/* * Copyright 2013 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include "ramfuc.h" #include "gf100.h" #include #include #include #include #include #include #include #include #include #include #include struct gk104_ramfuc { struct ramfuc base; struct nvbios_pll refpll; struct nvbios_pll mempll; struct ramfuc_reg r_gpioMV; u32 r_funcMV[2]; struct ramfuc_reg r_gpio2E; u32 r_func2E[2]; struct ramfuc_reg r_gpiotrig; struct ramfuc_reg r_0x132020; struct ramfuc_reg r_0x132028; struct ramfuc_reg r_0x132024; struct ramfuc_reg r_0x132030; struct ramfuc_reg r_0x132034; struct ramfuc_reg r_0x132000; struct ramfuc_reg r_0x132004; struct ramfuc_reg r_0x132040; struct ramfuc_reg r_0x10f248; struct ramfuc_reg r_0x10f290; struct ramfuc_reg r_0x10f294; struct ramfuc_reg r_0x10f298; struct ramfuc_reg r_0x10f29c; struct ramfuc_reg r_0x10f2a0; struct ramfuc_reg r_0x10f2a4; struct ramfuc_reg r_0x10f2a8; struct ramfuc_reg r_0x10f2ac; struct ramfuc_reg r_0x10f2cc; struct ramfuc_reg r_0x10f2e8; struct ramfuc_reg r_0x10f250; struct ramfuc_reg r_0x10f24c; struct ramfuc_reg r_0x10fec4; struct ramfuc_reg r_0x10fec8; struct ramfuc_reg r_0x10f604; struct ramfuc_reg r_0x10f614; struct ramfuc_reg r_0x10f610; struct ramfuc_reg r_0x100770; struct ramfuc_reg r_0x100778; struct ramfuc_reg r_0x10f224; struct ramfuc_reg r_0x10f870; struct ramfuc_reg r_0x10f698; struct ramfuc_reg r_0x10f694; struct ramfuc_reg r_0x10f6b8; struct ramfuc_reg r_0x10f808; struct ramfuc_reg r_0x10f670; struct ramfuc_reg r_0x10f60c; struct ramfuc_reg r_0x10f830; struct ramfuc_reg r_0x1373ec; struct ramfuc_reg r_0x10f800; struct ramfuc_reg r_0x10f82c; struct ramfuc_reg r_0x10f978; struct ramfuc_reg r_0x10f910; struct ramfuc_reg r_0x10f914; struct ramfuc_reg r_mr[16]; /* MR0 - MR8, MR15 */ struct ramfuc_reg r_0x62c000; struct ramfuc_reg r_0x10f200; struct ramfuc_reg r_0x10f210; struct ramfuc_reg r_0x10f310; struct ramfuc_reg r_0x10f314; struct ramfuc_reg r_0x10f318; struct ramfuc_reg r_0x10f090; struct ramfuc_reg r_0x10f69c; struct ramfuc_reg r_0x10f824; struct ramfuc_reg r_0x1373f0; struct ramfuc_reg r_0x1373f4; struct ramfuc_reg r_0x137320; struct ramfuc_reg r_0x10f65c; struct ramfuc_reg r_0x10f6bc; struct ramfuc_reg r_0x100710; struct ramfuc_reg r_0x100750; }; struct gk104_ram { struct nvkm_ram base; struct gk104_ramfuc fuc; struct list_head cfg; u32 parts; u32 pmask; u32 pnuts; struct nvbios_ramcfg diff; int from; int mode; int N1, fN1, M1, P1; int N2, M2, P2; }; /******************************************************************************* * GDDR5 ******************************************************************************/ static void gk104_ram_train(struct gk104_ramfuc *fuc, u32 mask, u32 data) { struct gk104_ram *ram = container_of(fuc, typeof(*ram), fuc); u32 addr = 0x110974, i; ram_mask(fuc, 0x10f910, mask, data); ram_mask(fuc, 0x10f914, mask, data); for (i = 0; (data & 0x80000000) && i < ram->parts; addr += 0x1000, i++) { if (ram->pmask & (1 << i)) continue; ram_wait(fuc, addr, 0x0000000f, 0x00000000, 500000); } } static void r1373f4_init(struct gk104_ramfuc *fuc) { struct gk104_ram *ram = container_of(fuc, typeof(*ram), fuc); const u32 mcoef = ((--ram->P2 << 28) | (ram->N2 << 8) | ram->M2); const u32 rcoef = (( ram->P1 << 16) | (ram->N1 << 8) | ram->M1); const u32 runk0 = ram->fN1 << 16; const u32 runk1 = ram->fN1; if (ram->from == 2) { ram_mask(fuc, 0x1373f4, 0x00000000, 0x00001100); ram_mask(fuc, 0x1373f4, 0x00000000, 0x00000010); } else { ram_mask(fuc, 0x1373f4, 0x00000000, 0x00010010); } ram_mask(fuc, 0x1373f4, 0x00000003, 0x00000000); ram_mask(fuc, 0x1373f4, 0x00000010, 0x00000000); /* (re)program refpll, if required */ if ((ram_rd32(fuc, 0x132024) & 0xffffffff) != rcoef || (ram_rd32(fuc, 0x132034) & 0x0000ffff) != runk1) { ram_mask(fuc, 0x132000, 0x00000001, 0x00000000); ram_mask(fuc, 0x132020, 0x00000001, 0x00000000); ram_wr32(fuc, 0x137320, 0x00000000); ram_mask(fuc, 0x132030, 0xffff0000, runk0); ram_mask(fuc, 0x132034, 0x0000ffff, runk1); ram_wr32(fuc, 0x132024, rcoef); ram_mask(fuc, 0x132028, 0x00080000, 0x00080000); ram_mask(fuc, 0x132020, 0x00000001, 0x00000001); ram_wait(fuc, 0x137390, 0x00020000, 0x00020000, 64000); ram_mask(fuc, 0x132028, 0x00080000, 0x00000000); } /* (re)program mempll, if required */ if (ram->mode == 2) { ram_mask(fuc, 0x1373f4, 0x00010000, 0x00000000); ram_mask(fuc, 0x132000, 0x80000000, 0x80000000); ram_mask(fuc, 0x132000, 0x00000001, 0x00000000); ram_mask(fuc, 0x132004, 0x103fffff, mcoef); ram_mask(fuc, 0x132000, 0x00000001, 0x00000001); ram_wait(fuc, 0x137390, 0x00000002, 0x00000002, 64000); ram_mask(fuc, 0x1373f4, 0x00000000, 0x00001100); } else { ram_mask(fuc, 0x1373f4, 0x00000000, 0x00010100); } ram_mask(fuc, 0x1373f4, 0x00000000, 0x00000010); } static void r1373f4_fini(struct gk104_ramfuc *fuc) { struct gk104_ram *ram = container_of(fuc, typeof(*ram), fuc); struct nvkm_ram_data *next = ram->base.next; u8 v0 = next->bios.ramcfg_11_03_c0; u8 v1 = next->bios.ramcfg_11_03_30; u32 tmp; tmp = ram_rd32(fuc, 0x1373ec) & ~0x00030000; ram_wr32(fuc, 0x1373ec, tmp | (v1 << 16)); ram_mask(fuc, 0x1373f0, (~ram->mode & 3), 0x00000000); if (ram->mode == 2) { ram_mask(fuc, 0x1373f4, 0x00000003, 0x000000002); ram_mask(fuc, 0x1373f4, 0x00001100, 0x000000000); } else { ram_mask(fuc, 0x1373f4, 0x00000003, 0x000000001); ram_mask(fuc, 0x1373f4, 0x00010000, 0x000000000); } ram_mask(fuc, 0x10f800, 0x00000030, (v0 ^ v1) << 4); } static void gk104_ram_nuts(struct gk104_ram *ram, struct ramfuc_reg *reg, u32 _mask, u32 _data, u32 _copy) { struct nvkm_fb *fb = nvkm_fb(ram); struct ramfuc *fuc = &ram->fuc.base; struct nvkm_device *device = fb->subdev.device; u32 addr = 0x110000 + (reg->addr & 0xfff); u32 mask = _mask | _copy; u32 data = (_data & _mask) | (reg->data & _copy); u32 i; for (i = 0; i < 16; i++, addr += 0x1000) { if (ram->pnuts & (1 << i)) { u32 prev = nvkm_rd32(device, addr); u32 next = (prev & ~mask) | data; nvkm_memx_wr32(fuc->memx, addr, next); } } } #define ram_nuts(s,r,m,d,c) \ gk104_ram_nuts((s), &(s)->fuc.r_##r, (m), (d), (c)) static int gk104_ram_calc_gddr5(struct nvkm_fb *fb, u32 freq) { struct gk104_ram *ram = (void *)fb->ram; struct gk104_ramfuc *fuc = &ram->fuc; struct nvkm_ram_data *next = ram->base.next; int vc = !next->bios.ramcfg_11_02_08; int mv = !next->bios.ramcfg_11_02_04; u32 mask, data; ram_mask(fuc, 0x10f808, 0x40000000, 0x40000000); ram_block(fuc); ram_wr32(fuc, 0x62c000, 0x0f0f0000); /* MR1: turn termination on early, for some reason.. */ if ((ram->base.mr[1] & 0x03c) != 0x030) { ram_mask(fuc, mr[1], 0x03c, ram->base.mr[1] & 0x03c); ram_nuts(ram, mr[1], 0x03c, ram->base.mr1_nuts & 0x03c, 0x000); } if (vc == 1 && ram_have(fuc, gpio2E)) { u32 temp = ram_mask(fuc, gpio2E, 0x3000, fuc->r_func2E[1]); if (temp != ram_rd32(fuc, gpio2E)) { ram_wr32(fuc, gpiotrig, 1); ram_nsec(fuc, 20000); } } ram_mask(fuc, 0x10f200, 0x00000800, 0x00000000); gk104_ram_train(fuc, 0x01020000, 0x000c0000); ram_wr32(fuc, 0x10f210, 0x00000000); /* REFRESH_AUTO = 0 */ ram_nsec(fuc, 1000); ram_wr32(fuc, 0x10f310, 0x00000001); /* REFRESH */ ram_nsec(fuc, 1000); ram_mask(fuc, 0x10f200, 0x80000000, 0x80000000); ram_wr32(fuc, 0x10f314, 0x00000001); /* PRECHARGE */ ram_mask(fuc, 0x10f200, 0x80000000, 0x00000000); ram_wr32(fuc, 0x10f090, 0x00000061); ram_wr32(fuc, 0x10f090, 0xc000007f); ram_nsec(fuc, 1000); ram_wr32(fuc, 0x10f698, 0x00000000); ram_wr32(fuc, 0x10f69c, 0x00000000); /*XXX: there does appear to be some kind of condition here, simply * modifying these bits in the vbios from the default pl0 * entries shows no change. however, the data does appear to * be correct and may be required for the transition back */ mask = 0x800f07e0; data = 0x00030000; if (ram_rd32(fuc, 0x10f978) & 0x00800000) data |= 0x00040000; if (1) { data |= 0x800807e0; switch (next->bios.ramcfg_11_03_c0) { case 3: data &= ~0x00000040; break; case 2: data &= ~0x00000100; break; case 1: data &= ~0x80000000; break; case 0: data &= ~0x00000400; break; } switch (next->bios.ramcfg_11_03_30) { case 3: data &= ~0x00000020; break; case 2: data &= ~0x00000080; break; case 1: data &= ~0x00080000; break; case 0: data &= ~0x00000200; break; } } if (next->bios.ramcfg_11_02_80) mask |= 0x03000000; if (next->bios.ramcfg_11_02_40) mask |= 0x00002000; if (next->bios.ramcfg_11_07_10) mask |= 0x00004000; if (next->bios.ramcfg_11_07_08) mask |= 0x00000003; else { mask |= 0x34000000; if (ram_rd32(fuc, 0x10f978) & 0x00800000) mask |= 0x40000000; } ram_mask(fuc, 0x10f824, mask, data); ram_mask(fuc, 0x132040, 0x00010000, 0x00000000); if (ram->from == 2 && ram->mode != 2) { ram_mask(fuc, 0x10f808, 0x00080000, 0x00000000); ram_mask(fuc, 0x10f200, 0x18008000, 0x00008000); ram_mask(fuc, 0x10f800, 0x00000000, 0x00000004); ram_mask(fuc, 0x10f830, 0x00008000, 0x01040010); ram_mask(fuc, 0x10f830, 0x01000000, 0x00000000); r1373f4_init(fuc); ram_mask(fuc, 0x1373f0, 0x00000002, 0x00000001); r1373f4_fini(fuc); ram_mask(fuc, 0x10f830, 0x00c00000, 0x00240001); } else if (ram->from != 2 && ram->mode != 2) { r1373f4_init(fuc); r1373f4_fini(fuc); } if (ram_have(fuc, gpioMV)) { u32 temp = ram_mask(fuc, gpioMV, 0x3000, fuc->r_funcMV[mv]); if (temp != ram_rd32(fuc, gpioMV)) { ram_wr32(fuc, gpiotrig, 1); ram_nsec(fuc, 64000); } } if (next->bios.ramcfg_11_02_40 || next->bios.ramcfg_11_07_10) { ram_mask(fuc, 0x132040, 0x00010000, 0x00010000); ram_nsec(fuc, 20000); } if (ram->from != 2 && ram->mode == 2) { if (0 /*XXX: Titan */) ram_mask(fuc, 0x10f200, 0x18000000, 0x18000000); ram_mask(fuc, 0x10f800, 0x00000004, 0x00000000); ram_mask(fuc, 0x1373f0, 0x00000000, 0x00000002); ram_mask(fuc, 0x10f830, 0x00800001, 0x00408010); r1373f4_init(fuc); r1373f4_fini(fuc); ram_mask(fuc, 0x10f808, 0x00000000, 0x00080000); ram_mask(fuc, 0x10f200, 0x00808000, 0x00800000); } else if (ram->from == 2 && ram->mode == 2) { ram_mask(fuc, 0x10f800, 0x00000004, 0x00000000); r1373f4_init(fuc); r1373f4_fini(fuc); } if (ram->mode != 2) /*XXX*/ { if (next->bios.ramcfg_11_07_40) ram_mask(fuc, 0x10f670, 0x80000000, 0x80000000); } ram_wr32(fuc, 0x10f65c, 0x00000011 * next->bios.rammap_11_11_0c); ram_wr32(fuc, 0x10f6b8, 0x01010101 * next->bios.ramcfg_11_09); ram_wr32(fuc, 0x10f6bc, 0x01010101 * next->bios.ramcfg_11_09); if (!next->bios.ramcfg_11_07_08 && !next->bios.ramcfg_11_07_04) { ram_wr32(fuc, 0x10f698, 0x01010101 * next->bios.ramcfg_11_04); ram_wr32(fuc, 0x10f69c, 0x01010101 * next->bios.ramcfg_11_04); } else if (!next->bios.ramcfg_11_07_08) { ram_wr32(fuc, 0x10f698, 0x00000000); ram_wr32(fuc, 0x10f69c, 0x00000000); } if (ram->mode != 2) { u32 data = 0x01000100 * next->bios.ramcfg_11_04; ram_nuke(fuc, 0x10f694); ram_mask(fuc, 0x10f694, 0xff00ff00, data); } if (ram->mode == 2 && next->bios.ramcfg_11_08_10) data = 0x00000080; else data = 0x00000000; ram_mask(fuc, 0x10f60c, 0x00000080, data); mask = 0x00070000; data = 0x00000000; if (!next->bios.ramcfg_11_02_80) data |= 0x03000000; if (!next->bios.ramcfg_11_02_40) data |= 0x00002000; if (!next->bios.ramcfg_11_07_10) data |= 0x00004000; if (!next->bios.ramcfg_11_07_08) data |= 0x00000003; else data |= 0x74000000; ram_mask(fuc, 0x10f824, mask, data); if (next->bios.ramcfg_11_01_08) data = 0x00000000; else