/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "priv.h" #include "chan.h" #include "hdmi.h" #include "head.h" #include "ior.h" #include "outp.h" #include #include #include #include #include #include static void gv100_sor_hda_device_entry(struct nvkm_ior *ior, int head) { struct nvkm_device *device = ior->disp->engine.subdev.device; const u32 hoff = 0x800 * head; nvkm_mask(device, 0x616528 + hoff, 0x00000070, head << 4); } const struct nvkm_ior_func_hda gv100_sor_hda = { .hpd = gf119_sor_hda_hpd, .eld = gf119_sor_hda_eld, .device_entry = gv100_sor_hda_device_entry, }; void gv100_sor_dp_watermark(struct nvkm_ior *sor, int head, u8 watermark) { struct nvkm_device *device = sor->disp->engine.subdev.device; const u32 hoff = head * 0x800; nvkm_mask(device, 0x616550 + hoff, 0x0c00003f, 0x08000000 | watermark); } void gv100_sor_dp_audio_sym(struct nvkm_ior *sor, int head, u16 h, u32 v) { struct nvkm_device *device = sor->disp->engine.subdev.device; const u32 hoff = head * 0x800; nvkm_mask(device, 0x616568 + hoff, 0x0000ffff, h); nvkm_mask(device, 0x61656c + hoff, 0x00ffffff, v); } void gv100_sor_dp_audio(struct nvkm_ior *sor, int head, bool enable) { struct nvkm_device *device = sor->disp->engine.subdev.device; const u32 hoff = 0x800 * head; const u32 data = 0x80000000 | (0x00000001 * enable); const u32 mask = 0x8000000d; nvkm_mask(device, 0x616560 + hoff, mask, data); nvkm_msec(device, 2000, if (!(nvkm_rd32(device, 0x616560 + hoff) & 0x80000000)) break; ); } static const struct nvkm_ior_func_dp gv100_sor_dp = { .lanes = { 0, 1, 2, 3 }, .links = gf119_sor_dp_links, .power = g94_sor_dp_power, .pattern = gm107_sor_dp_pattern, .drive = gm200_sor_dp_drive, .audio = gv100_sor_dp_audio, .audio_sym = gv100_sor_dp_audio_sym, .watermark = gv100_sor_dp_watermark, }; static void gv100_sor_hdmi_infoframe_vsi(struct nvkm_ior *ior, int head, void *data, u32 size) { struct nvkm_device *device = ior->disp->engine.subdev.device; struct packed_hdmi_infoframe vsi; const u32 hoff = head * 0x400; pack_hdmi_infoframe(&vsi, data, size); nvkm_mask(device, 0x6f0100 + hoff, 0x00010001, 0x00000000); if (!size) return; nvkm_wr32(device, 0x6f0108 + hoff, vsi.header); nvkm_wr32(device, 0x6f010c + hoff, vsi.subpack0_low); nvkm_wr32(device, 0x6f0110 + hoff, vsi.subpack0_high); nvkm_wr32(device, 0x6f0114 + hoff, 0x00000000); nvkm_wr32(device, 0x6f0118 + hoff, 0x00000000); nvkm_wr32(device, 0x6f011c + hoff, 0x00000000); nvkm_wr32(device, 0x6f0120 + hoff, 0x00000000); nvkm_wr32(device, 0x6f0124 + hoff, 0x00000000); nvkm_mask(device, 0x6f0100 + hoff, 0x00000001, 0x00000001); } static void gv100_sor_hdmi_infoframe_avi(struct nvkm_ior *ior, int head, void *data, u32 size) { struct nvkm_device *device = ior->disp->engine.subdev.device; struct packed_hdmi_infoframe avi; const u32 hoff = head * 0x400; pack_hdmi_infoframe(&avi, data, size); nvkm_mask(device, 0x6f0000 + hoff, 0x00000001, 0x00000000); if (!size) return; nvkm_wr32(device, 0x6f0008 + hoff, avi.header); nvkm_wr32(device, 0x6f000c + hoff, avi.subpack0_low); nvkm_wr32(device, 0x6f0010 + hoff, avi.subpack0_high); nvkm_wr32(device, 0x6f0014 + hoff, avi.subpack1_low); nvkm_wr32(device, 0x6f0018 + hoff, avi.subpack1_high); nvkm_mask(device, 0x6f0000 + hoff, 0x00000001, 0x00000001); } static void gv100_sor_hdmi_ctrl(struct nvkm_ior *ior, int head, bool enable, u8 max_ac_packet, u8 rekey) { struct nvkm_device *device = ior->disp->engine.subdev.device; const u32 ctrl = 0x40000000 * enable | max_ac_packet << 16 | rekey; const u32 hoff = head * 0x800; const u32 hdmi = head * 0x400; if (!