// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved. * Copyright (c) 2015-2018, The Linux Foundation. All rights reserved. */ #include "dpu_hwio.h" #include "dpu_hw_catalog.h" #include "dpu_hw_intf.h" #include "dpu_kms.h" #include "dpu_trace.h" #include #define INTF_TIMING_ENGINE_EN 0x000 #define INTF_CONFIG 0x004 #define INTF_HSYNC_CTL 0x008 #define INTF_VSYNC_PERIOD_F0 0x00C #define INTF_VSYNC_PERIOD_F1 0x010 #define INTF_VSYNC_PULSE_WIDTH_F0 0x014 #define INTF_VSYNC_PULSE_WIDTH_F1 0x018 #define INTF_DISPLAY_V_START_F0 0x01C #define INTF_DISPLAY_V_START_F1 0x020 #define INTF_DISPLAY_V_END_F0 0x024 #define INTF_DISPLAY_V_END_F1 0x028 #define INTF_ACTIVE_V_START_F0 0x02C #define INTF_ACTIVE_V_START_F1 0x030 #define INTF_ACTIVE_V_END_F0 0x034 #define INTF_ACTIVE_V_END_F1 0x038 #define INTF_DISPLAY_HCTL 0x03C #define INTF_ACTIVE_HCTL 0x040 #define INTF_BORDER_COLOR 0x044 #define INTF_UNDERFLOW_COLOR 0x048 #define INTF_HSYNC_SKEW 0x04C #define INTF_POLARITY_CTL 0x050 #define INTF_TEST_CTL 0x054 #define INTF_TP_COLOR0 0x058 #define INTF_TP_COLOR1 0x05C #define INTF_CONFIG2 0x060 #define INTF_DISPLAY_DATA_HCTL 0x064 #define INTF_ACTIVE_DATA_HCTL 0x068 #define INTF_DSI_CMD_MODE_TRIGGER_EN 0x084 #define INTF_PANEL_FORMAT 0x090 #define INTF_FRAME_LINE_COUNT_EN 0x0A8 #define INTF_FRAME_COUNT 0x0AC #define INTF_LINE_COUNT 0x0B0 #define INTF_DEFLICKER_CONFIG 0x0F0 #define INTF_DEFLICKER_STRNG_COEFF 0x0F4 #define INTF_DEFLICKER_WEAK_COEFF 0x0F8 #define INTF_TPG_ENABLE 0x100 #define INTF_TPG_MAIN_CONTROL 0x104 #define INTF_TPG_VIDEO_CONFIG 0x108 #define INTF_TPG_COMPONENT_LIMITS 0x10C #define INTF_TPG_RECTANGLE 0x110 #define INTF_TPG_INITIAL_VALUE 0x114 #define INTF_TPG_BLK_WHITE_PATTERN_FRAMES 0x118 #define INTF_TPG_RGB_MAPPING 0x11C #define INTF_PROG_FETCH_START 0x170 #define INTF_PROG_ROT_START 0x174 #define INTF_MISR_CTRL 0x180 #define INTF_MISR_SIGNATURE 0x184 #define INTF_MUX 0x25C #define INTF_STATUS 0x26C #define INTF_AVR_CONTROL 0x270 #define INTF_AVR_MODE 0x274 #define INTF_AVR_TRIGGER 0x278 #define INTF_AVR_VTOTAL 0x27C #define INTF_TEAR_MDP_VSYNC_SEL 0x280 #define INTF_TEAR_TEAR_CHECK_EN 0x284 #define INTF_TEAR_SYNC_CONFIG_VSYNC 0x288 #define INTF_TEAR_SYNC_CONFIG_HEIGHT 0x28C #define INTF_TEAR_SYNC_WRCOUNT 0x290 #define INTF_TEAR_VSYNC_INIT_VAL 0x294 #define INTF_TEAR_INT_COUNT_VAL 0x298 #define INTF_TEAR_SYNC_THRESH 0x29C #define INTF_TEAR_START_POS 0x2A0 #define INTF_TEAR_RD_PTR_IRQ 0x2A4 #define INTF_TEAR_WR_PTR_IRQ 0x2A8 #define INTF_TEAR_OUT_LINE_COUNT 0x2AC #define INTF_TEAR_LINE_COUNT 0x2B0 #define INTF_TEAR_AUTOREFRESH_CONFIG 0x2B4 #define INTF_CFG_ACTIVE_H_EN BIT(29) #define INTF_CFG_ACTIVE_V_EN BIT(30) #define INTF_CFG2_DATABUS_WIDEN BIT(0) #define INTF_CFG2_DATA_HCTL_EN BIT(4) #define INTF_CFG2_DCE_DATA_COMPRESS BIT(12) static void dpu_hw_intf_setup_timing_engine(struct dpu_hw_intf *ctx, const struct dpu_hw_intf_timing_params *p, const struct dpu_format *fmt) { struct dpu_hw_blk_reg_map *c = &ctx->hw; u32 hsync_period, vsync_period; u32 display_v_start, display_v_end; u32 hsync_start_x, hsync_end_x; u32 