data = 0x00001000; ram_mask(fuc, 0x10f200, 0x00001000, data); if (ram_rd32(fuc, 0x10f670) & 0x80000000) { ram_nsec(fuc, 10000); ram_mask(fuc, 0x10f670, 0x80000000, 0x00000000); } if (next->bios.ramcfg_11_08_01) data = 0x00100000; else data = 0x00000000; ram_mask(fuc, 0x10f82c, 0x00100000, data); data = 0x00000000; if (next->bios.ramcfg_11_08_08) data |= 0x00002000; if (next->bios.ramcfg_11_08_04) data |= 0x00001000; if (next->bios.ramcfg_11_08_02) data |= 0x00004000; ram_mask(fuc, 0x10f830, 0x00007000, data); /* PFB timing */ ram_mask(fuc, 0x10f248, 0xffffffff, next->bios.timing[10]); ram_mask(fuc, 0x10f290, 0xffffffff, next->bios.timing[0]); ram_mask(fuc, 0x10f294, 0xffffffff, next->bios.timing[1]); ram_mask(fuc, 0x10f298, 0xffffffff, next->bios.timing[2]); ram_mask(fuc, 0x10f29c, 0xffffffff, next->bios.timing[3]); ram_mask(fuc, 0x10f2a0, 0xffffffff, next->bios.timing[4]); ram_mask(fuc, 0x10f2a4, 0xffffffff, next->bios.timing[5]); ram_mask(fuc, 0x10f2a8, 0xffffffff, next->bios.timing[6]); ram_mask(fuc, 0x10f2ac, 0xffffffff, next->bios.timing[7]); ram_mask(fuc, 0x10f2cc, 0xffffffff, next->bios.timing[8]); ram_mask(fuc, 0x10f2e8, 0xffffffff, next->bios.timing[9]); data = mask = 0x00000000; if (ram->diff.ramcfg_11_08_20) { if (next->bios.ramcfg_11_08_20) data |= 0x01000000; mask |= 0x01000000; } ram_mask(fuc, 0x10f200, mask, data); data = mask = 0x00000000; if (ram->diff.ramcfg_11_02_03) { data |= next->bios.ramcfg_11_02_03 << 8; mask |= 0x00000300; } if (ram->diff.ramcfg_11_01_10) { if (next->bios.ramcfg_11_01_10) data |= 0x70000000; mask |= 0x70000000; } ram_mask(fuc, 0x10f604, mask, data); data = mask = 0x00000000; if (ram->diff.timing_20_30_07) { data |= next->bios.timing_20_30_07 << 28; mask |= 0x70000000; } if (ram->diff.ramcfg_11_01_01) { if (next->bios.ramcfg_11_01_01) data |= 0x00000100; mask |= 0x00000100; } ram_mask(fuc, 0x10f614, mask, data); data = mask = 0x00000000; if (ram->diff.timing_20_30_07) { data |= next->bios.timing_20_30_07 << 28; mask |= 0x70000000; } if (ram->diff.ramcfg_11_01_02) { if (next->bios.ramcfg_11_01_02) data |= 0x00000100; mask |= 0x00000100; } ram_mask(fuc, 0x10f610, mask, data); mask = 0x33f00000; data = 0x00000000; if (!next->bios.ramcfg_11_01_04) data |= 0x20200000; if (!next->bios.ramcfg_11_07_80) data |= 0x12800000; /*XXX: see note above about there probably being some condition * for the 10f824 stuff that uses ramcfg 3... */ if (next->bios.ramcfg_11_03_f0) { if (next->bios.rammap_11_08_0c) { if (!next->bios.ramcfg_11_07_80) mask |= 0x00000020; else data |= 0x00000020; mask |= 0x00000004; } } else { mask |= 0x40000020; data |= 0x00000004; } ram_mask(fuc, 0x10f808, mask, data); ram_wr32(fuc, 0x10f870, 0x11111111 * next->bios.ramcfg_11_03_0f); data = mask = 0x00000000; if (ram->diff.ramcfg_11_02_03) { data |= next->bios.ramcfg_11_02_03; mask |= 0x00000003; } if (ram->diff.ramcfg_11_01_10) { if (next->bios.ramcfg_11_01_10) data |= 0x00000004; mask |= 0x00000004; } if ((ram_mask(fuc, 0x100770, mask, data) & mask & 4) != (data & 4)) { ram_mask(fuc, 0x100750, 0x00000008, 0x00000008); ram_wr32(fuc, 0x100710, 0x00000000); ram_wait(fuc, 0x100710, 0x80000000, 0x80000000, 200000); } data = next->bios.timing_20_30_07 << 8; if (next->bios.ramcfg_11_01_01) data |= 0x80000000; ram_mask(fuc, 0x100778, 0x00000700, data); ram_mask(fuc, 0x10f250, 0x000003f0, next->bios.timing_20_2c_003f << 4); data = (next->bios.timing[10] & 0x7f000000) >> 24; if (data < next->bios.timing_20_2c_1fc0) data = next->bios.timing_20_2c_1fc0; ram_mask(fuc, 0x10f24c, 0x7f000000, data << 24); ram_mask(fuc, 0x10f224, 0x001f0000, next->bios.timing_20_30_f8 << 16); ram_mask(fuc, 0x10fec4, 0x041e0f07, next->bios.timing_20_31_0800 << 26 | next->bios.timing_20_31_0780 << 17 | next->bios.timing_20_31_0078 << 8 | next->bios.timing_20_31_0007); ram_mask(fuc, 0x10fec8, 0x00000027, next->bios.timing_20_31_8000 << 5 | next->bios.timing_20_31_7000); ram_wr32(fuc, 0x10f090, 0x4000007e); ram_nsec(fuc, 2000); ram_wr32(fuc, 0x10f314, 0x00000001); /* PRECHARGE */ ram_wr32(fuc, 0x10f310, 0x00000001); /* REFRESH */ ram_wr32(fuc, 0x10f210, 0x80000000); /* REFRESH_AUTO = 1 */ if (next->bios.ramcfg_11_08_10 && (ram->mode == 2) /*XXX*/) { u32 temp = ram_mask(fuc, 0x10f294, 0xff000000, 0x24000000); gk104_ram_train(fuc, 0xbc0e0000, 0xa4010000); /*XXX*/ ram_nsec(fuc, 1000); ram_wr32(fuc, 0x10f294, temp); } ram_mask(fuc, mr[3], 0xfff, ram->base.mr[3]); ram_wr32(fuc, mr[0], ram->base.mr[0]); ram_mask(fuc, mr[8], 0xfff, ram->base.mr[8]); ram_nsec(fuc, 1000); ram_mask(fuc, mr[1], 0xfff, ram->base.mr[1]); ram_mask(fuc, mr[5], 0xfff, ram->base.mr[5] & ~0x004); /* LP3 later */ ram_mask(fuc, mr[6], 0xfff, ram->base.mr[6]); ram_mask(fuc, mr[7], 0xfff, ram->base.mr[7]); if (vc == 0 && ram_have(fuc, gpio2E)) { u32 temp = ram_mask(fuc, gpio2E, 0x3000, fuc->r_func2E[0]); if (temp != ram_rd32(fuc, gpio2E)) { ram_wr32(fuc, gpiotrig, 1); ram_nsec(fuc, 20000); } } ram_mask(fuc, 0x10f200, 0x80000000, 0x80000000); ram_wr32(fuc, 0x10f318, 0x00000001); /* NOP? */ ram_mask(fuc, 0x10f200, 0x80000000, 0x00000000); ram_nsec(fuc, 1000); ram_nuts(ram, 0x10f200, 0x18808800, 0x00000000, 0x18808800); data = ram_rd32(fuc, 0x10f978); data &= ~0x00046144; data |= 0x0000000b; if (!next->bios.ramcfg_11_07_08) { if (!next->bios.ramcfg_11_07_04) data |= 0x0000200c; else data |= 0x00000000; } else { data |= 0x00040044; } ram_wr32(fuc, 0x10f978, data); if (ram->mode == 1) { data = ram_rd32(fuc, 0x10f830) | 0x00000001; ram_wr32(fuc, 0x10f830, data); } if (!next->bios.ramcfg_11_07_08) { data = 0x88020000; if ( next->bios.ramcfg_11_07_04) data |= 0x10000000; if (!next->bios.rammap_11_08_10) data |= 0x00080000; } else { data = 0xa40e0000; } gk104_ram_train(fuc, 0xbc0f0000, data); if (1) /* XXX: not always? */ ram_nsec(fuc, 1000); if (ram->mode == 2) { /*XXX*/ ram_mask(fuc, 0x10f800, 0x00000004, 0x00000004); } /* LP3 */ if (ram_mask(fuc, mr[5], 0x004, ram->base.mr[5]) != ram->base.mr[5]) ram_nsec(fuc, 1000); if (ram->mode != 2) { ram_mask(fuc, 0x10f830, 0x01000000, 0x01000000); ram_mask(fuc, 0x10f830, 0x01000000, 0x00000000); } if (next->bios.ramcfg_11_07_02) gk104_ram_train(fuc, 0x80020000, 0x01000000); ram_unblock(fuc); ram_wr32(fuc, 0x62c000, 0x0f0f0f00); if (next->bios.rammap_11_08_01) data = 0x00000800; else data = 0x00000000; ram_mask(fuc, 0x10f200, 0x00000800, data); ram_nuts(ram, 0x10f200, 0x18808800, data, 0x18808800); return 0; } /******************************************************************************* * DDR3 ******************************************************************************/ static int gk104_ram_calc_sddr3(struct nvkm_fb *fb, u32 freq) { struct gk104_ram *ram = (void *)fb->ram; struct gk104_ramfuc *fuc = &ram->fuc; const u32 rcoef = (( ram->P1 << 16) | (ram->N1 << 8) | ram->M1); const u32 runk0 = ram->fN1 << 16; const u32 runk1 = ram->fN1; struct nvkm_ram_data *next = ram->base.next; int vc = !next->bios.ramcfg_11_02_08; int mv = !next->bios.ramcfg_11_02_04; u32 mask, data; ram_mask(fuc, 0x10f808, 0x40000000, 0x40000000); ram_block(fuc); ram_wr32(fuc, 0x62c000, 0x0f0f0000); if (vc == 1 && ram_have(fuc, gpio2E)) { u32 temp = ram_mask(fuc, gpio2E, 0x3000, fuc->r_func2E[1]); if (temp != ram_rd32(fuc, gpio2E)) { ram_wr32(fuc, gpiotrig, 1); ram_nsec(fuc, 20000); } } ram_mask(fuc, 0x10f200, 0x00000800, 0x00000000); if (next->bios.ramcfg_11_03_f0) ram_mask(fuc, 0x10f808, 0x04000000, 0x04000000); ram_wr32(fuc, 0x10f314, 0x00000001); /* PRECHARGE */ ram_wr32(fuc, 0x10f210, 0x00000000); /* REFRESH_AUTO = 0 */ ram_wr32(fuc, 0x10f310, 0x00000001); /* REFRESH */ ram_mask(fuc, 0x10f200, 0x80000000, 0x80000000); ram_wr32(fuc, 0x10f310, 0x00000001); /* REFRESH */ ram_mask(fuc, 0x10f200, 0x80000000, 0x00000000); ram_nsec(fuc, 1000); ram_wr32(fuc, 0x10f090, 0x00000060); ram_wr32(fuc, 0x10f090, 0xc000007e); /*XXX: there does appear to be some kind of condition here, simply * modifying these bits in the vbios from the default pl0 * entries shows no change. however, the data does appear to * be correct and may be required for the transition back */ mask = 0x00010000; data = 0x00010000; if (1) { mask |= 0x800807e0; data |= 0x800807e0; switch (next->bios.ramcfg_11_03_c0) { case 3: data &= ~0x00000040; break; case 2: data &= ~0x00000100; break; case 1: data &= ~0x80000000; break; case 0: data &= ~0x00000400; break; } switch (next->bios.ramcfg_11_03_30) { case 3: data &= ~0x00000020; break; case 2: data &= ~0x00000080; break; case 1: data &= ~0x00080000; break; case 0: data &= ~0x00000200; break; } } if (next->bios.ramcfg_11_02_80) mask |= 0x03000000; if (next->bios.ramcfg_11_02_40) mask |= 0x00002000; if (next->bios.ramcfg_11_07_10) mask |= 0x00004000; if (next->bios.ramcfg_11_07_08) mask |= 0x00000003; else mask |= 0x14000000; ram_mask(fuc, 0x10f824, mask, data); ram_mask(fuc, 0x132040, 0x00010000, 0x00000000); ram_mask(fuc, 0x1373f4, 0x00000000, 0x00010010); data = ram_rd32(fuc, 0x1373ec) & ~0x00030000; data |= next->bios.ramcfg_11_03_30 << 16; ram_wr32(fuc, 0x1373ec, data); ram_mask(fuc, 0x1373f4, 0x00000003, 0x00000000); ram_mask(fuc, 0x1373f4, 0x00000010, 0x00000000); /* (re)program refpll, if required */ if ((ram_rd32(fuc, 0x132024) & 0xffffffff) != rcoef || (ram_rd32(fuc, 0x132034) & 0x0000ffff) != runk1) { ram_mask(fuc, 0x132000, 0x00000001, 0x00000000); ram_mask(fuc, 0x132020, 0x00000001, 0x00000000); ram_wr32(fuc, 0x137320, 0x00000000); ram_mask(fuc, 0x132030, 0xffff0000, runk0); ram_mask(fuc, 0x132034, 0x0000ffff, runk1); ram_wr32(fuc, 0x132024, rcoef); ram_mask(fuc, 0x132028, 0x00080000, 0x00080000); ram_mask(fuc, 0x132020, 0x00000001, 0x00000001); ram_wait(fuc, 0x137390, 0x00020000, 0x00020000, 64000); ram_mask(fuc, 0x132028, 0x00080000, 0x00000000); } ram_mask(fuc, 0x1373f4, 0x00000010, 0x00000010); ram_mask(fuc, 0x1373f4, 0x00000003, 0x00000001); ram_mask(fuc, 0x1373f4, 0x00010000, 0x00000000); if (ram_have(fuc, gpioMV)) { u32 temp = ram_mask(fuc, gpioMV, 0x3000, fuc->r_funcMV[mv]); if (temp != ram_rd32(fuc, gpioMV)) { ram_wr32(fuc, gpiotrig, 1); ram_nsec(fuc, 64000); } } if (next->bios.ramcfg_11_02_40 || next->bios.ramcfg_11_07_10) { ram_mask(fuc, 0x132040, 0x00010000, 0x00010000); ram_nsec(fuc, 20000); } if (ram->mode != 2) /*XXX*/ { if (next->bios.ramcfg_11_07_40) ram_mask(fuc, 0x10f670, 0x80000000, 0x80000000); } ram_wr32(fuc, 0x10f65c, 0x00000011 * next->bios.rammap_11_11_0c); ram_wr32(fuc, 0x10f6b8, 0x01010101 * next->bios.ramcfg_11_09); ram_wr32(fuc, 0x10f6bc, 0x01010101 * next->bios.ramcfg_11_09); mask = 0x00010000; data = 0x00000000; if (!next->bios.ramcfg_11_02_80) data |= 0x03000000; if (!next->bios.ramcfg_11_02_40) data |= 0x00002000; if (!next->bios.ramcfg_11_07_10) data |= 0x00004000; if (!next->bios.ramcfg_11_07_08) data |= 0x00000003; else data |= 0x14000000; ram_mask(fuc, 0x10f824, mask, data); ram_nsec(fuc, 1000); if (next->bios.ramcfg_11_08_01) data = 0x00100000; else data = 0x00000000; ram_mask(fuc, 0x10f82c, 0x00100000, data); /* PFB timing */ ram_mask(fuc, 0x10f248, 0xffffffff, next->bios.timing[10]); ram_mask(fuc, 0x10f290, 0xffffffff, next->bios.timing[0]); ram_mask(fuc, 0x10f294, 0xffffffff, next->bios.timing[1]); ram_mask(fuc, 0x10f298, 