct vop *vop = to_vop(crtc); struct drm_connector *connector; int ret; connector = vop_get_edp_connector(vop); if (!connector) return -EINVAL; if (source_name && strcmp(source_name, "auto") == 0) ret = analogix_dp_start_crc(connector); else if (!source_name) ret = analogix_dp_stop_crc(connector); else ret = -EINVAL; return ret; } static int vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name, size_t *values_cnt) { if (source_name && strcmp(source_name, "auto") != 0) return -EINVAL; *values_cnt = 3; return 0; } #else static int vop_crtc_set_crc_source(struct drm_crtc *crtc, const char *source_name) { return -ENODEV; } static int vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name, size_t *values_cnt) { return -ENODEV; } #endif static const struct drm_crtc_funcs vop_crtc_funcs = { .set_config = drm_atomic_helper_set_config, .page_flip = drm_atomic_helper_page_flip, .destroy = vop_crtc_destroy, .reset = vop_crtc_reset, .atomic_duplicate_state = vop_crtc_duplicate_state, .atomic_destroy_state = vop_crtc_destroy_state, .enable_vblank = vop_crtc_enable_vblank, .disable_vblank = vop_crtc_disable_vblank, .set_crc_source = vop_crtc_set_crc_source, .verify_crc_source = vop_crtc_verify_crc_source, }; static void vop_fb_unref_worker(struct drm_flip_work *work, void *val) { struct vop *vop = container_of(work, struct vop, fb_unref_work); struct drm_framebuffer *fb = val; drm_crtc_vblank_put(&vop->crtc); drm_framebuffer_put(fb); } static void vop_handle_vblank(struct vop *vop) { struct drm_device *drm = vop->drm_dev; struct drm_crtc *crtc = &vop->crtc; spin_lock(&drm->event_lock); if (vop->event) { drm_crtc_send_vblank_event(crtc, vop->event); drm_crtc_vblank_put(crtc); vop->event = NULL; } spin_unlock(&drm->event_lock); if (test_and_clear_bit(VOP_PENDING_FB_UNREF, &vop->pending)) drm_flip_work_commit(&vop->fb_unref_work, system_unbound_wq); } static irqreturn_t vop_isr(int irq, void *data) { struct vop *vop = data; struct drm_crtc *crtc = &vop->crtc; uint32_t active_irqs; int ret = IRQ_NONE; /* * The irq is shared with the iommu. If the runtime-pm state of the * vop-device is disabled the irq has to be targeted at the iommu. */ if (!pm_runtime_get_if_in_use(vop->dev)) return IRQ_NONE; if (vop_core_clks_enable(vop)) { DRM_DEV_ERROR_RATELIMITED(vop->dev, "couldn't enable clocks\n"); goto out; } /* * interrupt register has interrupt status, enable and clear bits, we * must hold irq_lock to avoid a race with enable/disable_vblank(). */ spin_lock(&vop->irq_lock); active_irqs = VOP_INTR_GET_TYPE(vop, status, INTR_MASK); /* Clear all active interrupt sources */ if (active_irqs) VOP_INTR_SET_TYPE(vop, clear, active_irqs, 1); spin_unlock(&vop->irq_lock); /* This is expected for vop iommu irqs, since the irq is shared */ if (!active_irqs) goto out_disable; if (active_irqs & DSP_HOLD_VALID_INTR) { complete(&vop->dsp_hold_completion); active_irqs &= ~DSP_HOLD_VALID_INTR; ret = IRQ_HANDLED; } if (active_irqs & LINE_FLAG_INTR) { complete(&vop->line_flag_completion); active_irqs &= ~LINE_FLAG_INTR; ret = IRQ_HANDLED; } if (active_irqs & FS_INTR) { drm_crtc_handle_vblank(crtc); vop_handle_vblank(vop); active_irqs &= ~FS_INTR; ret = IRQ_HANDLED; } /* Unhandled irqs are spurious. */ if (active_irqs) DRM_DEV_ERROR(vop->dev, "Unknown VOP IRQs: %#02x\n", active_irqs); out_disable: vop_core_clks_disable(vop); out: pm_runtime_put(vop->dev); return ret; } static void vop_plane_add_properties(struct drm_plane *plane, const struct vop_win_data *win_data) { unsigned int flags = 0; flags |= VOP_WIN_HAS_REG(win_data, x_mir_en) ? DRM_MODE_REFLECT_X : 0; flags |= VOP_WIN_HAS_REG(win_data, y_mir_en) ? DRM_MODE_REFLECT_Y : 0; if (flags) drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0, DRM_MODE_ROTATE_0 | flags); } static int vop_create_crtc(struct vop *vop) { const struct vop_data *vop_data = vop->data; struct device *dev = vop->dev; struct drm_device *drm_dev = vop->drm_dev; struct drm_plane *primary = NULL, *cursor = NULL, *plane, *tmp; struct drm_crtc *crtc = &vop->crtc; struct device_node *port; int ret; int i; /* * Create drm_plane for primary and cursor planes first, since we need * to pass them to drm_crtc_init_with_planes, which sets the * "possible_crtcs" to the newly initialized crtc. */ for (i = 0; i < vop_data->win_size; i++) { struct vop_win *vop_win = &vop->win[i]; const struct vop_win_data *win_data = vop_win->data; if (win_data->type != DRM_PLANE_TYPE_PRIMARY && win_data->type != DRM_PLANE_TYPE_CURSOR) continue; ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base, 0, &vop_plane_funcs, win_data->phy->data_formats, win_data->phy->nformats, win_data->phy->format_modifiers, win_data->type, NULL); if (ret) { DRM_DEV_ERROR(vop->dev, "failed to init plane %d\n", ret); goto err_cleanup_planes; } plane = &vop_win->base; drm_plane_helper_add(plane, &plane_helper_funcs); vop_plane_add_properties(plane, win_data); if (plane->type == DRM_PLANE_TYPE_PRIMARY) primary = plane; else if (plane->type == DRM_PLANE_TYPE_CURSOR) cursor = plane; } ret = drm_crtc_init_with_planes(drm_dev, crtc, primary, cursor, &vop_crtc_funcs, NULL); if (ret) goto err_cleanup_planes; drm_crtc_helper_add(crtc, &vop_crtc_helper_funcs); if (vop->lut_regs) { drm_mode_crtc_set_gamma_size(crtc, vop_data->lut_size); drm_crtc_enable_color_mgmt(crtc, 0, false, vop_data->lut_size); } /* * Create drm_planes for overlay windows with possible_crtcs restricted * to the newly created crtc. */ for (i = 0; i < vop_data->win_size; i++) { struct vop_win *vop_win = &vop->win[i]; const struct vop_win_data *win_data = vop_win->data; unsigned long possible_crtcs = drm_crtc_mask(crtc); if (win_data->type != DRM_PLANE_TYPE_OVERLAY) continue; ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base, possible_crtcs, &vop_plane_funcs, win_data->phy->data_formats, win_data->phy->nformats, win_data->phy->format_modifiers, win_data->type, NULL); if (ret) { DRM_DEV_ERROR(vop->dev, "failed to init overlay %d\n", ret); goto err_cleanup_crtc; } drm_plane_helper_add(&vop_win->base, &plane_helper_funcs); vop_plane_add_properties(&vop_win->base, win_data); } port = of_get_child_by_name(dev->of_node, "port"); if (!port) { DRM_DEV_ERROR(vop->dev, "no port node found in %pOF\n", dev->of_node); ret = -ENOENT; goto err_cleanup_crtc; } drm_flip_work_init(&vop->fb_unref_work, "fb_unref", vop_fb_unref_worker); init_completion(&vop->dsp_hold_completion); init_completion(&vop->line_flag_completion); crtc->port = port; ret = drm_self_refresh_helper_init(crtc); if (ret) DRM_DEV_DEBUG_KMS(vop->dev, "Failed to init %s with SR helpers %d, ignoring\n", crtc->name, ret); return 0; err_cleanup_crtc: drm_crtc_cleanup(crtc); err_cleanup_planes: list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list, head) drm_plane_cleanup(plane); return ret; } static void vop_destroy_crtc(struct vop *vop) { struct drm_crtc *crtc = &vop->crtc; struct drm_device *drm_dev = vop->drm_dev; struct drm_plane *plane, *tmp; drm_self_refresh_helper_cleanup(crtc); of_node_put(crtc->port); /* * We need to cleanup the planes now. Why? * * The planes are "&vop->win[i].base". That