// SPDX-License-Identifier: MIT /* * Copyright © 2021 Intel Corporation */ #include #include #include "i915_drv.h" #include "i915_reg.h" #include "intel_guc_slpc.h" #include "intel_guc_print.h" #include "intel_mchbar_regs.h" #include "gt/intel_gt.h" #include "gt/intel_gt_regs.h" #include "gt/intel_rps.h" static inline struct intel_guc *slpc_to_guc(struct intel_guc_slpc *slpc) { return container_of(slpc, struct intel_guc, slpc); } static inline struct intel_gt *slpc_to_gt(struct intel_guc_slpc *slpc) { return guc_to_gt(slpc_to_guc(slpc)); } static inline struct drm_i915_private *slpc_to_i915(struct intel_guc_slpc *slpc) { return slpc_to_gt(slpc)->i915; } static bool __detect_slpc_supported(struct intel_guc *guc) { /* GuC SLPC is unavailable for pre-Gen12 */ return guc->submission_supported && GRAPHICS_VER(guc_to_gt(guc)->i915) >= 12; } static bool __guc_slpc_selected(struct intel_guc *guc) { if (!intel_guc_slpc_is_supported(guc)) return false; return guc->submission_selected; } void intel_guc_slpc_init_early(struct intel_guc_slpc *slpc) { struct intel_guc *guc = slpc_to_guc(slpc); slpc->supported = __detect_slpc_supported(guc); slpc->selected = __guc_slpc_selected(guc); } static void slpc_mem_set_param(struct slpc_shared_data *data, u32 id, u32 value) { GEM_BUG_ON(id >= SLPC_MAX_OVERRIDE_PARAMETERS); /* * When the flag bit is set, corresponding value will be read * and applied by SLPC. */ data->override_params.bits[id >> 5] |= (1 << (id % 32)); data->override_params.values[id] = value; } static void slpc_mem_set_enabled(struct slpc_shared_data *data, u8 enable_id, u8 disable_id) { /* * Enabling a param involves setting the enable_id * to 1 and disable_id to 0. */ slpc_mem_set_param(data, enable_id, 1); slpc_mem_set_param(data, disable_id, 0); } static void slpc_mem_set_disabled(struct slpc_shared_data *data, u8 enable_id, u8 disable_id) { /* * Disabling a param involves setting the enable_id * to 0 and disable_id to 1. */ slpc_mem_set_param(data, disable_id, 1); slpc_mem_set_param(data, enable_id, 0); } static u32 slpc_get_state(struct intel_guc_slpc *slpc) { struct slpc_shared_data *data; GEM_BUG_ON(!slpc->vma); drm_clflush_virt_range(slpc->vaddr, sizeof(u32)); data = slpc->vaddr; return data->header.global_state; } static int guc_action_slpc_set_param_nb(struct intel_guc *guc, u8 id, u32 value) { u32 request[] = { GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST, SLPC_EVENT(SLPC_EVENT_PARAMETER_SET, 2), id, value, }; int ret; ret = intel_guc_send_nb(guc, request, ARRAY_SIZE(request), 0); return ret > 0 ? -EPROTO : ret; } static int slpc_set_param_nb(struct intel_guc_slpc *slpc, u8 id, u32 value) { struct intel_guc *guc = slpc_to_guc(slpc); GEM_BUG_ON(id >= SLPC_MAX_PARAM); return guc_action_slpc_set_param_nb(guc, id, value); } static int guc_action_slpc_set_param(struct intel_guc *guc, u8 id, u32 value) { u32 request[] = { GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST, SLPC_EVENT(SLPC_EVENT_PARAMETER_SET, 2), id, value, }; int ret; ret = intel_guc_send(guc, request, ARRAY_SIZE(request)); return ret > 0 ? -EPROTO : ret; } static int guc_action_slpc_unset_param(struct intel_guc *guc, u8 id) { u32 request[] = { GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST, SLPC_EVENT(SLPC_EVENT_PARAMETER_UNSET, 1), id, }; return intel_guc_send(guc, request, ARRAY_SIZE(request)); } static