(ctrl & 0x40000000)) { nvkm_mask(device, 0x6165c0 + hoff, 0x40000000, 0x00000000); nvkm_mask(device, 0x6f0100 + hdmi, 0x00000001, 0x00000000); nvkm_mask(device, 0x6f00c0 + hdmi, 0x00000001, 0x00000000); nvkm_mask(device, 0x6f0000 + hdmi, 0x00000001, 0x00000000); return; } /* General Control (GCP). */ nvkm_mask(device, 0x6f00c0 + hdmi, 0x00000001, 0x00000000); nvkm_wr32(device, 0x6f00cc + hdmi, 0x00000010); nvkm_mask(device, 0x6f00c0 + hdmi, 0x00000001, 0x00000001); /* Audio Clock Regeneration (ACR). */ nvkm_wr32(device, 0x6f0080 + hdmi, 0x82000000); /* NV_PDISP_SF_HDMI_CTRL. */ nvkm_mask(device, 0x6165c0 + hoff, 0x401f007f, ctrl); } const struct nvkm_ior_func_hdmi gv100_sor_hdmi = { .ctrl = gv100_sor_hdmi_ctrl, .scdc = gm200_sor_hdmi_scdc, .infoframe_avi = gv100_sor_hdmi_infoframe_avi, .infoframe_vsi = gv100_sor_hdmi_infoframe_vsi, }; void gv100_sor_state(struct nvkm_ior *sor, struct nvkm_ior_state *state) { struct nvkm_device *device = sor->disp->engine.subdev.device; const u32 coff = (state == &sor->arm) * 0x8000 + sor->id * 0x20; u32 ctrl = nvkm_rd32(device, 0x680300 + coff); state->proto_evo = (ctrl & 0x00000f00) >> 8; switch (state->proto_evo) { case 0: state->proto = LVDS; state->link = 1; break; case 1: state->proto = TMDS; state->link = 1; break; case 2: state->proto = TMDS; state->link = 2; break; case 5: state->proto = TMDS; state->link = 3; break; case 8: state->proto = DP; state->link = 1; break; case 9: state->proto = DP; state->link = 2; break; default: state->proto = UNKNOWN; break; } state->head = ctrl & 0x000000ff; } static const struct nvkm_ior_func gv100_sor = { .route = { .get = gm200_sor_route_get, .set = gm200_sor_route_set, }, .state = gv100_sor_state, .power = nv50_sor_power, .clock = gf119_sor_clock, .hdmi = &gv100_sor_hdmi, .dp = &gv100_sor_dp, .hda = &gv100_sor_hda, }; static int gv100_sor_new(struct nvkm_disp *disp, int id) { struct nvkm_device *device = disp->engine.subdev.device; u32 hda; if (!((hda = nvkm_rd32(device, 0x08a15c)) & 0x40000000)) hda = nvkm_rd32(device, 0x118fb0) >> 8; return nvkm_ior_new_(&gv100_sor, disp, SOR, id, hda & BIT(id)); } int gv100_sor_cnt(struct nvkm_disp *disp, unsigned long *pmask) { struct nvkm_device *device = disp->engine.subdev.device; *pmask = (nvkm_rd32(device, 0x610060) & 0x0000ff00) >> 8; return (nvkm_rd32(device, 0x610074) & 0x00000f00) >> 8; } static void gv100_head_vblank_put(struct nvkm_head *head) { struct nvkm_device *device = head->disp->engine.subdev.device; nvkm_mask(device, 0x611d80 + (head->id * 4), 0x00000004, 0x00000000); } static void gv100_head_vblank_get(struct nvkm_head *head) { struct nvkm_device *device = head->disp->engine.subdev.device; nvkm_mask(device, 0x611d80 + (head->id * 4), 0x00000004, 0x00000004); } static void gv100_head_rgpos(struct nvkm_head *head, u16 *hline, u16 *vline) { struct nvkm_device *device = head->disp->engine.subdev.device; const u32 hoff = head->id * 0x800; /* vline read locks hline. */ *vline = nvkm_rd32(device, 0x616330 + hoff) & 0x0000ffff; *hline = nvkm_rd32(device, 0x616334 + hoff) & 0x0000ffff; } static void gv100_head_state(struct nvkm_head *head, struct nvkm_head_state *state) { struct nvkm_device *device = head->disp->engine.subdev.device; const u32 hoff = (state == &head->arm) * 0x8000 + head->id * 0x400; u32 data; data = nvkm_rd32(device, 0x682064 + hoff); state->vtotal = (data & 0xffff0000) >> 16; state->htotal = (data & 0x0000ffff); data = nvkm_rd32(device, 0x682068 + hoff); state->vsynce = (data & 0xffff0000) >> 16; state->hsynce = (data & 0x0000ffff); data = nvkm_rd32(device, 0x68206c + hoff); state->vblanke = (data & 0xffff0000) >> 16; state->hblanke = (data & 0x0000ffff); data = nvkm_rd32(device, 0x682070 + hoff); state->vblanks = (data & 0xffff0000) >> 16; state->hblanks = (data & 0x0000ffff); state->hz = nvkm_rd32(device, 0x68200c + hoff); data = nvkm_rd32(device, 0x682004 + hoff); switch ((data & 0x000000f0) >> 4) { case 5: state->or.depth = 30; break; case 4: state->or.depth = 24; break; case 1: state->or.depth = 18; break; default: state->or.depth = 18; WARN_ON(1); break; } } static const struct nvkm_head_func gv100_head = { .state = gv100_head_state, .rgpos = gv100_head_rgpos, .rgclk = gf119_head_rgclk, .vblank_get = gv100_head_vblank_get, .vblank_put = gv100_head_vblank_put, }; int gv100_head_new(struct nvkm_disp *disp, int id) { struct nvkm_device *device = disp->engine.subdev.device; if (!