// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2016-2018, The Linux Foundation. All rights reserved. */ #include #include #include #include "dpu_core_irq.h" #include "dpu_kms.h" #include "dpu_hw_interrupts.h" #include "dpu_hw_util.h" #include "dpu_hw_mdss.h" #include "dpu_trace.h" /* * Register offsets in MDSS register file for the interrupt registers * w.r.t. to the MDP base */ #define MDP_SSPP_TOP0_OFF 0x0 #define MDP_INTF_0_OFF 0x6A000 #define MDP_INTF_1_OFF 0x6A800 #define MDP_INTF_2_OFF 0x6B000 #define MDP_INTF_3_OFF 0x6B800 #define MDP_INTF_4_OFF 0x6C000 #define MDP_INTF_5_OFF 0x6C800 #define MDP_AD4_0_OFF 0x7C000 #define MDP_AD4_1_OFF 0x7D000 #define MDP_AD4_INTR_EN_OFF 0x41c #define MDP_AD4_INTR_CLEAR_OFF 0x424 #define MDP_AD4_INTR_STATUS_OFF 0x420 #define MDP_INTF_0_OFF_REV_7xxx 0x34000 #define MDP_INTF_1_OFF_REV_7xxx 0x35000 #define MDP_INTF_2_OFF_REV_7xxx 0x36000 #define MDP_INTF_3_OFF_REV_7xxx 0x37000 #define MDP_INTF_4_OFF_REV_7xxx 0x38000 #define MDP_INTF_5_OFF_REV_7xxx 0x39000 /** * struct dpu_intr_reg - array of DPU register sets * @clr_off: offset to CLEAR reg * @en_off: offset to ENABLE reg * @status_off: offset to STATUS reg */ struct dpu_intr_reg { u32 clr_off; u32 en_off; u32 status_off; }; /* * struct dpu_intr_reg - List of DPU interrupt registers * * When making changes be sure to sync with dpu_hw_intr_reg */ static const struct dpu_intr_reg dpu_intr_set[] = { [MDP_SSPP_TOP0_INTR] = { MDP_SSPP_TOP0_OFF+INTR_CLEAR, MDP_SSPP_TOP0_OFF+INTR_EN, MDP_SSPP_TOP0_OFF+INTR_STATUS }, [MDP_SSPP_TOP0_INTR2] = { MDP_SSPP_TOP0_OFF+INTR2_CLEAR, MDP_SSPP_TOP0_OFF+INTR2_EN, MDP_SSPP_TOP0_OFF+INTR2_STATUS }, [MDP_SSPP_TOP0_HIST_INTR] = { MDP_SSPP_TOP0_OFF+HIST_INTR_CLEAR, MDP_SSPP_TOP0_OFF+HIST_INTR_EN, MDP_SSPP_TOP0_OFF+HIST_INTR_STATUS }, [MDP_INTF0_INTR] = { MDP_INTF_0_OFF+INTF_INTR_CLEAR, MDP_INTF_0_OFF+INTF_INTR_EN, MDP_INTF_0_OFF+INTF_INTR_STATUS }, [MDP_INTF1_INTR] = { MDP_INTF_1_OFF+INTF_INTR_CLEAR, MDP_INTF_1_OFF+INTF_INTR_EN, MDP_INTF_1_OFF+INTF_INTR_STATUS }, [MDP_INTF2_INTR] = { MDP_INTF_2_OFF+INTF_INTR_CLEAR, MDP_INTF_2_OFF+INTF_INTR_EN, MDP_INTF_2_OFF+INTF_INTR_STATUS }, [MDP_INTF3_INTR] = { MDP_INTF_3_OFF+INTF_INTR_CLEAR, MDP_INTF_3_OFF+INTF_INTR_EN, MDP_INTF_3_OFF+INTF_INTR_STATUS }, [MDP_INTF4_INTR] = { MDP_INTF_4_OFF+INTF_INTR_CLEAR, MDP_INTF_4_OFF+INTF_INTR_EN, MDP_INTF_4_OFF+INTF_INTR_STATUS }, [MDP_INTF5_INTR] = { MDP_INTF_5_OFF+INTF_INTR_CLEAR, MDP_INTF_5_OFF+INTF_INTR_EN, MDP_INTF_5_OFF+INTF_INTR_STATUS }, [MDP_AD4_0_INTR] = { MDP_AD4_0_OFF + MDP_AD4_INTR_CLEAR_OFF, MDP_AD4_0_OFF + MDP_AD4_INTR_EN_OFF, MDP_AD4_0_OFF + MDP_AD4_INTR_STATUS_OFF, }, [MDP_AD4_1_INTR] = { MDP_AD4_1_OFF + MDP_AD4_INTR_CLEAR_OFF, MDP_AD4_1_OFF + MDP_AD4_INTR_EN_OFF, MDP_AD4_1_OFF + MDP_AD4_INTR_STATUS_OFF, }, [MDP_INTF0_7xxx_INTR] = { MDP_INTF_0_OFF_REV_7xxx+INTF_INTR_CLEAR, MDP_INTF_0_OFF_REV_7xxx+INTF_INTR_EN, MDP_INTF_0_OFF_REV_7xxx+INTF_INTR_STATUS }, [MDP_INTF1_7xxx_INTR] = { MDP_INTF_1_OFF_REV_7xxx+INTF_INTR_CLEAR, MDP_INTF_1_OFF_REV_7xxx+INTF_INTR_EN, MDP_INTF_1_OFF_REV_7xxx+INTF_INTR_STATUS }, [MDP_INTF2_7xxx_INTR] = { MDP_INTF_2_OFF_REV_7xxx+INTF_INTR_CLEAR, MDP_INTF_2_OFF_REV_7xxx+INTF_INTR_EN, MDP_INTF_2_OFF_REV_7xxx+INTF_INTR_STATUS }, [MDP_INTF3_7xxx_INTR] = { MDP_INTF_3_OFF_REV_7xxx+INTF_INTR_CLEAR, MDP_INTF_3_OFF_REV_7xxx+INTF_INTR_EN, MDP_INTF_3_OFF_REV_7xxx+INTF_INTR_STATUS }, [MDP_INTF4_7xxx_INTR] = { MDP_INTF_4_OFF_REV_7xxx+INTF_INTR_CLEAR, MDP_INTF_4_OFF_REV_7xxx+INTF_INTR_EN, MDP_INTF_4_OFF_REV_7xxx+INTF_INTR_STATUS }, [MDP_INTF5_7xxx_INTR] = { MDP_INTF_5_OFF_REV_7xxx+INTF_INTR_CLEAR, MDP_INTF_5_OFF_REV_7xxx+INTF_INTR_EN, MDP_INTF_5_OFF_REV_7xxx+INTF_INTR_STATUS }, }; #define DPU_IRQ_REG(irq_idx) (irq_idx / 32) #define DPU_IRQ_MASK(irq_idx) (BIT(irq_idx % 32)) /** * dpu_core_irq_callback_handler - dispatch core interrupts * @dpu_kms: Pointer to DPU's KMS structure * @irq_idx: interrupt index */ static void dpu_core_irq_callback_handler(struct dpu_kms *dpu_kms, int irq_idx) { VERB("irq_idx=%d\n", irq_idx); if (!dpu_kms->hw_intr->irq_tbl[irq_idx].cb) DRM_ERROR("no registered cb, idx:%d\n", irq_idx); atomic_inc(&dpu_kms->hw_intr->irq_tbl[irq_idx].count); /* * Perform registered function callback */ dpu_kms->hw_intr->irq_tbl[irq_idx].cb(dpu_kms->hw_intr->irq_tbl[irq_idx].arg, irq_idx); } irqreturn_t dpu_core_irq(struct msm_kms *kms) { struct dpu_kms *dpu_kms = to_dpu_kms(kms); struct dpu_hw_intr *intr = dpu_kms->hw_intr; int reg_idx; int irq_idx; u32 irq_status; u32 enable_mask; int bit; unsigned long irq_flags; if (!intr) return IRQ_NONE; spin_lock_irqsave(&intr->irq_lock, irq_flags); for (reg_idx = 0; reg_idx < ARRAY_SIZE(dpu_intr_set); reg_idx++) { if (!test_bit(reg_idx, &intr->irq_mask)) continue; /* Read interrupt status */ irq_status = DPU_REG_READ(&intr->hw, dpu_intr_set[reg_idx].status_off); /* Read enable mask */ enable_mask = DPU_REG_READ(&intr->hw, dpu_intr_set[reg_idx].en_off); /* and clear the interrupt */ if (irq_status) DPU_REG_WRITE(&intr->hw, dpu_intr_set[reg_idx].clr_off, irq_status); /* Finally update IRQ status based on enable mask */ irq_status &= enable_mask; if (!irq_status) continue; /* * Search through matching intr status. */ while ((bit = ffs(irq_status)) != 0) { irq_idx = DPU_IRQ_IDX(reg_idx, bit - 1); dpu_core_irq_callback_handler(dpu_kms, irq_idx); /* * When callback finish, clear the irq_status * with the matching