// SPDX-License-Identifier: MIT /* * Copyright © 2016-2019 Intel Corporation */ #include "i915_drv.h" #include "intel_guc_ct.h" #include "gt/intel_gt.h" static inline struct intel_guc *ct_to_guc(struct intel_guc_ct *ct) { return container_of(ct, struct intel_guc, ct); } static inline struct intel_gt *ct_to_gt(struct intel_guc_ct *ct) { return guc_to_gt(ct_to_guc(ct)); } static inline struct drm_i915_private *ct_to_i915(struct intel_guc_ct *ct) { return ct_to_gt(ct)->i915; } static inline struct drm_device *ct_to_drm(struct intel_guc_ct *ct) { return &ct_to_i915(ct)->drm; } #define CT_ERROR(_ct, _fmt, ...) \ drm_err(ct_to_drm(_ct), "CT: " _fmt, ##__VA_ARGS__) #ifdef CONFIG_DRM_I915_DEBUG_GUC #define CT_DEBUG(_ct, _fmt, ...) \ drm_dbg(ct_to_drm(_ct), "CT: " _fmt, ##__VA_ARGS__) #else #define CT_DEBUG(...) do { } while (0) #endif #define CT_PROBE_ERROR(_ct, _fmt, ...) \ i915_probe_error(ct_to_i915(ct), "CT: " _fmt, ##__VA_ARGS__) /** * DOC: CTB Blob * * We allocate single blob to hold both CTB descriptors and buffers: * * +--------+-----------------------------------------------+------+ * | offset | contents | size | * +========+===============================================+======+ * | 0x0000 | H2G `CTB Descriptor`_ (send) | | * +--------+-----------------------------------------------+ 4K | * | 0x0800 | G2H `CTB Descriptor`_ (recv) | | * +--------+-----------------------------------------------+------+ * | 0x1000 | H2G `CT Buffer`_ (send) | n*4K | * | | | | * +--------+-----------------------------------------------+------+ * | 0x1000 | G2H `CT Buffer`_ (recv) | m*4K | * | + n*4K | | | * +--------+-----------------------------------------------+------+ * * Size of each `CT Buffer`_ must be multiple of 4K. * As we don't expect too many messages, for now use minimum sizes. */ #define CTB_DESC_SIZE ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K) #define CTB_H2G_BUFFER_SIZE (SZ_4K) #define CTB_G2H_BUFFER_SIZE (SZ_4K) struct ct_request { struct list_head link; u32 fence; u32 status; u32 response_len; u32 *response_buf; }; struct ct_incoming_msg { struct list_head link; u32 size; u32 msg[]; }; enum { CTB_SEND = 0, CTB_RECV = 1 }; enum { CTB_OWNER_HOST = 0 }; static void ct_receive_tasklet_func(struct tasklet_struct *t); static void ct_incoming_request_worker_func(struct work_struct *w); /** * intel_guc_ct_init_early - Initialize CT state without requiring device access * @ct: pointer to CT struct */ void intel_guc_ct_init_early(struct intel_guc_ct *ct) { spin_lock_init(&ct->ctbs.send.lock); spin_lock_init(&ct->ctbs.recv.lock); spin_lock_init(&ct->requests.lock); INIT_LIST_HEAD(&ct->requests.pending); INIT_LIST_HEAD(&ct->requests.incoming); INIT_WORK(&ct->requests.worker, ct_incoming_request_worker_func); tasklet_setup(&ct->receive_tasklet, ct_receive_tasklet_func); } static inline const char *guc_ct_buffer_type_to_str(u32 type) { switch (type) { case INTEL_GUC_CT_BUFFER_TYPE_SEND: return "SEND"; case INTEL_GUC_CT_BUFFER_TYPE_RECV: return "RECV"; default: return ""; } } static void guc_ct_buffer_desc_init(struct guc_ct_buffer_desc *desc, u32 cmds_addr, u32 size) { memset(desc, 0, sizeof(*desc)); desc->addr = cmds_addr; desc->size = size; desc->owner = CTB_OWNER_HOST; } static void guc_ct_buffer_reset(struct intel_guc_ct_buffer *ctb, u32 cmds_addr) { guc_ct_buffer_desc_init(ctb->desc, cmds_addr, ctb->size); } static void guc_ct_buffer_init(struct intel_guc_ct_buffer *ctb, struct guc_ct_buffer_desc *desc, u32 *cmds, u32 size) { GEM_BUG_ON(size % 4); ctb->desc = desc; ctb->cmds = cmds; ctb->size = size; guc_ct_buffer_reset(ctb, 0); } static int guc_action_register_ct_buffer(struct intel_guc *guc, u32 desc_addr, u32 type) { u32 action[] = { INTEL_GUC_ACTION_REGISTER_COMMAND_TRANSPORT_BUFFER, desc_addr, sizeof(struct guc_ct_buffer_desc), type }; /* Can't use generic send(), CT registration must go over MMIO */ return intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0); } static int ct_register_buffer(struct intel_guc_ct *ct, u32 desc_addr, u32 type) { int err = guc_action_register_ct_buffer(ct_to_guc(ct), desc_addr, type); if (unlikely(err)) CT_ERROR(ct, "Failed to register %s buffer (err=%d)\n", guc_ct_buffer_type_to_str(type), err); return err; } static int guc_action_deregister_ct_buffer(struct intel_guc *guc, u32 type) { u32 action[] = { INTEL_GUC_ACTION_DEREGISTER_COMMAND_TRANSPORT_BUFFER, CTB_OWNER_HOST, type }; /* Can't use generic send(), CT deregistration must go over MMIO */ return intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0); } static int ct_deregister_buffer(struct intel_guc_ct *ct, u32 type) { int err = guc_action_deregister_ct_buffer(ct_to_guc(ct), type); if (unlikely(err)) CT_ERROR(ct, "Failed to deregister %s buffer (err=%d)\n", guc_ct_buffer_type_to_str(type), err); return err; } /** * intel_guc_ct_init - Init buffer-based communication * @ct: pointer to CT struct * * Allocate memory required for buffer-based communication. * * Return: 0 on success, a negative errno code on failure. */ int intel_guc_ct_init(struct intel_guc_ct *ct) { struct intel_guc *guc = ct_to_guc(ct); struct guc_ct_buffer_desc *desc; u32 blob_size; u32 cmds_size; void *blob; u32 *cmds; int err; GEM_BUG_ON(ct->vma); blob_size = 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE + CTB_G2H_BUFFER_SIZE; err = intel_guc_allocate_and_map_vma(guc, blob_size, &ct->vma, &blob); if (unlikely(err)) { CT_PROBE_ERROR(ct, "Failed to allocate %u for CTB data (%pe)\n", blob_size, ERR_PTR(err)); return err; } CT_DEBUG(ct, "base=%#x size=%u\n", intel_guc_ggtt_offset(guc, ct->vma), blob_size); /* store pointers to desc and cmds for send ctb */ desc = blob; cmds = blob + 2 * CTB_DESC_SIZE; cmds_size = CTB_H2G_BUFFER_SIZE; CT_DEBUG(ct, "%s desc %#tx cmds %#tx size %u\n", "send", ptrdiff(desc, blob), ptrdiff(cmds, blob), cmds_size); guc_ct_buffer_init(&ct->ctbs.send, desc, cmds, cmds_size); /* store pointers to desc and cmds for recv ctb */ desc = blob + CTB_DESC_SIZE; cmds = blob + 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE; cmds_size = CTB_G2H_BUFFER_SIZE; CT_DEBUG(ct, "%s desc %#tx cmds %#tx size %u\n", "recv", ptrdiff(desc, blob), ptrdiff(cmds, blob), cmds_size); guc_ct_buffer_init(&ct->ctbs.recv, desc, cmds, cmds_size); return 0; } /** * intel_guc_ct_fini - Fini buffer-based communication * @ct: pointer to CT struct * * Deallocate memory required for buffer-based communication. */ void intel_guc_ct_fini(struct intel_guc_ct *ct) { GEM_BUG_ON(ct->enabled); tasklet_kill(&ct->receive_tasklet); i915_vma_unpin_and_release(&ct->vma, I915_VMA_RELEASE_MAP); memset(ct, 0, sizeof(*ct)); } /** * intel_guc_ct_enable - Enable buffer based command transport. * @ct: pointer to CT struct * * Return: 0 on success, a negative errno code on failure. */ int intel_guc_ct_enable(struct intel_guc_ct *ct) { struct intel_guc *guc = ct_to_guc(ct); u32 base, cmds; void *blob; int err; GEM_BUG_ON(ct->enabled); /* vma should be