(nvkm_rd32(device, 0x610060) & (0x00000001 << id))) return 0; return nvkm_head_new_(&gv100_head, disp, id); } int gv100_head_cnt(struct nvkm_disp *disp, unsigned long *pmask) { struct nvkm_device *device = disp->engine.subdev.device; *pmask = nvkm_rd32(device, 0x610060) & 0x000000ff; return nvkm_rd32(device, 0x610074) & 0x0000000f; } const struct nvkm_event_func gv100_disp_chan_uevent = { }; u64 gv100_disp_chan_user(struct nvkm_disp_chan *chan, u64 *psize) { *psize = 0x1000; return 0x690000 + ((chan->chid.user - 1) * 0x1000); } static int gv100_disp_dmac_idle(struct nvkm_disp_chan *chan) { struct nvkm_device *device = chan->disp->engine.subdev.device; const u32 soff = (chan->chid.ctrl - 1) * 0x04; nvkm_msec(device, 2000, u32 stat = nvkm_rd32(device, 0x610664 + soff); if ((stat & 0x000f0000) == 0x00040000) return 0; ); return -EBUSY; } int gv100_disp_dmac_bind(struct nvkm_disp_chan *chan, struct nvkm_object *object, u32 handle) { return nvkm_ramht_insert(chan->disp->ramht, object, chan->chid.user, -9, handle, chan->chid.user << 25 | 0x00000040); } void gv100_disp_dmac_fini(struct nvkm_disp_chan *chan) { struct nvkm_device *device = chan->disp->engine.subdev.device; const u32 uoff = (chan->chid.ctrl - 1) * 0x1000; const u32 coff = chan->chid.ctrl * 0x04; nvkm_mask(device, 0x6104e0 + coff, 0x00000010, 0x00000000); gv100_disp_dmac_idle(chan); nvkm_mask(device, 0x6104e0 + coff, 0x00000002, 0x00000000); chan->suspend_put = nvkm_rd32(device, 0x690000 + uoff); } int gv100_disp_dmac_init(struct nvkm_disp_chan *chan) { struct nvkm_subdev *subdev = &chan->disp->engine.subdev; struct nvkm_device *device = subdev->device; const u32 uoff = (chan->chid.ctrl - 1) * 0x1000; const u32 poff = chan->chid.ctrl * 0x10; const u32 coff = chan->chid.ctrl * 0x04; nvkm_wr32(device, 0x610b24 + poff, lower_32_bits(chan->push)); nvkm_wr32(device, 0x610b20 + poff, upper_32_bits(chan->push)); nvkm_wr32(device, 0x610b28 + poff, 0x00000001); nvkm_wr32(device, 0x610b2c + poff, 0x00000040); nvkm_mask(device, 0x6104e0 + coff, 0x00000010, 0x00000010); nvkm_wr32(device, 0x690000 + uoff, chan->suspend_put); nvkm_wr32(device, 0x6104e0 + coff, 0x00000013); return gv100_disp_dmac_idle(chan); } static void gv100_disp_wimm_intr(struct nvkm_disp_chan *chan, bool en) { struct nvkm_device *device = chan->disp->engine.subdev.device; const u32 mask = 0x00000001 << chan->head; const u32 data = en ? mask : 0; nvkm_mask(device, 0x611da8, mask, data); } static const struct nvkm_disp_chan_func gv100_disp_wimm_func = { .push = nv50_disp_dmac_push, .init = gv100_disp_dmac_init, .fini = gv100_disp_dmac_fini, .intr = gv100_disp_wimm_intr, .user = gv100_disp_chan_user, }; const struct nvkm_disp_chan_user gv100_disp_wimm = { .func = &gv100_disp_wimm_func, .ctrl = 33, .user = 33, }; static const struct nvkm_disp_mthd_list gv100_disp_wndw_mthd_base = { .mthd = 0x0000, .addr = 0x000000, .data = { { 0x0200, 0x690200 }, { 0x020c, 0x69020c }, { 0x0210, 0x690210 }, { 0x0214, 0x690214 }, { 0x0218, 0x690218 }, { 0x021c, 0x69021c }, { 0x0220, 0x690220 }, { 0x0224, 0x690224 }, { 0x0228, 0x690228 }, { 0x022c, 0x69022c }, { 0x0230, 0x690230 }, { 0x0234, 0x690234 }, { 0x0238, 0x690238 }, { 0x0240, 0x690240 }, { 0x0244, 0x690244 }, { 0x0248, 0x690248 }, { 0x024c, 0x69024c }, { 0x0250, 0x690250 }, { 0x0254, 0x690254 }, { 0x0260, 0x690260 }, { 0x0264, 0x690264 }, { 0x0268, 0x690268 }, { 0x026c, 0x69026c }, { 0x0270, 0x690270 }, { 0x0274, 0x690274 }, { 0x0280, 0x690280 }, { 0x0284, 0x690284 }, { 0x0288, 0x690288 }, { 0x028c, 0x69028c }, { 0x0290, 0x690290 }, { 0x0298, 0x690298 }, { 0x029c, 0x69029c }, { 0x02a0, 0x6902a0 }, { 