mask. Once irq_status * is all cleared, the search can be stopped. */ irq_status &= ~BIT(bit - 1); } } /* ensure register writes go through */ wmb(); spin_unlock_irqrestore(&intr->irq_lock, irq_flags); return IRQ_HANDLED; } static int dpu_hw_intr_enable_irq_locked(struct dpu_hw_intr *intr, int irq_idx) { int reg_idx; const struct dpu_intr_reg *reg; const char *dbgstr = NULL; uint32_t cache_irq_mask; if (!intr) return -EINVAL; if (irq_idx < 0 || irq_idx >= intr->total_irqs) { pr_err("invalid IRQ index: [%d]\n", irq_idx); return -EINVAL; } /* * The cache_irq_mask and hardware RMW operations needs to be done * under irq_lock and it's the caller's responsibility to ensure that's * held. */ assert_spin_locked(&intr->irq_lock); reg_idx = DPU_IRQ_REG(irq_idx); reg = &dpu_intr_set[reg_idx]; cache_irq_mask = intr->cache_irq_mask[reg_idx]; if (cache_irq_mask & DPU_IRQ_MASK(irq_idx)) { dbgstr = "DPU IRQ already set:"; } else { dbgstr = "DPU IRQ enabled:"; cache_irq_mask |= DPU_IRQ_MASK(irq_idx); /* Cleaning any pending interrupt */ DPU_REG_WRITE(&intr->hw, reg->clr_off, DPU_IRQ_MASK(irq_idx)); /* Enabling interrupts with the new mask */ DPU_REG_WRITE(&intr->hw, reg->en_off, cache_irq_mask); /* ensure register write goes through */ wmb(); intr->cache_irq_mask[reg_idx] = cache_irq_mask; } pr_debug("%s MASK:0x%.8lx, CACHE-MASK:0x%.8x\n", dbgstr, DPU_IRQ_MASK(irq_idx), cache_irq_mask); return 0; } static int dpu_hw_intr_disable_irq_locked(struct dpu_hw_intr *intr, int irq_idx) { int reg_idx; const struct dpu_intr_reg *reg; const char *dbgstr = NULL; uint32_t cache_irq_mask; if (!intr) return -EINVAL; if (irq_idx < 0 || irq_idx >= intr->total_irqs) { pr_err("invalid IRQ index: [%d]\n", irq_idx); return -EINVAL; } /* * The cache_irq_mask and hardware RMW operations needs to be done * under irq_lock and it's the caller's responsibility to ensure that's * held. */ assert_spin_locked(&intr->irq_lock); reg_idx = DPU_IRQ_REG(irq_idx); reg = &dpu_intr_set[reg_idx]; cache_irq_mask = intr->cache_irq_mask[reg_idx]; if ((cache_irq_mask & DPU_IRQ_MASK(irq_idx)) == 0) { dbgstr = "DPU IRQ is already cleared:"; } else { dbgstr = "DPU IRQ mask disable:"; cache_irq_mask &= ~DPU_IRQ_MASK(irq_idx); /* Disable interrupts based on the new mask */ DPU_REG_WRITE(&intr->hw, reg->en_off, cache_irq_mask); /* Cleaning any pending interrupt */ DPU_REG_WRITE(&intr->hw, reg->clr_off, DPU_IRQ_MASK(irq_idx)); /* ensure register write goes through */ wmb(); intr->cache_irq_mask[reg_idx] = cache_irq_mask; } pr_debug("%s MASK:0x%.8lx, CACHE-MASK:0x%.8x\n", dbgstr, DPU_IRQ_MASK(irq_idx), cache_irq_mask); return 0; } static void dpu_clear_irqs(struct dpu_kms *dpu_kms) { struct dpu_hw_intr *intr = dpu_kms->hw_intr; int i; if (!intr) return; for (i = 0; i < ARRAY_SIZE(dpu_intr_set); i++) { if (test_bit(i, &intr->irq_mask)) DPU_REG_WRITE(&intr->hw, dpu_intr_set[i].clr_off, 0xffffffff); } /* ensure register writes go through */ wmb(); } static void dpu_disable_all_irqs(struct dpu_kms *dpu_kms) { struct dpu_hw_intr *intr = dpu_kms->hw_intr; int i; if (!intr) return; for (i = 0; i < ARRAY_SIZE(dpu_intr_set); i++) { if (test_bit(i, &intr->irq_mask)) DPU_REG_WRITE(&intr->hw, dpu_intr_set[i].en_off, 0x00000000); } /* ensure register writes go through */ wmb(); } u32 dpu_core_irq_read(struct dpu_kms *dpu_kms, int irq_idx) { struct dpu_hw_intr *intr = dpu_kms->hw_intr; int reg_idx; unsigned long irq_flags; u32 intr_status; if (!intr) return 0; if (irq_idx < 0) { DPU_ERROR("[%pS] invalid irq_idx=%d\n", __builtin_return_address(0), irq_idx); return 0; } if (irq_idx < 0 || irq_idx >= intr->total_irqs) { pr_err("invalid IRQ index: [%d]\n", irq_idx); return 0; } spin_lock_irqsave(&intr->irq_lock, irq_flags); reg_idx = DPU_IRQ_REG(irq_idx); intr_status = DPU_REG_READ(&intr->hw, dpu_intr_set[reg_idx].status_off) & DPU_IRQ_MASK(irq_idx); if (intr_status) DPU_REG_WRITE(&intr->hw, dpu_intr_set[reg_idx].clr_off, intr_status); /* ensure register writes go through */ wmb(); spin_unlock_irqrestore(&intr->irq_lock, irq_flags); return intr_status; } static void __intr_offset(const struct dpu_mdss_cfg *m, void __iomem *addr, struct dpu_hw_blk_reg_map *hw) { hw->blk_addr = addr + m->mdp[0].base; } struct dpu_hw_intr *dpu_hw_intr_init(void __iomem *addr, const struct dpu_mdss_cfg *m) { struct dpu_hw_intr *intr; int nirq = MDP_INTR_MAX * 32; if (!addr || !m) return ERR_PTR(-EINVAL); intr = kzalloc(struct_size(intr, irq_tbl, nirq), GFP_KERNEL); if (!intr) return ERR_PTR(-ENOMEM); __intr_offset(m, addr, &intr->hw); intr->total_irqs = nirq; intr->irq_mask = m->mdss_irqs; spin_lock_init(&intr->irq_lock); return intr; } void dpu_hw_intr_destroy(struct dpu_hw_intr *intr) { kfree(intr); } int dpu_core_irq_register_callback(struct dpu_kms *dpu_kms, int irq_idx, void (*irq_cb)(void *arg, int irq_idx), void *irq_arg) { unsigned long irq_flags; int ret; if (!irq_cb) { DPU_ERROR("invalid ird_idx:%d irq_cb:%ps\n", irq_idx, irq_cb); return -EINVAL; } if (irq_idx < 0 || irq_idx >= dpu_kms->hw_intr->total_irqs) { DPU_ERROR("invalid IRQ index: [%d]\n", irq_idx); return -EINVAL; } VERB("[%pS] irq_idx=%d\n", __builtin_return_address(0), irq_idx); spin_lock_irqsave(&dpu_kms->hw_intr->irq_lock, irq_flags); if (unlikely(WARN_ON(dpu_kms->hw_intr->irq_tbl[irq_idx].cb))) { spin_unlock_irqrestore(&dpu_kms->hw_intr->irq_lock, irq_flags); return -EBUSY; } trace_dpu_core_irq_register_callback(irq_idx, irq_cb); dpu_kms->hw_intr->irq_tbl[irq_idx].arg = irq_arg; dpu_kms->hw_intr->irq_tbl[irq_idx].cb = irq_cb; ret = dpu_hw_intr_enable_irq_locked( dpu_kms->hw_intr, irq_idx); if (ret) DPU_ERROR("Fail to enable IRQ for irq_idx:%d\n", irq_idx); spin_unlock_irqrestore(&dpu_kms->hw_intr->irq_lock, irq_flags); trace_dpu_irq_register_success(irq_idx); return 0; } int dpu_core_irq_unregister_callback(struct dpu_kms *dpu_kms, int irq_idx) { unsigned long irq_flags; int ret; if (irq_idx < 0 || irq_idx >= dpu_kms->hw_intr->total_irqs) { DPU_ERROR("invalid IRQ index: [%d]\n", irq_idx); return -EINVAL; } VERB("[%pS] irq_idx=%d\n", __builtin_return_address(0), irq_idx); spin_lock_irqsave(&dpu_kms->hw_intr->irq_lock, irq_flags); trace_dpu_core_irq_unregister_callback(irq_idx); ret = dpu_hw_intr_disable_irq_locked(dpu_kms->hw_intr, irq_idx); if (ret) DPU_ERROR("Fail to disable IRQ for irq_idx:%d: %d\n", irq_idx, ret); dpu_kms->hw_intr->irq_tbl[irq_idx].cb = NULL; dpu_kms->hw_intr->irq_tbl[irq_idx].arg = NULL; spin_unlock_irqrestore(&dpu_kms->hw_intr->irq_lock, irq_flags); trace_dpu_irq_unregister_success(irq_idx); return 0; } #ifdef CONFIG_DEBUG_FS static int dpu_debugfs_core_irq_show(struct seq_file *s, void *v) { struct dpu_kms *dpu_kms = s->private; unsigned long irq_flags; int i, irq_count; void *cb; for (i = 0; i < dpu_kms->hw_intr->total_irqs; i++) { spin_lock_irqsave(&dpu_kms->hw_intr->irq_lock, irq_flags); irq_count = atomic_read(&dpu_kms->hw_intr->irq_tbl[i].count); cb = dpu_kms->hw_intr->irq_tbl[i].cb; spin_unlock_irqrestore(&dpu_kms->hw_intr->irq_lock, irq_flags); if (irq_count || cb) seq_printf(s, "idx:%d irq:%d cb:%ps\n", i, irq_count, cb); } return 0; } DEFINE_SHOW_ATTRIBUTE(dpu_debugfs_core_irq); void dpu_debugfs_core_irq_init(struct dpu_kms *dpu_kms, struct dentry *parent) { debugfs_create_file("core_irq", 0600, parent, dpu_kms, &dpu_debugfs_core_irq_fops); } #endif void dpu_core_irq_preinstall(struct msm_kms *kms) { struct dpu_kms *dpu_kms = to_dpu_kms(kms); int i; pm_runtime_get_sync(&dpu_kms->pdev->dev); dpu_clear_irqs(dpu_kms); dpu_disable_all_irqs(dpu_kms); pm_runtime_put_sync(&dpu_kms->pdev->dev); for (i = 0; i < dpu_kms->hw_intr->total_irqs; i++) atomic_set(&dpu_kms->hw_intr->irq_tbl[i].count, 0); } void dpu_core_irq_uninstall(struct msm_kms *kms) { struct dpu_kms *dpu_kms = to_dpu_kms(kms); int i; if (!dpu_kms->hw_intr) return; pm_runtime_get_sync(&dpu_kms->pdev->dev); for (i = 0; i < dpu_kms->hw_intr->total_irqs; i++) if (dpu_kms->hw_intr->irq_tbl[i].cb) DPU_ERROR("irq_idx=%d still enabled/registered\n", i); dpu_clear_irqs(dpu_kms); dpu_disable_all_irqs(dpu_kms); pm_runtime_put_sync(&dpu_kms->pdev->dev); }