means the memory is * all part of the big "struct vop" chunk of memory. That memory * was devm allocated and associated with this component. We need to * free it ourselves before vop_unbind() finishes. */ list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list, head) vop_plane_destroy(plane); /* * Destroy CRTC after vop_plane_destroy() since vop_disable_plane() * references the CRTC. */ drm_crtc_cleanup(crtc); drm_flip_work_cleanup(&vop->fb_unref_work); } static int vop_initial(struct vop *vop) { struct reset_control *ahb_rst; int i, ret; vop->hclk = devm_clk_get(vop->dev, "hclk_vop"); if (IS_ERR(vop->hclk)) { DRM_DEV_ERROR(vop->dev, "failed to get hclk source\n"); return PTR_ERR(vop->hclk); } vop->aclk = devm_clk_get(vop->dev, "aclk_vop"); if (IS_ERR(vop->aclk)) { DRM_DEV_ERROR(vop->dev, "failed to get aclk source\n"); return PTR_ERR(vop->aclk); } vop->dclk = devm_clk_get(vop->dev, "dclk_vop"); if (IS_ERR(vop->dclk)) { DRM_DEV_ERROR(vop->dev, "failed to get dclk source\n"); return PTR_ERR(vop->dclk); } ret = pm_runtime_resume_and_get(vop->dev); if (ret < 0) { DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret); return ret; } ret = clk_prepare(vop->dclk); if (ret < 0) { DRM_DEV_ERROR(vop->dev, "failed to prepare dclk\n"); goto err_put_pm_runtime; } /* Enable both the hclk and aclk to setup the vop */ ret = clk_prepare_enable(vop->hclk); if (ret < 0) { DRM_DEV_ERROR(vop->dev, "failed to prepare/enable hclk\n"); goto err_unprepare_dclk; } ret = clk_prepare_enable(vop->aclk); if (ret < 0) { DRM_DEV_ERROR(vop->dev, "failed to prepare/enable aclk\n"); goto err_disable_hclk; } /* * do hclk_reset, reset all vop registers. */ ahb_rst = devm_reset_control_get(vop->dev, "ahb"); if (IS_ERR(ahb_rst)) { DRM_DEV_ERROR(vop->dev, "failed to get ahb reset\n"); ret = PTR_ERR(ahb_rst); goto err_disable_aclk; } reset_control_assert(ahb_rst); usleep_range(10, 20); reset_control_deassert(ahb_rst); VOP_INTR_SET_TYPE(vop, clear, INTR_MASK, 1); VOP_INTR_SET_TYPE(vop, enable, INTR_MASK, 0); for (i = 0; i < vop->len; i += sizeof(u32)) vop->regsbak[i / 4] = readl_relaxed(vop->regs + i); VOP_REG_SET(vop, misc, global_regdone_en, 1); VOP_REG_SET(vop, common, dsp_blank, 0); for (i = 0; i < vop->data->win_size; i++) { struct vop_win *vop_win = &vop->win[i]; const struct vop_win_data *win = vop_win->data; int channel = i * 2 + 1; VOP_WIN_SET(vop, win, channel, (channel + 1) << 4 | channel); vop_win_disable(vop, vop_win); VOP_WIN_SET(vop, win, gate, 1); } vop_cfg_done(vop); /* * do dclk_reset, let all config take affect. */ vop->dclk_rst = devm_reset_control_get(vop->dev, "dclk"); if (IS_ERR(vop->dclk_rst)) { DRM_DEV_ERROR(vop->dev, "failed to get dclk reset\n"); ret = PTR_ERR(vop->dclk_rst); goto err_disable_aclk; } reset_control_assert(vop->dclk_rst); usleep_range(10, 20); reset_control_deassert(vop->dclk_rst); clk_disable(vop->hclk); clk_disable(vop->aclk); vop->is_enabled = false; pm_runtime_put_sync(vop->dev); return 0; err_disable_aclk: clk_disable_unprepare(vop->aclk); err_disable_hclk: clk_disable_unprepare(vop->hclk); err_unprepare_dclk: clk_unprepare(vop->dclk); err_put_pm_runtime: pm_runtime_put_sync(vop->dev); return ret; } /* * Initialize the vop->win array elements. */ static void vop_win_init(struct vop *vop) { const struct vop_data *vop_data = vop->data; unsigned int i; for (i = 0; i < vop_data->win_size; i++) { struct vop_win *vop_win = &vop->win[i]; const struct vop_win_data *win_data = &vop_data->win[i]; vop_win->data = win_data; vop_win->vop = vop; if (vop_data->win_yuv2yuv) vop_win->yuv2yuv_data = &vop_data->win_yuv2yuv[i]; } } /** * rockchip_drm_wait_vact_end * @crtc: CRTC to enable line flag * @mstimeout: millisecond for timeout * * Wait for vact_end line flag irq or timeout. * * Returns: * Zero on success, negative errno on failure. */ int rockchip_drm_wait_vact_end(struct drm_crtc *crtc, unsigned int mstimeout) { struct vop *vop = to_vop(crtc); unsigned long jiffies_left; int ret = 0; if (!crtc || !vop->is_enabled) return -ENODEV; mutex_lock(&vop->vop_lock); if (mstimeout <= 0) { ret = -EINVAL; goto out; } if (vop_line_flag_irq_is_enabled(vop)) { ret = -EBUSY; goto out; } reinit_completion(&vop->line_flag_completion); vop_line_flag_irq_enable(vop); jiffies_left = wait_for_completion_timeout(&vop->line_flag_completion, msecs_to_jiffies(mstimeout)); vop_line_flag_irq_disable(vop); if (jiffies_left == 0) { DRM_DEV_ERROR(vop->dev, "Timeout waiting for IRQ\n"); ret = -ETIMEDOUT; goto out; } out: mutex_unlock(&vop->vop_lock); return ret; } EXPORT_SYMBOL(rockchip_drm_wait_vact_end); static int vop_bind(struct device *dev, struct device *master, void *data) { struct platform_device *pdev = to_platform_device(dev); const struct vop_data *vop_data; struct drm_device *drm_dev = data; struct vop *vop; struct resource *res; int ret, irq; vop_data = of_device_get_match_data(dev); if (!vop_data) return -ENODEV; /* Allocate vop struct and its vop_win array */ vop = devm_kzalloc(dev, struct_size(vop, win, vop_data->win_size), GFP_KERNEL); if (!vop) return -ENOMEM; vop->dev = dev; vop->data = vop_data; vop->drm_dev = drm_dev; dev_set_drvdata(dev, vop); vop_win_init(vop); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); vop->regs = devm_ioremap_resource(dev, res); if (IS_ERR(vop->regs)) return PTR_ERR(vop->regs); vop->len = resource_size(res); res = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (res) { if (vop_data->lut_size != 1024 && vop_data->lut_size != 256) { DRM_DEV_ERROR(dev, "unsupported gamma LUT size %d\n", vop_data->lut_size); return -EINVAL; } vop->lut_regs = devm_ioremap_resource(dev, res); if (IS_ERR(vop->lut_regs)) return PTR_ERR(vop->lut_regs); } vop->regsbak = devm_kzalloc(dev, vop->len, GFP_KERNEL); if (!vop->regsbak) return -ENOMEM; irq = platform_get_irq(pdev, 0); if (irq < 0) { DRM_DEV_ERROR(dev, "cannot find irq for vop\n"); return irq; } vop->irq = (unsigned int)irq; spin_lock_init(&vop->reg_lock); spin_lock_init(&vop->irq_lock); mutex_init(&vop->vop_lock); ret = vop_create_crtc(vop); if (ret) return ret; pm_runtime_enable(&pdev->dev); ret = vop_initial(vop); if (ret < 0) { DRM_DEV_ERROR(&pdev->dev, "cannot initial vop dev - err %d\n", ret); goto err_disable_pm_runtime; } ret = devm_request_irq(dev, vop->irq, vop_isr, IRQF_SHARED, dev_name(dev), vop); if (ret) goto err_disable_pm_runtime; if (vop->data->feature & VOP_FEATURE_INTERNAL_RGB) { vop->rgb = rockchip_rgb_init(dev, &vop->crtc, vop->drm_dev, 0); if (IS_ERR(vop->rgb)) { ret = PTR_ERR(vop->rgb); goto err_disable_pm_runtime; } } rockchip_drm_dma_init_device(drm_dev, dev); return 0; err_disable_pm_runtime: pm_runtime_disable(&pdev->dev); vop_destroy_crtc(vop); return ret; } static void vop_unbind(struct device *dev, struct device *master, void *data) { struct vop *vop = dev_get_drvdata(dev); if (vop->rgb) rockchip_rgb_fini(vop->rgb); pm_runtime_disable(dev); vop_destroy_crtc(vop); clk_unprepare(vop->aclk); clk_unprepare(vop->hclk); clk_unprepare(vop->dclk); } const struct component_ops vop_component_ops = { .bind = vop_bind, .unbind = vop_unbind, }; EXPORT_SYMBOL_GPL(vop_component_ops);