0x02a4, 0x6902a4 }, { 0x02a8, 0x6902a8 }, { 0x02ac, 0x6902ac }, { 0x02b0, 0x6902b0 }, { 0x02b4, 0x6902b4 }, { 0x02b8, 0x6902b8 }, { 0x02bc, 0x6902bc }, { 0x02c0, 0x6902c0 }, { 0x02c4, 0x6902c4 }, { 0x02c8, 0x6902c8 }, { 0x02cc, 0x6902cc }, { 0x02d0, 0x6902d0 }, { 0x02d4, 0x6902d4 }, { 0x02d8, 0x6902d8 }, { 0x02dc, 0x6902dc }, { 0x02e0, 0x6902e0 }, { 0x02e4, 0x6902e4 }, { 0x02e8, 0x6902e8 }, { 0x02ec, 0x6902ec }, { 0x02f0, 0x6902f0 }, { 0x02f4, 0x6902f4 }, { 0x02f8, 0x6902f8 }, { 0x02fc, 0x6902fc }, { 0x0300, 0x690300 }, { 0x0304, 0x690304 }, { 0x0308, 0x690308 }, { 0x0310, 0x690310 }, { 0x0314, 0x690314 }, { 0x0318, 0x690318 }, { 0x031c, 0x69031c }, { 0x0320, 0x690320 }, { 0x0324, 0x690324 }, { 0x0328, 0x690328 }, { 0x032c, 0x69032c }, { 0x033c, 0x69033c }, { 0x0340, 0x690340 }, { 0x0344, 0x690344 }, { 0x0348, 0x690348 }, { 0x034c, 0x69034c }, { 0x0350, 0x690350 }, { 0x0354, 0x690354 }, { 0x0358, 0x690358 }, { 0x0364, 0x690364 }, { 0x0368, 0x690368 }, { 0x036c, 0x69036c }, { 0x0370, 0x690370 }, { 0x0374, 0x690374 }, { 0x0380, 0x690380 }, {} } }; static const struct nvkm_disp_chan_mthd gv100_disp_wndw_mthd = { .name = "Window", .addr = 0x001000, .prev = 0x000800, .data = { { "Global", 1, &gv100_disp_wndw_mthd_base }, {} } }; static void gv100_disp_wndw_intr(struct nvkm_disp_chan *chan, bool en) { struct nvkm_device *device = chan->disp->engine.subdev.device; const u32 mask = 0x00000001 << chan->head; const u32 data = en ? mask : 0; nvkm_mask(device, 0x611da4, mask, data); } static const struct nvkm_disp_chan_func gv100_disp_wndw_func = { .push = nv50_disp_dmac_push, .init = gv100_disp_dmac_init, .fini = gv100_disp_dmac_fini, .intr = gv100_disp_wndw_intr, .user = gv100_disp_chan_user, .bind = gv100_disp_dmac_bind, }; const struct nvkm_disp_chan_user gv100_disp_wndw = { .func = &gv100_disp_wndw_func, .ctrl = 1, .user = 1, .mthd = &gv100_disp_wndw_mthd, }; int gv100_disp_wndw_cnt(struct nvkm_disp *disp, unsigned long *pmask) { struct nvkm_device *device = disp->engine.subdev.device; *pmask = nvkm_rd32(device, 0x610064); return (nvkm_rd32(device, 0x610074) & 0x03f00000) >> 20; } static int gv100_disp_curs_idle(struct nvkm_disp_chan *chan) { struct nvkm_device *device = chan->disp->engine.subdev.device; const u32 soff = (chan->chid.ctrl - 1) * 0x04; nvkm_msec(device, 2000, u32 stat = nvkm_rd32(device, 0x610664 + soff); if ((stat & 0x00070000) == 0x00040000) return 0; ); return -EBUSY; } static void gv100_disp_curs_intr(struct nvkm_disp_chan *chan, bool en) { struct nvkm_device *device = chan->disp->engine.subdev.device; const u32 mask = 0x00010000 << chan->head; const u32 data = en ? mask : 0; nvkm_mask(device, 0x611dac, mask, data); } static void gv100_disp_curs_fini(struct nvkm_disp_chan *chan) { struct nvkm_device *device = chan->disp->engine.subdev.device; const u32 hoff = chan->chid.ctrl * 4; nvkm_mask(device, 0x6104e0 + hoff, 0x00000010, 0x00000010); gv100_disp_curs_idle(chan); nvkm_mask(device, 0x6104e0 + hoff, 0x00000001, 0x00000000); } static int gv100_disp_curs_init(struct nvkm_disp_chan *chan) { struct nvkm_subdev *subdev = &chan->disp->engine.subdev; struct nvkm_device *device = subdev->device; nvkm_wr32(device, 0x6104e0 + chan->chid.ctrl * 4, 0x00000001); return gv100_disp_curs_idle(chan); } static const struct nvkm_disp_chan_func gv100_disp_curs_func = { .init = gv100_disp_curs_init, .fini = gv100_disp_curs_fini, .intr = gv100_disp_curs_intr, .user = gv100_disp_chan_user, }; const struct nvkm_disp_chan_user gv100_disp_curs = { .func = &gv100_disp_curs_func, .ctrl = 73, .user = 73, }; const struct nvkm_disp_mthd_list gv100_disp_core_mthd_base = { .mthd = 0x0000, .addr = 0x000000, .data = { { 0x0200, 0x680200 }, { 0x0208, 0x680208 }, { 0x020c, 0x68020c }, { 0x0210, 0x680210 }, { 0x0214, 0x680214 }, { 0x0218, 0x680218 }, { 0x021c, 0x68021c }, {} } }; static const struct nvkm_disp_mthd_list