hsync_data_start_x, hsync_data_end_x; u32 active_h_start, active_h_end; u32 active_v_start, active_v_end; u32 active_hctl, display_hctl, hsync_ctl; u32 polarity_ctl, den_polarity; u32 panel_format; u32 intf_cfg, intf_cfg2 = 0; u32 display_data_hctl = 0, active_data_hctl = 0; u32 data_width; bool dp_intf = false; /* read interface_cfg */ intf_cfg = DPU_REG_READ(c, INTF_CONFIG); if (ctx->cap->type == INTF_DP) dp_intf = true; hsync_period = p->hsync_pulse_width + p->h_back_porch + p->width + p->h_front_porch; vsync_period = p->vsync_pulse_width + p->v_back_porch + p->height + p->v_front_porch; display_v_start = ((p->vsync_pulse_width + p->v_back_porch) * hsync_period) + p->hsync_skew; display_v_end = ((vsync_period - p->v_front_porch) * hsync_period) + p->hsync_skew - 1; hsync_start_x = p->h_back_porch + p->hsync_pulse_width; hsync_end_x = hsync_period - p->h_front_porch - 1; if (p->width != p->xres) { /* border fill added */ active_h_start = hsync_start_x; active_h_end = active_h_start + p->xres - 1; } else { active_h_start = 0; active_h_end = 0; } if (p->height != p->yres) { /* border fill added */ active_v_start = display_v_start; active_v_end = active_v_start + (p->yres * hsync_period) - 1; } else { active_v_start = 0; active_v_end = 0; } if (active_h_end) { active_hctl = (active_h_end << 16) | active_h_start; intf_cfg |= INTF_CFG_ACTIVE_H_EN; } else { active_hctl = 0; } if (active_v_end) intf_cfg |= INTF_CFG_ACTIVE_V_EN; hsync_ctl = (hsync_period << 16) | p->hsync_pulse_width; display_hctl = (hsync_end_x << 16) | hsync_start_x; if (p->wide_bus_en) intf_cfg2 |= INTF_CFG2_DATABUS_WIDEN; data_width = p->width; hsync_data_start_x = hsync_start_x; hsync_data_end_x = hsync_start_x + data_width - 1; display_data_hctl = (hsync_data_end_x << 16) | hsync_data_start_x; if (dp_intf) { /* DP timing adjustment */ display_v_start += p->hsync_pulse_width + p->h_back_porch; display_v_end -= p->h_front_porch; active_h_start = hsync_start_x; active_h_end = active_h_start + p->xres - 1; active_v_start = display_v_start; active_v_end = active_v_start + (p->yres * hsync_period) - 1; active_hctl = (active_h_end << 16) | active_h_start; display_hctl = active_hctl; intf_cfg |= INTF_CFG_ACTIVE_H_EN | INTF_CFG_ACTIVE_V_EN; } den_polarity = 0; polarity_ctl = (den_polarity << 2) | /* DEN Polarity */ (p->vsync_polarity << 1) | /* VSYNC Polarity */ (p->hsync_polarity << 0); /* HSYNC Polarity */ if (!DPU_FORMAT_IS_YUV(fmt)) panel_format = (fmt->bits[C0_G_Y] | (fmt->bits[C1_B_Cb] << 2) | (fmt->bits[C2_R_Cr] << 4) | (0x21 << 8)); else /* Interface treats all the pixel data in RGB888 format */ panel_format = (COLOR_8BIT | (COLOR_8BIT << 2) | (COLOR_8BIT << 4) | (0x21 << 8)); DPU_REG_WRITE(c, INTF_HSYNC_CTL, hsync_ctl); DPU_REG_WRITE(c, INTF_VSYNC_PERIOD_F0, vsync_period * hsync_period); DPU_REG_WRITE(c, INTF_VSYNC_PULSE_WIDTH_F0, p->vsync_pulse_width * hsync_period); DPU_REG_WRITE(c, INTF_DISPLAY_HCTL, display_hctl); DPU_REG_WRITE(c, INTF_DISPLAY_V_START_F0, display_v_start); DPU_REG_WRITE(c, INTF_DISPLAY_V_END_F0, display_v_end); DPU_REG_WRITE(c, INTF_ACTIVE_HCTL, active_hctl); DPU_REG_WRITE(c, INTF_ACTIVE_V_START_F0, active_v_start); DPU_REG_WRITE(c, INTF_ACTIVE_V_END_F0, active_v_end); DPU_REG_WRITE(c, INTF_BORDER_COLOR, p->border_clr); DPU_REG_WRITE(c, INTF_UNDERFLOW_COLOR, p->underflow_clr); DPU_REG_WRITE(c, INTF_HSYNC_SKEW, p->hsync_skew); DPU_REG_WRITE(c, INTF_POLARITY_CTL, polarity_ctl); DPU_REG_WRITE(c, INTF_FRAME_LINE_COUNT_EN, 0x3); DPU_REG_WRITE(c, INTF_CONFIG, intf_cfg); DPU_REG_WRITE(c, INTF_PANEL_FORMAT, panel_format); if (ctx->cap->features & BIT(DPU_DATA_HCTL_EN)) { /* * DATA_HCTL_EN controls data timing which can be different from * video timing. It is recommended to enable it for all cases, except * if compression is enabled in 1 pixel per clock mode */ if (!(p->compression_en && !p->wide_bus_en)) intf_cfg2 |= INTF_CFG2_DATA_HCTL_EN; DPU_REG_WRITE(c, INTF_CONFIG2, intf_cfg2); DPU_REG_WRITE(c, INTF_DISPLAY_DATA_HCTL, display_data_hctl); DPU_REG_WRITE(c, INTF_ACTIVE_DATA_HCTL, active_data_hctl); } } static void dpu_hw_intf_enable_timing_engine( struct dpu_hw_intf *intf, u8 enable) { struct dpu_hw_blk_reg_map *c = &intf->hw; /* Note: Display interface select is handled in top block hw layer */ DPU_REG_WRITE(c, INTF_TIMING_ENGINE_EN, enable != 0); } static void dpu_hw_intf_setup_prg_fetch( struct dpu_hw_intf *intf, const struct dpu_hw_intf_prog_fetch *fetch) { struct dpu_hw_blk_reg_map *c = &intf->hw; int fetch_enable; /* * Fetch should always be outside the active lines. If the fetching * is programmed within active region, hardware behavior is unknown. */ fetch_enable = DPU_REG_READ(c, INTF_CONFIG); if (fetch->enable) { fetch_enable |= BIT(31); DPU_REG_WRITE(c, INTF_PROG_FETCH_START, fetch->fetch_start); } else { fetch_enable &= ~BIT(31); } DPU_REG_WRITE(c, INTF_CONFIG, fetch_enable); } static void dpu_hw_intf_bind_pingpong_blk( struct dpu_hw_intf *intf, const enum dpu_pingpong pp) { struct dpu_hw_blk_reg_map *c = &intf->hw; u32 mux_cfg; mux_cfg = DPU_REG_READ(c, INTF_MUX); mux_cfg &= ~0xf; if (pp) mux_cfg |= (pp - PINGPONG_0) & 0x7; else mux_cfg |= 0xf; DPU_REG_WRITE(c, INTF_MUX, mux_cfg); } static void dpu_hw_intf_get_status( struct dpu_hw_intf *intf, struct dpu_hw_intf_status *s) { struct dpu_hw_blk_reg_map *c = &intf->hw; unsigned long cap = intf->cap->features; if (cap & BIT(DPU_INTF_STATUS_SUPPORTED)) s->is_en = DPU_REG_READ(c, INTF_STATUS) & BIT(0); else s->is_en = DPU_REG_READ(c, INTF_TIMING_ENGINE_EN); s->is_prog_fetch_en = !!(DPU_REG_READ(c, INTF_CONFIG) & BIT(31)); if (s->is_en) { s->frame_count = DPU_REG_READ(c, INTF_FRAME_COUNT); s->line_count = DPU_REG_READ(c, INTF_LINE_COUNT); } else { s->line_count = 0; s->frame_count = 0; } } static u32 dpu_hw_intf_get_line_count(struct dpu_hw_intf *intf) { struct dpu_hw_blk_reg_map *c; if (!intf) return 0; c = &intf->hw; return DPU_REG_READ(c, INTF_LINE_COUNT); } static void dpu_hw_intf_setup_misr(struct dpu_hw_intf *intf) { dpu_hw_setup_misr(&intf->hw, INTF_MISR_CTRL, 0x1); } static int dpu_hw_intf_collect_misr(struct dpu_hw_intf *intf, u32 *misr_value) { return