bool slpc_is_running(struct intel_guc_slpc *slpc) { return slpc_get_state(slpc) == SLPC_GLOBAL_STATE_RUNNING; } static int guc_action_slpc_query(struct intel_guc *guc, u32 offset) { u32 request[] = { GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST, SLPC_EVENT(SLPC_EVENT_QUERY_TASK_STATE, 2), offset, 0, }; int ret; ret = intel_guc_send(guc, request, ARRAY_SIZE(request)); return ret > 0 ? -EPROTO : ret; } static int slpc_query_task_state(struct intel_guc_slpc *slpc) { struct intel_guc *guc = slpc_to_guc(slpc); u32 offset = intel_guc_ggtt_offset(guc, slpc->vma); int ret; ret = guc_action_slpc_query(guc, offset); if (unlikely(ret)) guc_probe_error(guc, "Failed to query task state: %pe\n", ERR_PTR(ret)); drm_clflush_virt_range(slpc->vaddr, SLPC_PAGE_SIZE_BYTES); return ret; } static int slpc_set_param(struct intel_guc_slpc *slpc, u8 id, u32 value) { struct intel_guc *guc = slpc_to_guc(slpc); int ret; GEM_BUG_ON(id >= SLPC_MAX_PARAM); ret = guc_action_slpc_set_param(guc, id, value); if (ret) guc_probe_error(guc, "Failed to set param %d to %u: %pe\n", id, value, ERR_PTR(ret)); return ret; } static int slpc_unset_param(struct intel_guc_slpc *slpc, u8 id) { struct intel_guc *guc = slpc_to_guc(slpc); GEM_BUG_ON(id >= SLPC_MAX_PARAM); return guc_action_slpc_unset_param(guc, id); } static int slpc_force_min_freq(struct intel_guc_slpc *slpc, u32 freq) { struct intel_guc *guc = slpc_to_guc(slpc); struct drm_i915_private *i915 = slpc_to_i915(slpc); intel_wakeref_t wakeref; int ret = 0; lockdep_assert_held(&slpc->lock); if (!intel_guc_is_ready(guc)) return -ENODEV; /* * This function is a little different as compared to * intel_guc_slpc_set_min_freq(). Softlimit will not be updated * here since this is used to temporarily change min freq, * for example, during a waitboost. Caller is responsible for * checking bounds. */ with_intel_runtime_pm(&i915->runtime_pm, wakeref) { /* Non-blocking request will avoid stalls */ ret = slpc_set_param_nb(slpc, SLPC_PARAM_GLOBAL_MIN_GT_UNSLICE_FREQ_MHZ, freq); if (ret) guc_notice(guc, "Failed to send set_param for min freq(%d): %pe\n", freq, ERR_PTR(ret)); } return ret; } static void slpc_boost_work(struct work_struct *work) { struct intel_guc_slpc *slpc = container_of(work, typeof(*slpc), boost_work); int err; /* * Raise min freq to boost. It's possible that * this is greater than current max. But it will * certainly be limited by RP0. An error setting * the min param is not fatal. */ mutex_lock(&slpc->lock); if (atomic_read(&slpc->num_waiters)) { err = slpc_force_min_freq(slpc, slpc->boost_freq); if (!err) slpc->num_boosts++; } mutex_unlock(&slpc->lock); } int intel_guc_slpc_init(struct intel_guc_slpc *slpc) { struct intel_guc *guc = slpc_to_guc(slpc); u32 size = PAGE_ALIGN(sizeof(struct slpc_shared_data)); int err; GEM_BUG_ON(slpc->vma); err = intel_guc_allocate_and_map_vma(guc, size, &slpc->vma, (void **)&slpc->vaddr); if (unlikely(err)) { guc_probe_error(guc, "Failed to allocate SLPC struct: %pe\n", ERR_PTR(err)); return err; } slpc->max_freq_softlimit = 0; slpc->min_freq_softlimit = 0; slpc->ignore_eff_freq = false; slpc->min_is_rpmax = false; slpc->boost_freq = 0; atomic_set(&slpc->num_waiters, 0); slpc->num_boosts = 0; slpc->media_ratio_mode = SLPC_MEDIA_RATIO_MODE_DYNAMIC_CONTROL; mutex_init(&slpc->lock); INIT_WORK(&slpc->boost_work, slpc_boost_work); return