gv100_disp_core_mthd_sor = { .mthd = 0x0020, .addr = 0x000020, .data = { { 0x0300, 0x680300 }, { 0x0304, 0x680304 }, { 0x0308, 0x680308 }, { 0x030c, 0x68030c }, {} } }; static const struct nvkm_disp_mthd_list gv100_disp_core_mthd_wndw = { .mthd = 0x0080, .addr = 0x000080, .data = { { 0x1000, 0x681000 }, { 0x1004, 0x681004 }, { 0x1008, 0x681008 }, { 0x100c, 0x68100c }, { 0x1010, 0x681010 }, {} } }; static const struct nvkm_disp_mthd_list gv100_disp_core_mthd_head = { .mthd = 0x0400, .addr = 0x000400, .data = { { 0x2000, 0x682000 }, { 0x2004, 0x682004 }, { 0x2008, 0x682008 }, { 0x200c, 0x68200c }, { 0x2014, 0x682014 }, { 0x2018, 0x682018 }, { 0x201c, 0x68201c }, { 0x2020, 0x682020 }, { 0x2028, 0x682028 }, { 0x202c, 0x68202c }, { 0x2030, 0x682030 }, { 0x2038, 0x682038 }, { 0x203c, 0x68203c }, { 0x2048, 0x682048 }, { 0x204c, 0x68204c }, { 0x2050, 0x682050 }, { 0x2054, 0x682054 }, { 0x2058, 0x682058 }, { 0x205c, 0x68205c }, { 0x2060, 0x682060 }, { 0x2064, 0x682064 }, { 0x2068, 0x682068 }, { 0x206c, 0x68206c }, { 0x2070, 0x682070 }, { 0x2074, 0x682074 }, { 0x2078, 0x682078 }, { 0x207c, 0x68207c }, { 0x2080, 0x682080 }, { 0x2088, 0x682088 }, { 0x2090, 0x682090 }, { 0x209c, 0x68209c }, { 0x20a0, 0x6820a0 }, { 0x20a4, 0x6820a4 }, { 0x20a8, 0x6820a8 }, { 0x20ac, 0x6820ac }, { 0x2180, 0x682180 }, { 0x2184, 0x682184 }, { 0x218c, 0x68218c }, { 0x2194, 0x682194 }, { 0x2198, 0x682198 }, { 0x219c, 0x68219c }, { 0x21a0, 0x6821a0 }, { 0x21a4, 0x6821a4 }, { 0x2214, 0x682214 }, { 0x2218, 0x682218 }, {} } }; static const struct nvkm_disp_chan_mthd gv100_disp_core_mthd = { .name = "Core", .addr = 0x000000, .prev = 0x008000, .data = { { "Global", 1, &gv100_disp_core_mthd_base }, { "SOR", 4, &gv100_disp_core_mthd_sor }, { "WINDOW", 8, &gv100_disp_core_mthd_wndw }, { "HEAD", 4, &gv100_disp_core_mthd_head }, {} } }; static int gv100_disp_core_idle(struct nvkm_disp_chan *chan) { struct nvkm_device *device = chan->disp->engine.subdev.device; nvkm_msec(device, 2000, u32 stat = nvkm_rd32(device, 0x610630); if ((stat & 0x001f0000) == 0x000b0000) return 0; ); return -EBUSY; } static u64 gv100_disp_core_user(struct nvkm_disp_chan *chan, u64 *psize) { *psize = 0x10000; return 0x680000; } static void gv100_disp_core_intr(struct nvkm_disp_chan *chan, bool en) { struct nvkm_device *device = chan->disp->engine.subdev.device; const u32 mask = 0x00000001; const u32 data = en ? mask : 0; nvkm_mask(device, 0x611dac, mask, data); } static void gv100_disp_core_fini(struct nvkm_disp_chan *chan) { struct nvkm_device *device = chan->disp->engine.subdev.device; nvkm_mask(device, 0x6104e0, 0x00000010, 0x00000000); gv100_disp_core_idle(chan); nvkm_mask(device, 0x6104e0, 0x00000002, 0x00000000); chan->suspend_put = nvkm_rd32(device, 0x680000); } static int gv100_disp_core_init(struct nvkm_disp_chan *chan) { struct nvkm_subdev *subdev = &chan->disp->engine.subdev; struct nvkm_device *device = subdev->device; nvkm_wr32(device, 0x610b24, lower_32_bits(chan->push)); nvkm_wr32(device, 0x610b20, upper_32_bits(chan->push)); nvkm_wr32(device, 0x610b28, 0x00000001); nvkm_wr32(device, 0x610b2c, 0x00000040); nvkm_mask(device, 0x6104e0, 0x00000010, 0x00000010); nvkm_wr32(device, 0x680000, chan->suspend_put); nvkm_wr32(device, 0x6104e0, 0x00000013); return gv100_disp_core_idle(chan); } static const struct nvkm_disp_chan_func gv100_disp_core_func = { .push = nv50_disp_dmac_push, .init = gv100_disp_core_init, .fini = gv100_disp_core_fini, .intr = gv100_disp_core_intr, .user = gv100_disp_core_user, .bind = gv100_disp_dmac_bind, }; const struct nvkm_disp_chan_user gv100_disp_core = { .func = &gv100_disp_core_func, .ctrl = 0, .user = 0, .mthd = &gv100_disp_core_mthd, }; #define gv100_disp_caps(p) container_of((p), struct gv100_disp_caps, object) struct gv100_disp_caps { struct nvkm_object object; struct nvkm_disp *disp; }; static int gv100_disp_caps_map(struct