0xffffffff, next->bios.timing[2]); ram_mask(fuc, 0x10f29c, 0xffffffff, next->bios.timing[3]); ram_mask(fuc, 0x10f2a0, 0xffffffff, next->bios.timing[4]); ram_mask(fuc, 0x10f2a4, 0xffffffff, next->bios.timing[5]); ram_mask(fuc, 0x10f2a8, 0xffffffff, next->bios.timing[6]); ram_mask(fuc, 0x10f2ac, 0xffffffff, next->bios.timing[7]); ram_mask(fuc, 0x10f2cc, 0xffffffff, next->bios.timing[8]); ram_mask(fuc, 0x10f2e8, 0xffffffff, next->bios.timing[9]); mask = 0x33f00000; data = 0x00000000; if (!next->bios.ramcfg_11_01_04) data |= 0x20200000; if (!next->bios.ramcfg_11_07_80) data |= 0x12800000; /*XXX: see note above about there probably being some condition * for the 10f824 stuff that uses ramcfg 3... */ if (next->bios.ramcfg_11_03_f0) { if (next->bios.rammap_11_08_0c) { if (!next->bios.ramcfg_11_07_80) mask |= 0x00000020; else data |= 0x00000020; mask |= 0x08000004; } data |= 0x04000000; } else { mask |= 0x44000020; data |= 0x08000004; } ram_mask(fuc, 0x10f808, mask, data); ram_wr32(fuc, 0x10f870, 0x11111111 * next->bios.ramcfg_11_03_0f); ram_mask(fuc, 0x10f250, 0x000003f0, next->bios.timing_20_2c_003f << 4); data = (next->bios.timing[10] & 0x7f000000) >> 24; if (data < next->bios.timing_20_2c_1fc0) data = next->bios.timing_20_2c_1fc0; ram_mask(fuc, 0x10f24c, 0x7f000000, data << 24); ram_mask(fuc, 0x10f224, 0x001f0000, next->bios.timing_20_30_f8 << 16); ram_wr32(fuc, 0x10f090, 0x4000007f); ram_nsec(fuc, 1000); ram_wr32(fuc, 0x10f314, 0x00000001); /* PRECHARGE */ ram_wr32(fuc, 0x10f310, 0x00000001); /* REFRESH */ ram_wr32(fuc, 0x10f210, 0x80000000); /* REFRESH_AUTO = 1 */ ram_nsec(fuc, 1000); ram_nuke(fuc, mr[0]); ram_mask(fuc, mr[0], 0x100, 0x100); ram_mask(fuc, mr[0], 0x100, 0x000); ram_mask(fuc, mr[2], 0xfff, ram->base.mr[2]); ram_wr32(fuc, mr[0], ram->base.mr[0]); ram_nsec(fuc, 1000); ram_nuke(fuc, mr[0]); ram_mask(fuc, mr[0], 0x100, 0x100); ram_mask(fuc, mr[0], 0x100, 0x000); if (vc == 0 && ram_have(fuc, gpio2E)) { u32 temp = ram_mask(fuc, gpio2E, 0x3000, fuc->r_func2E[0]); if (temp != ram_rd32(fuc, gpio2E)) { ram_wr32(fuc, gpiotrig, 1); ram_nsec(fuc, 20000); } } if (ram->mode != 2) { ram_mask(fuc, 0x10f830, 0x01000000, 0x01000000); ram_mask(fuc, 0x10f830, 0x01000000, 0x00000000); } ram_mask(fuc, 0x10f200, 0x80000000, 0x80000000); ram_wr32(fuc, 0x10f318, 0x00000001); /* NOP? */ ram_mask(fuc, 0x10f200, 0x80000000, 0x00000000); ram_nsec(fuc, 1000); ram_unblock(fuc); ram_wr32(fuc, 0x62c000, 0x0f0f0f00); if (next->bios.rammap_11_08_01) data = 0x00000800; else data = 0x00000000; ram_mask(fuc, 0x10f200, 0x00000800, data); return 0; } /******************************************************************************* * main hooks ******************************************************************************/ static int gk104_ram_calc_data(struct nvkm_fb *fb, u32 khz, struct nvkm_ram_data *data) { struct gk104_ram *ram = (void *)fb->ram; struct nvkm_ram_data *cfg; u32 mhz = khz / 1000; list_for_each_entry(cfg, &ram->cfg, head) { if (mhz >= cfg->bios.rammap_min && mhz <= cfg->bios.rammap_max) { *data = *cfg; data->freq = khz; return 0; } } nv_error(ram, "ramcfg data for %dMHz not found\n", mhz); return -EINVAL; } static int gk104_ram_calc_xits(struct nvkm_fb *fb, struct nvkm_ram_data *next) { struct gk104_ram *ram = (void *)fb->ram; struct gk104_ramfuc *fuc = &ram->fuc; int refclk, i; int ret; ret = ram_init(fuc, fb); if (ret) return ret; ram->mode = (next->freq > fuc->refpll.vco1.max_freq) ? 2 : 1; ram->from = ram_rd32(fuc, 0x1373f4) & 0x0000000f; /* XXX: this is *not* what nvidia do. on fermi nvidia generally * select, based on some unknown condition, one of the two possible * reference frequencies listed in the vbios table for mempll and * program refpll to that frequency. * * so far, i've seen very weird values being chosen by nvidia on * kepler boards, no idea how/why they're chosen. */ refclk = next->freq; if (ram->mode == 2) refclk = fuc->mempll.refclk; /* calculate refpll coefficients */ ret = gt215_pll_calc(nv_subdev(fb), &fuc->refpll, refclk, &ram->N1, &ram->fN1, &ram->M1, &ram->P1); fuc->mempll.refclk = ret; if (ret <= 0) { nv_error(fb, "unable to calc refpll\n"); return -EINVAL; } /* calculate mempll coefficients, if we're using it */ if (ram->mode == 2) { /* post-divider doesn't work... the reg takes the values but * appears to completely ignore it. there *is* a bit at * bit 28 that appears to divide the clock by 2 if set. */ fuc->mempll.min_p = 1; fuc->mempll.max_p = 2; ret = gt215_pll_calc(nv_subdev(fb), &fuc->mempll, next->freq, &ram->N2, NULL, &ram->M2, &ram->P2); if (ret <= 0) { nv_error(fb, "unable to calc mempll\n"); return -EINVAL; } } for (i = 0; i < ARRAY_SIZE(fuc->r_mr); i++) { if (ram_have(fuc, mr[i])) ram->base.mr[i] = ram_rd32(fuc, mr[i]); } ram->base.freq = next->freq; switch (ram->base.type) { case NV_MEM_TYPE_DDR3: ret = nvkm_sddr3_calc(&ram->base); if (ret == 0) ret = gk104_ram_calc_sddr3(fb, next->freq); break; case NV_MEM_TYPE_GDDR5: ret = nvkm_gddr5_calc(&ram->base, ram->pnuts != 0); if (ret == 0) ret = gk104_ram_calc_gddr5(fb, next->freq); break; default: ret = -ENOSYS; break; } return ret; } static int gk104_ram_calc(struct nvkm_fb *fb, u32 freq) { struct nvkm_clk *clk = nvkm_clk(fb); struct gk104_ram *ram = (void *)fb->ram; struct nvkm_ram_data *xits = &ram->base.xition; struct nvkm_ram_data *copy; int ret; if (ram->base.next == NULL) { ret = gk104_ram_calc_data(fb, clk->read(clk, nv_clk_src_mem), &ram->base.former); if (ret) return ret; ret = gk104_ram_calc_data(fb, freq, &ram->base.target); if (ret) return ret; if (ram->base.target.freq < ram->base.former.freq) { *xits = ram->base.target; copy = &ram->base.former; } else { *xits = ram->base.former; copy = &ram->base.target; } xits->bios.ramcfg_11_02_04 = copy->bios.ramcfg_11_02_04; xits->bios.ramcfg_11_02_03 = copy->bios.ramcfg_11_02_03; xits->bios.timing_20_30_07 = copy->bios.timing_20_30_07; ram->base.next = &ram->base.target; if (memcmp(xits, &ram->base.former, sizeof(xits->bios))) ram->base.next = &ram->base.xition; } else { BUG_ON(ram->base.next != &ram->base.xition); ram->base.next = &ram->base.target; } return gk104_ram_calc_xits(fb, ram->base.next); } static void gk104_ram_prog_0(struct nvkm_fb *fb, u32 freq) { struct nvkm_device *device = fb->subdev.device; struct gk104_ram *ram = (void *)fb->ram; struct nvkm_ram_data *cfg; u32 mhz = freq / 1000; u32 mask, data; list_for_each_entry(cfg, &ram->cfg, head) { if (mhz >= cfg->bios.rammap_min && mhz <= cfg->bios.rammap_max) break; } if (&cfg->head == &ram->cfg) return; if (mask = 0, data = 0, ram->diff.rammap_11_0a_03fe) { data |= cfg->bios.rammap_11_0a_03fe << 12; mask |= 0x001ff000; } if (ram->diff.rammap_11_09_01ff) { data |= cfg->bios.rammap_11_09_01ff; mask |= 0x000001ff; } nvkm_mask(device, 0x10f468, mask, data); if (mask = 0, data = 0, ram->diff.rammap_11_0a_0400) { data |= cfg->bios.rammap_11_0a_0400; mask |= 0x00000001; } nvkm_mask(device, 0x10f420, mask, data); if (mask = 0, data = 0, ram->diff.rammap_11_0a_0800) { data |= cfg->bios.rammap_11_0a_0800; mask |= 0x00000001; } nvkm_mask(device, 0x10f430, mask, data); if (mask = 0, data = 0, ram->diff.rammap_11_0b_01f0) { data |= cfg->bios.rammap_11_0b_01f0; mask |= 0x0000001f; } nvkm_mask(device, 0x10f400, mask, data); if (mask = 0, data = 0, ram->diff.rammap_11_0b_0200) { data |= cfg->bios.rammap_11_0b_0200 << 9; mask |= 0x00000200; } nvkm_mask(device, 0x10f410, mask, data); if (mask = 0, data = 0, ram->diff.rammap_11_0d) { data |= cfg->bios.rammap_11_0d << 16; mask |= 0x00ff0000; } if (ram->diff.rammap_11_0f) { data |= cfg->bios.rammap_11_0f << 8; mask |= 0x0000ff00; } nvkm_mask(device, 0x10f440, mask, data); if (mask = 0, data = 0, ram->diff.rammap_11_0e) { data |= cfg->bios.rammap_11_0e << 8; mask |= 0x0000ff00; } if (ram->diff.rammap_11_0b_0800) { data |= cfg->bios.rammap_11_0b_0800 << 7; mask |= 0x00000080; } if (ram->diff.rammap_11_0b_0400) { data |= cfg->bios.rammap_11_0b_0400 << 5; mask |= 0x00000020; } nvkm_mask(device, 0x10f444, mask, data); } static int gk104_ram_prog(struct nvkm_fb *fb) { struct nvkm_device *device = nv_device(fb); struct gk104_ram *ram = (void *)fb->ram; struct gk104_ramfuc *fuc = &ram->fuc; struct nvkm_ram_data *next = ram->base.next; if (!nvkm_boolopt(device->cfgopt, "NvMemExec", true)) { ram_exec(fuc, false); return (ram->base.next == &ram->base.xition); } gk104_ram_prog_0(fb, 1000); ram_exec(fuc, true); gk104_ram_prog_0(fb, next->freq); return (ram->base.next == &ram->base.xition); } static void gk104_ram_tidy(struct nvkm_fb *fb) { struct gk104_ram *ram = (void *)fb->ram; struct gk104_ramfuc *fuc = &ram->fuc; ram->base.next = NULL; ram_exec(fuc, false); } struct gk104_ram_train { u16 mask; struct nvbios_M0209S remap; struct nvbios_M0209S type00; struct nvbios_M0209S type01; struct nvbios_M0209S type04; struct nvbios_M0209S type06; struct nvbios_M0209S type07; struct nvbios_M0209S type08; struct nvbios_M0209S type09; }; static int gk104_ram_train_type(struct nvkm_fb *fb, int i, u8 ramcfg, struct gk104_ram_train *train) { struct nvkm_bios *bios = nvkm_bios(fb); struct nvbios_M0205E M0205E; struct nvbios_M0205S M0205S; struct nvbios_M0209E M0209E; struct nvbios_M0209S *remap = &train->remap; struct nvbios_M0209S *value; u8 ver, hdr, cnt, len; u32 data; /* determine type of data for this index */ if (!(data = nvbios_M0205Ep(bios, i, &ver, &hdr, &cnt, &len, &M0205E))) return -ENOENT; switch (M0205E.type) { case 0x00: value = &train->type00; break; case 0x01: value = &train->type01; break; case 0x04: value = &train->type04; break; case 0x06: value = &train->type06; break; case 0x07: value = &train->type07; break; case 0x08: value = &train->type08; break; case 0x09: value = &train->type09; break; default: return 0; } /* training data index determined by ramcfg strap */ if (!(data = nvbios_M0205Sp(bios, i, ramcfg, &ver, &hdr, &M0205S))) return -EINVAL; i = M0205S.data; /* training data format information */ if (!(data = nvbios_M0209Ep(bios, i, &ver, &hdr, &cnt, &len, &M0209E))) return -EINVAL; /* ... and the raw data */ if (!(data = nvbios_M0209Sp(bios, i, 0, &ver, &hdr, value))) return -EINVAL; if (M0209E.v02_07 == 2) { /* of course! why wouldn't we have a pointer to another entry * in the same table, and use the first one as an array of * remap indices... */ if (!(data = nvbios_M0209Sp(bios, M0209E.v03, 0, &ver, &hdr, remap))) return -EINVAL; for (i = 0; i < ARRAY_SIZE(value->data); i++) value->data[i] = remap->data[value->data[i]]; } else if (M0209E.v02_07 != 1) return -EINVAL; train->mask |= 1 << M0205E.type; return 0; } static int gk104_ram_train_init_0(struct nvkm_fb *fb, struct gk104_ram_train *train) { struct nvkm_device *device = fb->subdev.device; int i, j; if ((train->mask & 0x03d3) != 0x03d3) { nv_warn(fb, "missing link training data\n"); return -EINVAL; } for (i = 0; i < 0x30; i++) { for (j = 0; j < 8; j += 4) { nvkm_wr32(device, 0x10f968 + j, 0x00000000 | (i << 8)); nvkm_wr32(device, 0x10f920 + j, 0x00000000 | train->type08.data[i] << 4 | train->type06.data[i]); nvkm_wr32(device, 0x10f918 + j, train->type00.data[i]); nvkm_wr32(device, 0x10f920 + j, 0x00000100 | train->type09.data[i] << 4 | train->type07.data[i]); nvkm_wr32(device, 0x10f918 + j, train->type01.data[i]); } } for (j = 0; j < 8; j += 4) { for (i = 0; i < 0x100; i++) { nvkm_wr32(device, 0x10f968 + j, i); nvkm_wr32(device, 0x10f900 + j, train->type04.data[i]); } } return 0; } static int gk104_ram_train_init(struct nvkm_fb *fb) { u8 ramcfg = nvbios_ramcfg_index(nv_subdev(fb)); struct gk104_ram_train *train; int ret, i; if (!