already allocated and map'ed */ GEM_BUG_ON(!ct->vma); GEM_BUG_ON(!i915_gem_object_has_pinned_pages(ct->vma->obj)); base = intel_guc_ggtt_offset(guc, ct->vma); /* blob should start with send descriptor */ blob = __px_vaddr(ct->vma->obj); GEM_BUG_ON(blob != ct->ctbs.send.desc); /* (re)initialize descriptors */ cmds = base + ptrdiff(ct->ctbs.send.cmds, blob); guc_ct_buffer_reset(&ct->ctbs.send, cmds); cmds = base + ptrdiff(ct->ctbs.recv.cmds, blob); guc_ct_buffer_reset(&ct->ctbs.recv, cmds); /* * Register both CT buffers starting with RECV buffer. * Descriptors are in first half of the blob. */ err = ct_register_buffer(ct, base + ptrdiff(ct->ctbs.recv.desc, blob), INTEL_GUC_CT_BUFFER_TYPE_RECV); if (unlikely(err)) goto err_out; err = ct_register_buffer(ct, base + ptrdiff(ct->ctbs.send.desc, blob), INTEL_GUC_CT_BUFFER_TYPE_SEND); if (unlikely(err)) goto err_deregister; ct->enabled = true; return 0; err_deregister: ct_deregister_buffer(ct, INTEL_GUC_CT_BUFFER_TYPE_RECV); err_out: CT_PROBE_ERROR(ct, "Failed to enable CTB (%pe)\n", ERR_PTR(err)); return err; } /** * intel_guc_ct_disable - Disable buffer based command transport. * @ct: pointer to CT struct */ void intel_guc_ct_disable(struct intel_guc_ct *ct) { struct intel_guc *guc = ct_to_guc(ct); GEM_BUG_ON(!ct->enabled); ct->enabled = false; if (intel_guc_is_fw_running(guc)) { ct_deregister_buffer(ct, INTEL_GUC_CT_BUFFER_TYPE_SEND); ct_deregister_buffer(ct, INTEL_GUC_CT_BUFFER_TYPE_RECV); } } static u32 ct_get_next_fence(struct intel_guc_ct *ct) { /* For now it's trivial */ return ++ct->requests.last_fence; } static void write_barrier(struct intel_guc_ct *ct) { struct intel_guc *guc = ct_to_guc(ct); struct intel_gt *gt = guc_to_gt(guc); if (i915_gem_object_is_lmem(guc->ct.vma->obj)) { GEM_BUG_ON(guc->send_regs.fw_domains); /* * This register is used by the i915 and GuC for MMIO based * communication. Once we are in this code CTBs are the only * method the i915 uses to communicate with the GuC so it is * safe to write to this register (a value of 0 is NOP for MMIO * communication). If we ever start mixing CTBs and MMIOs a new * register will have to be chosen. */ intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0); } else { /* wmb() sufficient for a barrier if in smem */ wmb(); } } /** * DOC: CTB Host to GuC request * * Format of the CTB Host to GuC request message is as follows:: * * +------------+---------+---------+---------+---------+ * | msg[0] | [1] | [2] | ... | [n-1] | * +------------+---------+---------+---------+---------+ * | MESSAGE | MESSAGE PAYLOAD | * + HEADER +---------+---------+---------+---------+ * | | 0 | 1 | ... | n | * +============+=========+=========+=========+=========+ * | len >= 1 | FENCE | request specific data | * +------+-----+---------+---------+---------+---------+ * * ^-----------------len-------------------^ */ static int ct_write(struct intel_guc_ct *ct, const u32 *action, u32 len /* in dwords */, u32 fence) { struct intel_guc_ct_buffer *ctb = &ct->ctbs.send; struct guc_ct_buffer_desc *desc = ctb->desc; u32 head = desc->head; u32 tail = desc->tail; u32 size = ctb->size; u32 used; u32 header; u32 *cmds = ctb->cmds; unsigned int i; if (unlikely(desc->is_in_error)) return -EPIPE; if (unlikely(!IS_ALIGNED(head | tail, 4) || (tail | head) >= size)) goto corrupted; /* later calculations will be done in dwords */ head /= 4; tail /= 4; size /= 4; /* * tail == head condition indicates empty. GuC FW does not support * using up the