err; } static const char *slpc_global_state_to_string(enum slpc_global_state state) { switch (state) { case SLPC_GLOBAL_STATE_NOT_RUNNING: return "not running"; case SLPC_GLOBAL_STATE_INITIALIZING: return "initializing"; case SLPC_GLOBAL_STATE_RESETTING: return "resetting"; case SLPC_GLOBAL_STATE_RUNNING: return "running"; case SLPC_GLOBAL_STATE_SHUTTING_DOWN: return "shutting down"; case SLPC_GLOBAL_STATE_ERROR: return "error"; default: return "unknown"; } } static const char *slpc_get_state_string(struct intel_guc_slpc *slpc) { return slpc_global_state_to_string(slpc_get_state(slpc)); } static int guc_action_slpc_reset(struct intel_guc *guc, u32 offset) { u32 request[] = { GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST, SLPC_EVENT(SLPC_EVENT_RESET, 2), offset, 0, }; int ret; ret = intel_guc_send(guc, request, ARRAY_SIZE(request)); return ret > 0 ? -EPROTO : ret; } static int slpc_reset(struct intel_guc_slpc *slpc) { struct intel_guc *guc = slpc_to_guc(slpc); u32 offset = intel_guc_ggtt_offset(guc, slpc->vma); int ret; ret = guc_action_slpc_reset(guc, offset); if (unlikely(ret < 0)) { guc_probe_error(guc, "SLPC reset action failed: %pe\n", ERR_PTR(ret)); return ret; } if (!ret) { if (wait_for(slpc_is_running(slpc), SLPC_RESET_TIMEOUT_MS)) { guc_probe_error(guc, "SLPC not enabled! State = %s\n", slpc_get_state_string(slpc)); return -EIO; } } return 0; } static u32 slpc_decode_min_freq(struct intel_guc_slpc *slpc) { struct slpc_shared_data *data = slpc->vaddr; GEM_BUG_ON(!slpc->vma); return DIV_ROUND_CLOSEST(REG_FIELD_GET(SLPC_MIN_UNSLICE_FREQ_MASK, data->task_state_data.freq) * GT_FREQUENCY_MULTIPLIER, GEN9_FREQ_SCALER); } static u32 slpc_decode_max_freq(struct intel_guc_slpc *slpc) { struct slpc_shared_data *data = slpc->vaddr; GEM_BUG_ON(!slpc->vma); return DIV_ROUND_CLOSEST(REG_FIELD_GET(SLPC_MAX_UNSLICE_FREQ_MASK, data->task_state_data.freq) * GT_FREQUENCY_MULTIPLIER, GEN9_FREQ_SCALER); } static void slpc_shared_data_reset(struct slpc_shared_data *data) { memset(data, 0, sizeof(struct slpc_shared_data)); data->header.size = sizeof(struct slpc_shared_data); /* Enable only GTPERF task, disable others */ slpc_mem_set_enabled(data, SLPC_PARAM_TASK_ENABLE_GTPERF, SLPC_PARAM_TASK_DISABLE_GTPERF); slpc_mem_set_disabled(data, SLPC_PARAM_TASK_ENABLE_BALANCER, SLPC_PARAM_TASK_DISABLE_BALANCER); slpc_mem_set_disabled(data, SLPC_PARAM_TASK_ENABLE_DCC, SLPC_PARAM_TASK_DISABLE_DCC); } /** * intel_guc_slpc_set_max_freq() - Set max frequency limit for SLPC. * @slpc: pointer to intel_guc_slpc. * @val: frequency (MHz) * * This function will invoke GuC SLPC action to update the max frequency * limit for unslice. * * Return: 0 on success, non-zero error code on failure. */ int intel_guc_slpc_set_max_freq(struct intel_guc_slpc *slpc, u32 val) { struct drm_i915_private *i915 = slpc_to_i915(slpc); intel_wakeref_t wakeref; int ret; if (val < slpc->min_freq || val > slpc->rp0_freq || val < slpc->min_freq_softlimit) return -EINVAL; with_intel_runtime_pm(&i915->runtime_pm, wakeref) { ret = slpc_set_param(slpc, SLPC_PARAM_GLOBAL_MAX_GT_UNSLICE_FREQ_MHZ, val); /* Return standardized err code for sysfs calls */ if (ret) ret = -EIO; } if (!ret) slpc->max_freq_softlimit = val; return ret; } /** * intel_guc_slpc_get_max_freq() - Get max frequency limit for SLPC. * @slpc: pointer to