nvkm_object *object, void *argv, u32 argc, enum nvkm_object_map *type, u64 *addr, u64 *size) { struct gv100_disp_caps *caps = gv100_disp_caps(object); struct nvkm_device *device = caps->disp->engine.subdev.device; *type = NVKM_OBJECT_MAP_IO; *addr = 0x640000 + device->func->resource_addr(device, 0); *size = 0x1000; return 0; } static const struct nvkm_object_func gv100_disp_caps = { .map = gv100_disp_caps_map, }; int gv100_disp_caps_new(const struct nvkm_oclass *oclass, void *argv, u32 argc, struct nvkm_object **pobject) { struct nvkm_disp *disp = nvkm_udisp(oclass->parent); struct gv100_disp_caps *caps; if (!(caps = kzalloc(sizeof(*caps), GFP_KERNEL))) return -ENOMEM; *pobject = &caps->object; nvkm_object_ctor(&gv100_disp_caps, oclass, &caps->object); caps->disp = disp; return 0; } void gv100_disp_super(struct work_struct *work) { struct nvkm_disp *disp = container_of(work, struct nvkm_disp, super.work); struct nvkm_subdev *subdev = &disp->engine.subdev; struct nvkm_device *device = subdev->device; struct nvkm_head *head; u32 stat, mask[4]; mutex_lock(&disp->super.mutex); stat = nvkm_rd32(device, 0x6107a8); nvkm_debug(subdev, "supervisor %d: %08x\n", ffs(disp->super.pending), stat); list_for_each_entry(head, &disp->heads, head) { mask[head->id] = nvkm_rd32(device, 0x6107ac + (head->id * 4)); HEAD_DBG(head, "%08x", mask[head->id]); } if (disp->super.pending & 0x00000001) { nv50_disp_chan_mthd(disp->chan[0], NV_DBG_DEBUG); nv50_disp_super_1(disp); list_for_each_entry(head, &disp->heads, head) { if (!(mask[head->id] & 0x00001000)) continue; nv50_disp_super_1_0(disp, head); } } else if (disp->super.pending & 0x00000002) { list_for_each_entry(head, &disp->heads, head) { if (!(mask[head->id] & 0x00001000)) continue; nv50_disp_super_2_0(disp, head); } nvkm_outp_route(disp); list_for_each_entry(head, &disp->heads, head) { if (!(mask[head->id] & 0x00010000)) continue; nv50_disp_super_2_1(disp, head); } list_for_each_entry(head, &disp->heads, head) { if (!(mask[head->id] & 0x00001000)) continue; nv50_disp_super_2_2(disp, head); } } else if (disp->super.pending & 0x00000004) { list_for_each_entry(head, &disp->heads, head) { if (!(mask[head->id] & 0x00001000)) continue; nv50_disp_super_3_0(disp, head); } } list_for_each_entry(head, &disp->heads, head) nvkm_wr32(device, 0x6107ac + (head->id * 4), 0x00000000); nvkm_wr32(device, 0x6107a8, 0x80000000); mutex_unlock(&disp->super.mutex); } static void gv100_disp_exception(struct nvkm_disp *disp, int chid) { struct nvkm_subdev *subdev = &disp->engine.subdev; struct nvkm_device *device = subdev->device; u32 stat = nvkm_rd32(device, 0x611020 + (chid * 12)); u32 type = (stat & 0x00007000) >> 12; u32 mthd = (stat & 0x00000fff) << 2; const struct nvkm_enum *reason = nvkm_enum_find(nv50_disp_intr_error_type, type); /*TODO: Suspect 33->41 are for WRBK channel exceptions, but we * don't support those currently. * * CORE+WIN CHIDs map directly to the FE_EXCEPT() slots. */ if (chid <= 32) { u32 data = nvkm_rd32(device, 0x611024 + (chid * 12)); u32 code = nvkm_rd32(device, 0x611028 + (chid * 12)); nvkm_error(subdev, "chid %d stat %08x reason %d [%s] " "mthd %04x data %08x code %08x\n", chid, stat, type, reason ? reason->name : "", mthd, data, code); } else { nvkm_error(subdev, "chid %d stat %08x reason %d [%s] " "mthd %04x\n", chid, stat, type, reason ? reason->name : "", mthd); } if (chid < ARRAY_SIZE(disp->chan) && disp->chan[chid]) { switch (mthd) { case 0x0200: nv50_disp_chan_mthd(disp->chan[chid], NV_DBG_ERROR); break; default: break; } } nvkm_wr32(device, 0x611020 + (chid * 12), 0x90000000); } static void gv100_disp_intr_ctrl_disp(struct nvkm_disp *disp) { struct nvkm_subdev *subdev = &disp->engine.subdev; struct nvkm_device *device = subdev->device; u32 stat = nvkm_rd32(device, 0x611c30); if (stat & 0x00000007) { disp->super.pending = (stat & 