(train = kzalloc(sizeof(*train), GFP_KERNEL))) return -ENOMEM; for (i = 0; i < 0x100; i++) { ret = gk104_ram_train_type(fb, i, ramcfg, train); if (ret && ret != -ENOENT) break; } switch (fb->ram->type) { case NV_MEM_TYPE_GDDR5: ret = gk104_ram_train_init_0(fb, train); break; default: ret = 0; break; } kfree(train); return ret; } int gk104_ram_init(struct nvkm_object *object) { struct nvkm_fb *fb = (void *)object->parent; struct gk104_ram *ram = (void *)object; struct nvkm_device *device = fb->subdev.device; struct nvkm_bios *bios = device->bios; u8 ver, hdr, cnt, len, snr, ssz; u32 data, save; int ret, i; ret = nvkm_ram_init(&ram->base); if (ret) return ret; /* run a bunch of tables from rammap table. there's actually * individual pointers for each rammap entry too, but, nvidia * seem to just run the last two entries' scripts early on in * their init, and never again.. we'll just run 'em all once * for now. * * i strongly suspect that each script is for a separate mode * (likely selected by 0x10f65c's lower bits?), and the * binary driver skips the one that's already been setup by * the init tables. */ data = nvbios_rammapTe(bios, &ver, &hdr, &cnt, &len, &snr, &ssz); if (!data || hdr < 0x15) return -EINVAL; cnt = nv_ro08(bios, data + 0x14); /* guess at count */ data = nv_ro32(bios, data + 0x10); /* guess u32... */ save = nvkm_rd32(device, 0x10f65c) & 0x000000f0; for (i = 0; i < cnt; i++, data += 4) { if (i != save >> 4) { nvkm_mask(device, 0x10f65c, 0x000000f0, i << 4); nvbios_exec(&(struct nvbios_init) { .subdev = nv_subdev(fb), .bios = bios, .offset = nv_ro32(bios, data), .execute = 1, }); } } nvkm_mask(device, 0x10f65c, 0x000000f0, save); nvkm_mask(device, 0x10f584, 0x11000000, 0x00000000); nvkm_wr32(device, 0x10ecc0, 0xffffffff); nvkm_mask(device, 0x10f160, 0x00000010, 0x00000010); return gk104_ram_train_init(fb); } static int gk104_ram_ctor_data(struct gk104_ram *ram, u8 ramcfg, int i) { struct nvkm_fb *fb = (void *)nv_object(ram)->parent; struct nvkm_bios *bios = nvkm_bios(fb); struct nvkm_ram_data *cfg; struct nvbios_ramcfg *d = &ram->diff; struct nvbios_ramcfg *p, *n; u8 ver, hdr, cnt, len; u32 data; int ret; if (!(cfg = kmalloc(sizeof(*cfg), GFP_KERNEL))) return -ENOMEM; p = &list_last_entry(&ram->cfg, typeof(*cfg), head)->bios; n = &cfg->bios; /* memory config data for a range of target frequencies */ data = nvbios_rammapEp(bios, i, &ver, &hdr, &cnt, &len, &cfg->bios); if (ret = -ENOENT, !data) goto done; if (ret = -ENOSYS, ver != 0x11 || hdr < 0x12) goto done; /* ... and a portion specific to the attached memory */ data = nvbios_rammapSp(bios, data, ver, hdr, cnt, len, ramcfg, &ver, &hdr, &cfg->bios); if (ret = -EINVAL, !data) goto done; if (ret = -ENOSYS, ver != 0x11 || hdr < 0x0a) goto done; /* lookup memory timings, if bios says they're present */ if (cfg->bios.ramcfg_timing != 0xff) { data = nvbios_timingEp(bios, cfg->bios.ramcfg_timing, &ver, &hdr, &cnt, &len, &cfg->bios); if (ret = -EINVAL, !data) goto done; if (ret = -ENOSYS, ver != 0x20 || hdr < 0x33) goto done; } list_add_tail(&cfg->head, &ram->cfg); if (ret = 0, i == 0) goto done; d->rammap_11_0a_03fe |= p->rammap_11_0a_03fe != n->rammap_11_0a_03fe; d->rammap_11_09_01ff |= p->rammap_11_09_01ff != n->rammap_11_09_01ff; d->rammap_11_0a_0400 |= p->rammap_11_0a_0400 != n->rammap_11_0a_0400; d->rammap_11_0a_0800 |= p->rammap_11_0a_0800 != n->rammap_11_0a_0800; d->rammap_11_0b_01f0 |= p->rammap_11_0b_01f0 != n->rammap_11_0b_01f0; d->rammap_11_0b_0200 |= p->rammap_11_0b_0200 != n->rammap_11_0b_0200; d->rammap_11_0d |= p->rammap_11_0d != n->rammap_11_0d; d->rammap_11_0f |= p->rammap_11_0f != n->rammap_11_0f; d->rammap_11_0e |= p->rammap_11_0e != n->rammap_11_0e; d->rammap_11_0b_0800 |= p->rammap_11_0b_0800 != n->rammap_11_0b_0800; d->rammap_11_0b_0400 |= p->rammap_11_0b_0400 != n->rammap_11_0b_0400; d->ramcfg_11_01_01 |= p->ramcfg_11_01_01 != n->ramcfg_11_01_01; d->ramcfg_11_01_02 |= p->ramcfg_11_01_02 != n->ramcfg_11_01_02; d->ramcfg_11_01_10 |= p->ramcfg_11_01_10 != n->ramcfg_11_01_10; d->ramcfg_11_02_03 |= p->ramcfg_11_02_03 != n->ramcfg_11_02_03; d->ramcfg_11_08_20 |= p->ramcfg_11_08_20 != n->ramcfg_11_08_20; d->timing_20_30_07 |= p->timing_20_30_07 != n->timing_20_30_07; done: if (ret) kfree(cfg); return ret; } static void gk104_ram_dtor(struct nvkm_object *object) { struct gk104_ram *ram = (void *)object; struct nvkm_ram_data *cfg, *tmp; list_for_each_entry_safe(cfg, tmp, &ram->cfg, head) { kfree(cfg); } nvkm_ram_destroy(&ram->base); } static int gk104_ram_ctor(struct nvkm_object *parent, struct nvkm_object *engine, struct nvkm_oclass *oclass, void *data, u32 size, struct nvkm_object **pobject) { struct nvkm_fb *fb = nvkm_fb(parent); struct nvkm_device *device = fb->subdev.device; struct nvkm_bios *bios = device->bios; struct nvkm_gpio *gpio = device->gpio; struct dcb_gpio_func func; struct gk104_ram *ram; int ret, i; u8 ramcfg = nvbios_ramcfg_index(nv_subdev(fb)); u32 tmp; ret = gf100_ram_create(parent, engine, oclass, 0x022554, &ram); *pobject = nv_object(ram); if (ret) return ret; INIT_LIST_HEAD(&ram->cfg); switch (ram->base.type) { case NV_MEM_TYPE_DDR3: case NV_MEM_TYPE_GDDR5: ram->base.calc = gk104_ram_calc; ram->base.prog = gk104_ram_prog; ram->base.tidy = gk104_ram_tidy; break; default: nv_warn(fb, "reclocking of this RAM type is unsupported\n"); break; } /* calculate a mask of differently configured memory partitions, * because, of course reclocking wasn't complicated enough * already without having to treat some of them differently to * the others.... */ ram->parts = nvkm_rd32(device, 0x022438); ram->pmask = nvkm_rd32(device, 0x022554); ram->pnuts = 0; for (i = 0, tmp = 0; i < ram->parts; i++) { if (!