intel_guc_slpc. * @val: pointer to val which will hold max frequency (MHz) * * This function will invoke GuC SLPC action to read the max frequency * limit for unslice. * * Return: 0 on success, non-zero error code on failure. */ int intel_guc_slpc_get_max_freq(struct intel_guc_slpc *slpc, u32 *val) { struct drm_i915_private *i915 = slpc_to_i915(slpc); intel_wakeref_t wakeref; int ret = 0; with_intel_runtime_pm(&i915->runtime_pm, wakeref) { /* Force GuC to update task data */ ret = slpc_query_task_state(slpc); if (!ret) *val = slpc_decode_max_freq(slpc); } return ret; } int intel_guc_slpc_set_ignore_eff_freq(struct intel_guc_slpc *slpc, bool val) { struct drm_i915_private *i915 = slpc_to_i915(slpc); intel_wakeref_t wakeref; int ret; mutex_lock(&slpc->lock); wakeref = intel_runtime_pm_get(&i915->runtime_pm); ret = slpc_set_param(slpc, SLPC_PARAM_IGNORE_EFFICIENT_FREQUENCY, val); if (ret) guc_probe_error(slpc_to_guc(slpc), "Failed to set efficient freq(%d): %pe\n", val, ERR_PTR(ret)); else slpc->ignore_eff_freq = val; intel_runtime_pm_put(&i915->runtime_pm, wakeref); mutex_unlock(&slpc->lock); return ret; } /** * intel_guc_slpc_set_min_freq() - Set min frequency limit for SLPC. * @slpc: pointer to intel_guc_slpc. * @val: frequency (MHz) * * This function will invoke GuC SLPC action to update the min unslice * frequency. * * Return: 0 on success, non-zero error code on failure. */ int intel_guc_slpc_set_min_freq(struct intel_guc_slpc *slpc, u32 val) { struct drm_i915_private *i915 = slpc_to_i915(slpc); intel_wakeref_t wakeref; int ret; if (val < slpc->min_freq || val > slpc->rp0_freq || val > slpc->max_freq_softlimit) return -EINVAL; /* Need a lock now since waitboost can be modifying min as well */ mutex_lock(&slpc->lock); wakeref = intel_runtime_pm_get(&i915->runtime_pm); ret = slpc_set_param(slpc, SLPC_PARAM_GLOBAL_MIN_GT_UNSLICE_FREQ_MHZ, val); if (!ret) slpc->min_freq_softlimit = val; intel_runtime_pm_put(&i915->runtime_pm, wakeref); mutex_unlock(&slpc->lock); /* Return standardized err code for sysfs calls */ if (ret) ret = -EIO; return ret; } /** * intel_guc_slpc_get_min_freq() - Get min frequency limit for SLPC. * @slpc: pointer to intel_guc_slpc. * @val: pointer to val which will hold min frequency (MHz) * * This function will invoke GuC SLPC action to read the min frequency * limit for unslice. * * Return: 0 on success, non-zero error code on failure. */ int intel_guc_slpc_get_min_freq(struct intel_guc_slpc *slpc, u32 *val) { struct drm_i915_private *i915 = slpc_to_i915(slpc); intel_wakeref_t wakeref; int ret = 0; with_intel_runtime_pm(&i915->runtime_pm, wakeref) { /* Force GuC to update task data */ ret = slpc_query_task_state(slpc); if (!ret) *val = slpc_decode_min_freq(slpc); } return ret; } int intel_guc_slpc_set_media_ratio_mode(struct intel_guc_slpc *slpc, u32 val) { struct drm_i915_private *i915 = slpc_to_i915(slpc); intel_wakeref_t wakeref; int ret = 0; if (!HAS_MEDIA_RATIO_MODE(i915)) return -ENODEV; with_intel_runtime_pm(&i915->runtime_pm, wakeref) ret = slpc_set_param(slpc, SLPC_PARAM_MEDIA_FF_RATIO_MODE, val); return ret; } void intel_guc_pm_intrmsk_enable(struct intel_gt *gt) { u32 pm_intrmsk_mbz = 0; /* * Allow GuC to receive ARAT timer expiry event. * This interrupt register is setup by RPS code * when host based Turbo is enabled. */ pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK; intel_uncore_rmw(gt->uncore, GEN6_PMINTRMSK, pm_intrmsk_mbz, 0); } static int slpc_set_softlimits(struct intel_guc_slpc *slpc) { int ret = 0; /* * Softlimits are initially equivalent to platform limits * unless they have deviated from defaults, in which case, * we retain the values and set min/max accordingly. */ if (!slpc->max_freq_softlimit) { slpc->max_freq_softlimit = slpc->rp0_freq; slpc_to_gt(slpc)->defaults.max_freq = slpc->max_freq_softlimit; } else if (slpc->max_freq_softlimit != slpc->rp0_freq) { ret = intel_guc_slpc_set_max_freq(slpc, slpc->max_freq_softlimit); } if (unlikely(ret)) return ret; if (!slpc->min_freq_softlimit) { ret = intel_guc_slpc_get_min_freq(slpc, &slpc->min_freq_softlimit); if (unlikely(ret)) return ret; slpc_to_gt(slpc)->defaults.min_freq = slpc->min_freq_softlimit; } else if (slpc->min_freq_softlimit != slpc->min_freq) { return intel_guc_slpc_set_min_freq(slpc, slpc->min_freq_softlimit); } return 0; } static bool is_slpc_min_freq_rpmax(struct intel_guc_slpc *slpc) { int slpc_min_freq; int ret; ret = intel_guc_slpc_get_min_freq(slpc, &slpc_min_freq); if (ret) { guc_err(slpc_to_guc(slpc), "Failed to get min freq: %pe\n", ERR_PTR(ret)); return false; } if (slpc_min_freq == SLPC_MAX_FREQ_MHZ) return true; else return false; } static void update_server_min_softlimit(struct intel_guc_slpc *slpc) { /* For server parts, SLPC min will be at RPMax. * Use min softlimit to clamp it to RP0 instead. */ if (!slpc->min_freq_softlimit && is_slpc_min_freq_rpmax(slpc)) { slpc->min_is_rpmax = true; slpc->min_freq_softlimit = slpc->rp0_freq; (slpc_to_gt(slpc))->defaults.min_freq = slpc->min_freq_softlimit; } } static int slpc_use_fused_rp0(struct intel_guc_slpc *slpc) { /* Force SLPC to used platform rp0 */ return slpc_set_param(slpc, SLPC_PARAM_GLOBAL_MAX_GT_UNSLICE_FREQ_MHZ, slpc->rp0_freq); } static void slpc_get_rp_values(struct intel_guc_slpc *slpc) { struct intel_rps *rps = &slpc_to_gt(slpc)->rps; struct intel_rps_freq_caps caps; gen6_rps_get_freq_caps(rps, &caps); slpc->rp0_freq = intel_gpu_freq(rps, caps.rp0_freq); slpc->rp1_freq = intel_gpu_freq(rps, caps.rp1_freq); slpc->min_freq = intel_gpu_freq(rps, caps.min_freq); if (!slpc->boost_freq) slpc->boost_freq = slpc->rp0_freq; } /** * intel_guc_slpc_override_gucrc_mode() - override GUCRC mode * @slpc: pointer to intel_guc_slpc. * @mode: new value of the mode. * * This function will override the GUCRC mode. * * Return: 0 on success, non-zero error code on failure. */ int intel_guc_slpc_override_gucrc_mode(struct intel_guc_slpc *slpc, u32 mode) { int ret; struct drm_i915_private *i915 = slpc_to_i915(slpc); intel_wakeref_t wakeref; if (mode >= SLPC_GUCRC_MODE_MAX) return -EINVAL; with_intel_runtime_pm(&i915->runtime_pm, wakeref) { ret = slpc_set_param(slpc, SLPC_PARAM_PWRGATE_RC_MODE, mode); if (ret) guc_err(slpc_to_guc(slpc), "Override RC mode %d failed: %pe\n", mode, ERR_PTR(ret)); } return ret; } int intel_guc_slpc_unset_gucrc_mode(struct intel_guc_slpc *slpc) { struct drm_i915_private *i915 = slpc_to_i915(slpc); intel_wakeref_t wakeref; int ret = 0; with_intel_runtime_pm(&i915->runtime_pm, wakeref) { ret = slpc_unset_param(slpc, SLPC_PARAM_PWRGATE_RC_MODE); if (ret) guc_err(slpc_to_guc(slpc), "Unsetting RC mode failed: %pe\n", ERR_PTR(ret)); } return ret; } /* * intel_guc_slpc_enable() - Start SLPC * @slpc: pointer to intel_guc_slpc. * * SLPC is enabled by setting up the shared data structure and * sending reset event to GuC SLPC. Initial data is setup in * intel_guc_slpc_init. Here we send the reset event. We do * not currently need a slpc_disable since this is taken care * of automatically when a reset/suspend occurs and the GuC * CTB is destroyed. * * Return: 0 on success, non-zero error code on failure. */ int intel_guc_slpc_enable(struct intel_guc_slpc *slpc) { struct intel_guc *guc = slpc_to_guc(slpc); int ret; GEM_BUG_ON(!slpc->vma); slpc_shared_data_reset(slpc->vaddr); ret = slpc_reset(slpc); if (unlikely(ret < 0)) { guc_probe_error(guc, "SLPC Reset event returned: %pe\n", ERR_PTR(ret)); return ret; } ret = slpc_query_task_state(slpc); if (unlikely(ret < 0)) return ret; intel_guc_pm_intrmsk_enable(slpc_to_gt(slpc)); slpc_get_rp_values(slpc); /* Handle the case where min=max=RPmax */ update_server_min_softlimit(slpc); /* Set SLPC max limit to RP0 */ ret = slpc_use_fused_rp0(slpc); if (unlikely(ret)) { guc_probe_error(guc, "Failed to set SLPC max to RP0: %pe\n", ERR_PTR(ret)); return ret; } /* Revert SLPC min/max to softlimits if necessary */ ret = slpc_set_softlimits(slpc); if (unlikely(ret)) { guc_probe_error(guc, "Failed to set SLPC softlimits: %pe\n", ERR_PTR(ret)); return ret; } /* Set cached media freq ratio mode */ intel_guc_slpc_set_media_ratio_mode(slpc, slpc->media_ratio_mode); /* Set cached value of ignore efficient freq */ intel_guc_slpc_set_ignore_eff_freq(slpc, slpc->ignore_eff_freq); return 0; } int intel_guc_slpc_set_boost_freq(struct intel_guc_slpc *slpc, u32 val) { int ret = 0; if (val < slpc->min_freq || val > slpc->rp0_freq) return -EINVAL; mutex_lock(&slpc->lock); if (slpc->boost_freq != val) { /* Apply only if there are active waiters */ if (atomic_read(&slpc->num_waiters)) { ret = slpc_force_min_freq(slpc, val); if (ret) { ret = -EIO; goto done; } } slpc->boost_freq = val; } done: mutex_unlock(&slpc->lock); return ret; } void intel_guc_slpc_dec_waiters(struct intel_guc_slpc *slpc) { /* * Return min back to the softlimit. * This is called during request retire, * so we don't need to fail that if the * set_param fails. */ mutex_lock(&slpc->lock); if (atomic_dec_and_test(&slpc->num_waiters)) slpc_force_min_freq(slpc, slpc->min_freq_softlimit); mutex_unlock(&slpc->lock); } int intel_guc_slpc_print_info(struct intel_guc_slpc *slpc, struct drm_printer *p) { struct drm_i915_private *i915 = slpc_to_i915(slpc); struct slpc_shared_data *data = slpc->vaddr; struct slpc_task_state_data *slpc_tasks; intel_wakeref_t wakeref; int ret = 0; GEM_BUG_ON(!slpc->vma); with_intel_runtime_pm(&i915->runtime_pm, wakeref) { ret = slpc_query_task_state(slpc); if (!ret) { slpc_tasks = &data->task_state_data; drm_printf(p, "\tSLPC state: %s\n", slpc_get_state_string(slpc)); drm_printf(p, "\tGTPERF task active: %s\n", str_yes_no(slpc_tasks->status & SLPC_GTPERF_TASK_ENABLED)); drm_printf(p, "\tMax freq: %u MHz\n", slpc_decode_max_freq(slpc)); drm_printf(p, "\tMin freq: %u MHz\n", slpc_decode_min_freq(slpc)); drm_printf(p, "\twaitboosts: %u\n", slpc->num_boosts); drm_printf(p, "\tBoosts outstanding: %u\n", atomic_read(&slpc->num_waiters)); } } return ret; } void intel_guc_slpc_fini(struct intel_guc_slpc *slpc) { if (!slpc->vma) return; i915_vma_unpin_and_release(&slpc->vma, I915_VMA_RELEASE_MAP); }