dpu_hw_collect_misr(&intf->hw, INTF_MISR_CTRL, INTF_MISR_SIGNATURE, misr_value); } static int dpu_hw_intf_enable_te(struct dpu_hw_intf *intf, struct dpu_hw_tear_check *te) { struct dpu_hw_blk_reg_map *c; int cfg; if (!intf) return -EINVAL; c = &intf->hw; cfg = BIT(19); /* VSYNC_COUNTER_EN */ if (te->hw_vsync_mode) cfg |= BIT(20); cfg |= te->vsync_count; DPU_REG_WRITE(c, INTF_TEAR_SYNC_CONFIG_VSYNC, cfg); DPU_REG_WRITE(c, INTF_TEAR_SYNC_CONFIG_HEIGHT, te->sync_cfg_height); DPU_REG_WRITE(c, INTF_TEAR_VSYNC_INIT_VAL, te->vsync_init_val); DPU_REG_WRITE(c, INTF_TEAR_RD_PTR_IRQ, te->rd_ptr_irq); DPU_REG_WRITE(c, INTF_TEAR_START_POS, te->start_pos); DPU_REG_WRITE(c, INTF_TEAR_SYNC_THRESH, ((te->sync_threshold_continue << 16) | te->sync_threshold_start)); DPU_REG_WRITE(c, INTF_TEAR_SYNC_WRCOUNT, (te->start_pos + te->sync_threshold_start + 1)); DPU_REG_WRITE(c, INTF_TEAR_TEAR_CHECK_EN, 1); return 0; } static void dpu_hw_intf_setup_autorefresh_config(struct dpu_hw_intf *intf, u32 frame_count, bool enable) { struct dpu_hw_blk_reg_map *c; u32 refresh_cfg; c = &intf->hw; refresh_cfg = DPU_REG_READ(c, INTF_TEAR_AUTOREFRESH_CONFIG); if (enable) refresh_cfg = BIT(31) | frame_count; else refresh_cfg &= ~BIT(31); DPU_REG_WRITE(c, INTF_TEAR_AUTOREFRESH_CONFIG, refresh_cfg); } /* * dpu_hw_intf_get_autorefresh_config - Get autorefresh config from HW * @intf: DPU intf structure * @frame_count: Used to return the current frame count from hw * * Returns: True if autorefresh enabled, false if disabled. */ static bool dpu_hw_intf_get_autorefresh_config(struct dpu_hw_intf *intf, u32 *frame_count) { u32 val = DPU_REG_READ(&intf->hw, INTF_TEAR_AUTOREFRESH_CONFIG); if (frame_count != NULL) *frame_count = val & 0xffff; return !!((val & BIT(31)) >> 31); } static int dpu_hw_intf_disable_te(struct dpu_hw_intf *intf) { struct dpu_hw_blk_reg_map *c; if (!intf) return -EINVAL; c = &intf->hw; DPU_REG_WRITE(c, INTF_TEAR_TEAR_CHECK_EN, 0); return 0; } static int dpu_hw_intf_connect_external_te(struct dpu_hw_intf *intf, bool enable_external_te) { struct dpu_hw_blk_reg_map *c = &intf->hw; u32 cfg; int orig; if (!intf) return -EINVAL; c = &intf->hw; cfg = DPU_REG_READ(c, INTF_TEAR_SYNC_CONFIG_VSYNC); orig = (bool)(cfg & BIT(20)); if (enable_external_te) cfg |= BIT(20); else cfg &= ~BIT(20); DPU_REG_WRITE(c, INTF_TEAR_SYNC_CONFIG_VSYNC, cfg); trace_dpu_intf_connect_ext_te(intf->idx - INTF_0, cfg); return orig; } static int dpu_hw_intf_get_vsync_info(struct dpu_hw_intf *intf, struct dpu_hw_pp_vsync_info *info) { struct dpu_hw_blk_reg_map *c = &intf->hw; u32 val; if (!intf || !info) return -EINVAL; c = &intf->hw; val = DPU_REG_READ(c, INTF_TEAR_VSYNC_INIT_VAL); info->rd_ptr_init_val = val & 0xffff; val = DPU_REG_READ(c, INTF_TEAR_INT_COUNT_VAL); info->rd_ptr_frame_count = (val & 0xffff0000) >> 16; info->rd_ptr_line_count = val & 0xffff; val = DPU_REG_READ(c, INTF_TEAR_LINE_COUNT); info->wr_ptr_line_count = val & 0xffff; val = DPU_REG_READ(c, INTF_FRAME_COUNT); info->intf_frame_count = val; return 0; } static void dpu_hw_intf_vsync_sel(struct dpu_hw_intf *intf, u32 vsync_source) { struct