0x00000007); queue_work(disp->super.wq, &disp->super.work); nvkm_wr32(device, 0x611860, disp->super.pending); stat &= ~0x00000007; } /*TODO: I would guess this is VBIOS_RELEASE, however, NFI how to * ACK it, nor does RM appear to bother. */ if (stat & 0x00000008) stat &= ~0x00000008; if (stat & 0x00000080) { u32 error = nvkm_mask(device, 0x611848, 0x00000000, 0x00000000); nvkm_warn(subdev, "error %08x\n", error); stat &= ~0x00000080; } if (stat & 0x00000100) { unsigned long wndws = nvkm_rd32(device, 0x611858); unsigned long other = nvkm_rd32(device, 0x61185c); int wndw; nvkm_wr32(device, 0x611858, wndws); nvkm_wr32(device, 0x61185c, other); /* AWAKEN_OTHER_CORE. */ if (other & 0x00000001) nv50_disp_chan_uevent_send(disp, 0); /* AWAKEN_WIN_CH(n). */ for_each_set_bit(wndw, &wndws, disp->wndw.nr) { nv50_disp_chan_uevent_send(disp, 1 + wndw); } } if (stat) nvkm_warn(subdev, "ctrl %08x\n", stat); } static void gv100_disp_intr_exc_other(struct nvkm_disp *disp) { struct nvkm_subdev *subdev = &disp->engine.subdev; struct nvkm_device *device = subdev->device; u32 stat = nvkm_rd32(device, 0x611854); unsigned long mask; int head; if (stat & 0x00000001) { nvkm_wr32(device, 0x611854, 0x00000001); gv100_disp_exception(disp, 0); stat &= ~0x00000001; } if ((mask = (stat & 0x00ff0000) >> 16)) { for_each_set_bit(head, &mask, disp->wndw.nr) { nvkm_wr32(device, 0x611854, 0x00010000 << head); gv100_disp_exception(disp, 73 + head); stat &= ~(0x00010000 << head); } } if (stat) { nvkm_warn(subdev, "exception %08x\n", stat); nvkm_wr32(device, 0x611854, stat); } } static void gv100_disp_intr_exc_winim(struct nvkm_disp *disp) { struct nvkm_subdev *subdev = &disp->engine.subdev; struct nvkm_device *device = subdev->device; unsigned long stat = nvkm_rd32(device, 0x611850); int wndw; for_each_set_bit(wndw, &stat, disp->wndw.nr) { nvkm_wr32(device, 0x611850, BIT(wndw)); gv100_disp_exception(disp, 33 + wndw); stat &= ~BIT(wndw); } if (stat) { nvkm_warn(subdev, "wimm %08x\n", (u32)stat); nvkm_wr32(device, 0x611850, stat); } } static void gv100_disp_intr_exc_win(struct nvkm_disp *disp) { struct nvkm_subdev *subdev = &disp->engine.subdev; struct nvkm_device *device = subdev->device; unsigned long stat = nvkm_rd32(device, 0x61184c); int wndw; for_each_set_bit(wndw, &stat, disp->wndw.nr) { nvkm_wr32(device, 0x61184c, BIT(wndw)); gv100_disp_exception(disp, 1 + wndw); stat &= ~BIT(wndw); } if (stat) { nvkm_warn(subdev, "wndw %08x\n", (u32)stat); nvkm_wr32(device, 0x61184c, stat); } } static void gv100_disp_intr_head_timing(struct nvkm_disp *disp, int head) { struct nvkm_subdev *subdev = &disp->engine.subdev; struct nvkm_device *device = subdev->device; u32 stat = nvkm_rd32(device, 0x611800 + (head * 0x04)); /* LAST_DATA, LOADV. */ if (stat & 0x00000003) { nvkm_wr32(device, 0x611800 + (head * 0x04), stat & 0x00000003); stat &= ~0x00000003; } if (stat & 0x00000004) { nvkm_disp_vblank(disp, head); nvkm_wr32(device, 0x611800 + (head * 0x04), 0x00000004); stat &= ~0x00000004; } if (stat) { nvkm_warn(subdev, "head %08x\n", stat); nvkm_wr32(device, 0x611800 + (head * 0x04), stat); } } void gv100_disp_intr(struct nvkm_disp *disp) { struct nvkm_subdev *subdev = &disp->engine.subdev; struct nvkm_device *device = subdev->device; u32 stat = nvkm_rd32(device, 0x611ec0); unsigned long mask; int head; if ((mask = (stat & 0x000000ff))) { for_each_set_bit(head, &mask, 8) { gv100_disp_intr_head_timing(disp, head); stat &= ~BIT(head); } } if (stat & 0x00000200) { gv100_disp_intr_exc_win(disp); stat &= ~0x00000200; } if (stat & 0x00000400) { gv100_disp_intr_exc_winim(disp); stat &= ~0x00000400; } if (stat & 0x00000800) { gv100_disp_intr_exc_other(disp); stat &= ~0x00000800; } if (stat & 0x00001000) { gv100_disp_intr_ctrl_disp(disp); stat &= ~0x00001000; } if (stat) nvkm_warn(subdev, "intr %08x\n", stat); } void gv100_disp_fini(struct nvkm_disp *disp) { struct nvkm_device *device = disp->engine.subdev.device; nvkm_wr32(device, 0x611db0, 0x00000000); } static int gv100_disp_init(struct nvkm_disp *disp) { struct nvkm_device *device = disp->engine.subdev.device; struct nvkm_head *head; int i, j; u32 tmp; /* Claim ownership of display. */ if (nvkm_rd32(device, 0x6254e8) & 0x00000002) { nvkm_mask(device, 0x6254e8, 0x00000001, 0x00000000); if (nvkm_msec(device, 2000, if (!