(ram->pmask & (1 << i))) { u32 cfg1 = nvkm_rd32(device, 0x110204 + (i * 0x1000)); if (tmp && tmp != cfg1) { ram->pnuts |= (1 << i); continue; } tmp = cfg1; } } /* parse bios data for all rammap table entries up-front, and * build information on whether certain fields differ between * any of the entries. * * the binary driver appears to completely ignore some fields * when all entries contain the same value. at first, it was * hoped that these were mere optimisations and the bios init * tables had configured as per the values here, but there is * evidence now to suggest that this isn't the case and we do * need to treat this condition as a "don't touch" indicator. */ for (i = 0; !ret; i++) { ret = gk104_ram_ctor_data(ram, ramcfg, i); if (ret && ret != -ENOENT) { nv_error(fb, "failed to parse ramcfg data\n"); return ret; } } /* parse bios data for both pll's */ ret = nvbios_pll_parse(bios, 0x0c, &ram->fuc.refpll); if (ret) { nv_error(fb, "mclk refpll data not found\n"); return ret; } ret = nvbios_pll_parse(bios, 0x04, &ram->fuc.mempll); if (ret) { nv_error(fb, "mclk pll data not found\n"); return ret; } /* lookup memory voltage gpios */ ret = gpio->find(gpio, 0, 0x18, DCB_GPIO_UNUSED, &func); if (ret == 0) { ram->fuc.r_gpioMV = ramfuc_reg(0x00d610 + (func.line * 0x04)); ram->fuc.r_funcMV[0] = (func.log[0] ^ 2) << 12; ram->fuc.r_funcMV[1] = (func.log[1] ^ 2) << 12; } ret = gpio->find(gpio, 0, 0x2e, DCB_GPIO_UNUSED, &func); if (ret == 0) { ram->fuc.r_gpio2E = ramfuc_reg(0x00d610 + (func.line * 0x04)); ram->fuc.r_func2E[0] = (func.log[0] ^ 2) << 12; ram->fuc.r_func2E[1] = (func.log[1] ^ 2) << 12; } ram->fuc.r_gpiotrig = ramfuc_reg(0x00d604); ram->fuc.r_0x132020 = ramfuc_reg(0x132020); ram->fuc.r_0x132028 = ramfuc_reg(0x132028); ram->fuc.r_0x132024 = ramfuc_reg(0x132024); ram->fuc.r_0x132030 = ramfuc_reg(0x132030); ram->fuc.r_0x132034 = ramfuc_reg(0x132034); ram->fuc.r_0x132000 = ramfuc_reg(0x132000); ram->fuc.r_0x132004 = ramfuc_reg(0x132004); ram->fuc.r_0x132040 = ramfuc_reg(0x132040); ram->fuc.r_0x10f248 = ramfuc_reg(0x10f248); ram->fuc.r_0x10f290 = ramfuc_reg(0x10f290); ram->fuc.r_0x10f294 = ramfuc_reg(0x10f294); ram->fuc.r_0x10f298 = ramfuc_reg(0x10f298); ram->fuc.r_0x10f29c = ramfuc_reg(0x10f29c); ram->fuc.r_0x10f2a0 = ramfuc_reg(0x10f2a0); ram->fuc.r_0x10f2a4 = ramfuc_reg(0x10f2a4); ram->fuc.r_0x10f2a8 = ramfuc_reg(0x10f2a8); ram->fuc.r_0x10f2ac = ramfuc_reg(0x10f2ac); ram->fuc.r_0x10f2cc = ramfuc_reg(0x10f2cc); ram->fuc.r_0x10f2e8 = ramfuc_reg(0x10f2e8); ram->fuc.r_0x10f250 = ramfuc_reg(0x10f250); ram->fuc.r_0x10f24c = ramfuc_reg(0x10f24c); ram->fuc.r_0x10fec4 = ramfuc_reg(0x10fec4); ram->fuc.r_0x10fec8 = ramfuc_reg(0x10fec8); ram->fuc.r_0x10f604 = ramfuc_reg(0x10f604); ram->fuc.r_0x10f614 = ramfuc_reg(0x10f614); ram->fuc.r_0x10f610 = ramfuc_reg(0x10f610); ram->fuc.r_0x100770 = ramfuc_reg(0x100770); ram->fuc.r_0x100778 = ramfuc_reg(0x100778); ram->fuc.r_0x10f224 = ramfuc_reg(0x10f224); ram->fuc.r_0x10f870 = ramfuc_reg(0x10f870); ram->fuc.r_0x10f698 = ramfuc_reg(0x10f698); ram->fuc.r_0x10f694 = ramfuc_reg(0x10f694); ram->fuc.r_0x10f6b8 = ramfuc_reg(0x10f6b8); ram->fuc.r_0x10f808 = ramfuc_reg(0x10f808); ram->fuc.r_0x10f670 = ramfuc_reg(0x10f670); ram->fuc.r_0x10f60c = ramfuc_reg(0x10f60c); ram->fuc.r_0x10f830 = ramfuc_reg(0x10f830); ram->fuc.r_0x1373ec = ramfuc_reg(0x1373ec); ram->fuc.r_0x10f800 = ramfuc_reg(0x10f800); ram->fuc.r_0x10f82c = ramfuc_reg(0x10f82c); ram->fuc.r_0x10f978 = ramfuc_reg(0x10f978); ram->fuc.r_0x10f910 = ramfuc_reg(0x10f910); ram->fuc.r_0x10f914 = ramfuc_reg(0x10f914); switch (ram->base.type) { case NV_MEM_TYPE_GDDR5: ram->fuc.r_mr[0] = ramfuc_reg(0x10f300); ram->fuc.r_mr[1] = ramfuc_reg(0x10f330); ram->fuc.r_mr[2] = ramfuc_reg(0x10f334); ram->fuc.r_mr[3] = ramfuc_reg(0x10f338); ram->fuc.r_mr[4] = ramfuc_reg(0x10f33c); ram->fuc.r_mr[5] = ramfuc_reg(0x10f340); ram->fuc.r_mr[6] = ramfuc_reg(0x10f344); ram->fuc.r_mr[7] = ramfuc_reg(0x10f348); ram->fuc.r_mr[8] = ramfuc_reg(0x10f354); ram->fuc.r_mr[15] = ramfuc_reg(0x10f34c); break; case NV_MEM_TYPE_DDR3: ram->fuc.r_mr[0] = ramfuc_reg(0x10f300); ram->fuc.r_mr[2] = ramfuc_reg(0x10f320); break; default: break; } ram->fuc.r_0x62c000 = ramfuc_reg(0x62c000); ram->fuc.r_0x10f200 = ramfuc_reg(0x10f200); ram->fuc.r_0x10f210 = ramfuc_reg(0x10f210); ram->fuc.r_0x10f310 = ramfuc_reg(0x10f310); ram->fuc.r_0x10f314 = ramfuc_reg(0x10f314); ram->fuc.r_0x10f318 = ramfuc_reg(0x10f318); ram->fuc.r_0x10f090 = ramfuc_reg(0x10f090); ram->fuc.r_0x10f69c = ramfuc_reg(0x10f69c); ram->fuc.r_0x10f824 = ramfuc_reg(0x10f824); ram->fuc.r_0x1373f0 = ramfuc_reg(0x1373f0); ram->fuc.r_0x1373f4 = ramfuc_reg(0x1373f4); ram->fuc.r_0x137320 = ramfuc_reg(0x137320); ram->fuc.r_0x10f65c = ramfuc_reg(0x10f65c); ram->fuc.r_0x10f6bc = ramfuc_reg(0x10f6bc); ram->fuc.r_0x100710 = ramfuc_reg(0x100710); ram->fuc.r_0x100750 = ramfuc_reg(0x100750); return 0; } struct nvkm_oclass gk104_ram_oclass = { .handle = 0, .ofuncs = &(struct nvkm_ofuncs) { .ctor = gk104_ram_ctor, .dtor = gk104_ram_dtor, .init = gk104_ram_init, .fini = _nvkm_ram_fini, } };