dpu_hw_blk_reg_map *c; if (!intf) return; c = &intf->hw; DPU_REG_WRITE(c, INTF_TEAR_MDP_VSYNC_SEL, (vsync_source & 0xf)); } static void dpu_hw_intf_disable_autorefresh(struct dpu_hw_intf *intf, uint32_t encoder_id, u16 vdisplay) { struct dpu_hw_pp_vsync_info info; int trial = 0; /* If autorefresh is already disabled, we have nothing to do */ if (!dpu_hw_intf_get_autorefresh_config(intf, NULL)) return; /* * If autorefresh is enabled, disable it and make sure it is safe to * proceed with current frame commit/push. Sequence followed is, * 1. Disable TE * 2. Disable autorefresh config * 4. Poll for frame transfer ongoing to be false * 5. Enable TE back */ dpu_hw_intf_connect_external_te(intf, false); dpu_hw_intf_setup_autorefresh_config(intf, 0, false); do { udelay(DPU_ENC_MAX_POLL_TIMEOUT_US); if ((trial * DPU_ENC_MAX_POLL_TIMEOUT_US) > (KICKOFF_TIMEOUT_MS * USEC_PER_MSEC)) { DPU_ERROR("enc%d intf%d disable autorefresh failed\n", encoder_id, intf->idx - INTF_0); break; } trial++; dpu_hw_intf_get_vsync_info(intf, &info); } while (info.wr_ptr_line_count > 0 && info.wr_ptr_line_count < vdisplay); dpu_hw_intf_connect_external_te(intf, true); DPU_DEBUG("enc%d intf%d disabled autorefresh\n", encoder_id, intf->idx - INTF_0); } static void dpu_hw_intf_program_intf_cmd_cfg(struct dpu_hw_intf *ctx, struct dpu_hw_intf_cmd_mode_cfg *cmd_mode_cfg) { u32 intf_cfg2 = DPU_REG_READ(&ctx->hw, INTF_CONFIG2); if (cmd_mode_cfg->data_compress) intf_cfg2 |= INTF_CFG2_DCE_DATA_COMPRESS; DPU_REG_WRITE(&ctx->hw, INTF_CONFIG2, intf_cfg2); } static void _setup_intf_ops(struct dpu_hw_intf_ops *ops, unsigned long cap, const struct dpu_mdss_version *mdss_rev) { ops->setup_timing_gen = dpu_hw_intf_setup_timing_engine; ops->setup_prg_fetch = dpu_hw_intf_setup_prg_fetch; ops->get_status = dpu_hw_intf_get_status; ops->enable_timing = dpu_hw_intf_enable_timing_engine; ops->get_line_count = dpu_hw_intf_get_line_count; if (cap & BIT(DPU_INTF_INPUT_CTRL)) ops->bind_pingpong_blk = dpu_hw_intf_bind_pingpong_blk; ops->setup_misr = dpu_hw_intf_setup_misr; ops->collect_misr = dpu_hw_intf_collect_misr; if (cap & BIT(DPU_INTF_TE)) { ops->enable_tearcheck = dpu_hw_intf_enable_te; ops->disable_tearcheck = dpu_hw_intf_disable_te; ops->connect_external_te = dpu_hw_intf_connect_external_te; ops->vsync_sel = dpu_hw_intf_vsync_sel; ops->disable_autorefresh = dpu_hw_intf_disable_autorefresh; } if (mdss_rev->core_major_ver >= 7) ops->program_intf_cmd_cfg = dpu_hw_intf_program_intf_cmd_cfg; } struct dpu_hw_intf *dpu_hw_intf_init(const struct dpu_intf_cfg *cfg, void __iomem *addr, const struct dpu_mdss_version *mdss_rev) { struct dpu_hw_intf *c; if (cfg->type == INTF_NONE) { DPU_DEBUG("Skip intf %d with type NONE\n", cfg->id - INTF_0); return NULL; } c = kzalloc(sizeof(*c), GFP_KERNEL); if (!c) return ERR_PTR(-ENOMEM); c->hw.blk_addr = addr + cfg->base; c->hw.log_mask = DPU_DBG_MASK_INTF; /* * Assign ops */ c->idx = cfg->id; c->cap = cfg; _setup_intf_ops(&c->ops, c->cap->features, mdss_rev); return c; } void dpu_hw_intf_destroy(struct dpu_hw_intf *intf) { kfree(intf); }