(nvkm_rd32(device, 0x6254e8) & 0x00000002)) break; ) < 0) return -EBUSY; } /* Lock pin capabilities. */ tmp = nvkm_rd32(device, 0x610068); nvkm_wr32(device, 0x640008, tmp); /* SOR capabilities. */ for (i = 0; i < disp->sor.nr; i++) { tmp = nvkm_rd32(device, 0x61c000 + (i * 0x800)); nvkm_mask(device, 0x640000, 0x00000100 << i, 0x00000100 << i); nvkm_wr32(device, 0x640144 + (i * 0x08), tmp); } /* Head capabilities. */ list_for_each_entry(head, &disp->heads, head) { const int id = head->id; /* RG. */ tmp = nvkm_rd32(device, 0x616300 + (id * 0x800)); nvkm_wr32(device, 0x640048 + (id * 0x020), tmp); /* POSTCOMP. */ for (j = 0; j < 6 * 4; j += 4) { tmp = nvkm_rd32(device, 0x616100 + (id * 0x800) + j); nvkm_wr32(device, 0x640030 + (id * 0x20) + j, tmp); } } /* Window capabilities. */ for (i = 0; i < disp->wndw.nr; i++) { nvkm_mask(device, 0x640004, 1 << i, 1 << i); for (j = 0; j < 6 * 4; j += 4) { tmp = nvkm_rd32(device, 0x630050 + (i * 0x800) + j); nvkm_wr32(device, 0x6401e4 + (i * 0x20) + j, tmp); } } /* IHUB capabilities. */ for (i = 0; i < 4; i++) { tmp = nvkm_rd32(device, 0x62e000 + (i * 0x04)); nvkm_wr32(device, 0x640010 + (i * 0x04), tmp); } nvkm_mask(device, 0x610078, 0x00000001, 0x00000001); /* Setup instance memory. */ switch (nvkm_memory_target(disp->inst->memory)) { case NVKM_MEM_TARGET_VRAM: tmp = 0x00000001; break; case NVKM_MEM_TARGET_NCOH: tmp = 0x00000002; break; case NVKM_MEM_TARGET_HOST: tmp = 0x00000003; break; default: break; } nvkm_wr32(device, 0x610010, 0x00000008 | tmp); nvkm_wr32(device, 0x610014, disp->inst->addr >> 16); /* CTRL_DISP: AWAKEN, ERROR, SUPERVISOR[1-3]. */ nvkm_wr32(device, 0x611cf0, 0x00000187); /* MSK. */ nvkm_wr32(device, 0x611db0, 0x00000187); /* EN. */ /* EXC_OTHER: CURSn, CORE. */ nvkm_wr32(device, 0x611cec, disp->head.mask << 16 | 0x00000001); /* MSK. */ nvkm_wr32(device, 0x611dac, 0x00000000); /* EN. */ /* EXC_WINIM. */ nvkm_wr32(device, 0x611ce8, disp->wndw.mask); /* MSK. */ nvkm_wr32(device, 0x611da8, 0x00000000); /* EN. */ /* EXC_WIN. */ nvkm_wr32(device, 0x611ce4, disp->wndw.mask); /* MSK. */ nvkm_wr32(device, 0x611da4, 0x00000000); /* EN. */ /* HEAD_TIMING(n): VBLANK. */ list_for_each_entry(head, &disp->heads, head) { const u32 hoff = head->id * 4; nvkm_wr32(device, 0x611cc0 + hoff, 0x00000004); /* MSK. */ nvkm_wr32(device, 0x611d80 + hoff, 0x00000000); /* EN. */ } /* OR. */ nvkm_wr32(device, 0x611cf4, 0x00000000); /* MSK. */ nvkm_wr32(device, 0x611db4, 0x00000000); /* EN. */ return 0; } static const struct nvkm_disp_func gv100_disp = { .oneinit = nv50_disp_oneinit, .init = gv100_disp_init, .fini = gv100_disp_fini, .intr = gv100_disp_intr, .super = gv100_disp_super, .uevent = &gv100_disp_chan_uevent, .wndw = { .cnt = gv100_disp_wndw_cnt }, .head = { .cnt = gv100_head_cnt, .new = gv100_head_new }, .sor = { .cnt = gv100_sor_cnt, .new = gv100_sor_new }, .ramht_size = 0x2000, .root = { 0, 0,GV100_DISP }, .user = { {{-1,-1,GV100_DISP_CAPS }, gv100_disp_caps_new }, {{ 0, 0,GV100_DISP_CURSOR }, nvkm_disp_chan_new, &gv100_disp_curs }, {{ 0, 0,GV100_DISP_WINDOW_IMM_CHANNEL_DMA}, nvkm_disp_wndw_new, &gv100_disp_wimm }, {{ 0, 0,GV100_DISP_CORE_CHANNEL_DMA }, nvkm_disp_core_new, &gv100_disp_core }, {{ 0, 0,GV100_DISP_WINDOW_CHANNEL_DMA }, nvkm_disp_wndw_new, &gv100_disp_wndw }, {} }, }; int gv100_disp_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst, struct nvkm_disp **pdisp) { return nvkm_disp_new_(&gv100_disp, device, type, inst, pdisp); }