entire buffer to get tail == head meaning full. */ if (tail < head) used = (size - head) + tail; else used = tail - head; /* make sure there is a space including extra dw for the fence */ if (unlikely(used + len + 1 >= size)) return -ENOSPC; /* * Write the message. The format is the following: * DW0: header (including action code) * DW1: fence * DW2+: action data */ header = (len << GUC_CT_MSG_LEN_SHIFT) | GUC_CT_MSG_SEND_STATUS | (action[0] << GUC_CT_MSG_ACTION_SHIFT); CT_DEBUG(ct, "writing %*ph %*ph %*ph\n", 4, &header, 4, &fence, 4 * (len - 1), &action[1]); cmds[tail] = header; tail = (tail + 1) % size; cmds[tail] = fence; tail = (tail + 1) % size; for (i = 1; i < len; i++) { cmds[tail] = action[i]; tail = (tail + 1) % size; } GEM_BUG_ON(tail > size); /* * make sure H2G buffer update and LRC tail update (if this triggering a * submission) are visible before updating the descriptor tail */ write_barrier(ct); /* now update desc tail (back in bytes) */ desc->tail = tail * 4; return 0; corrupted: CT_ERROR(ct, "Corrupted descriptor addr=%#x head=%u tail=%u size=%u\n", desc->addr, desc->head, desc->tail, desc->size); desc->is_in_error = 1; return -EPIPE; } /** * wait_for_ct_request_update - Wait for CT request state update. * @req: pointer to pending request * @status: placeholder for status * * For each sent request, Guc shall send bac CT response message. * Our message handler will update status of tracked request once * response message with given fence is received. Wait here and * check for valid response status value. * * Return: * * 0 response received (status is valid) * * -ETIMEDOUT no response within hardcoded timeout */ static int wait_for_ct_request_update(struct ct_request *req, u32 *status) { int err; /* * Fast commands should complete in less than 10us, so sample quickly * up to that length of time, then switch to a slower sleep-wait loop. * No GuC command should ever take longer than 10ms. */ #define done INTEL_GUC_MSG_IS_RESPONSE(READ_ONCE(req->status)) err = wait_for_us(done, 10); if (err) err = wait_for(done, 10); #undef done if (unlikely(err)) DRM_ERROR("CT: fence %u err %d\n", req->fence, err); *status = req->status; return err; } static int ct_send(struct intel_guc_ct *ct, const u32 *action, u32 len, u32 *response_buf, u32 response_buf_size, u32 *status) { struct ct_request request; unsigned long flags; u32 fence; int err; GEM_BUG_ON(!ct->enabled); GEM_BUG_ON(!len); GEM_BUG_ON(len & ~GUC_CT_MSG_LEN_MASK); GEM_BUG_ON(!response_buf && response_buf_size); spin_lock_irqsave(&ct->ctbs.send.lock, flags); fence = ct_get_next_fence(ct); request.fence = fence; request.status = 0; request.response_len = response_buf_size; request.response_buf = response_buf; spin_lock(&ct->requests.lock); list_add_tail(&request.link, &ct->requests.pending); spin_unlock(&ct->requests.lock); err = ct_write(ct, action, len, fence); spin_unlock_irqrestore(&ct->ctbs.send.lock, flags); if (unlikely(err)) goto unlink; intel_guc_notify(ct_to_guc(ct)); err = wait_for_ct_request_update(&request, status); if (unlikely(err)) goto unlink; if (!INTEL_GUC_MSG_IS_RESPONSE_SUCCESS(*status)) { err = -EIO; goto unlink; } if (response_buf) { /* There shall be no data in the status */ WARN_ON(INTEL_GUC_MSG_TO_DATA(request.status)); /* Return actual response len */ err = request.response_len; } else { /* There shall be no response payload */ WARN_ON(request.response_len); /* Return data decoded from the status dword */ err = INTEL_GUC_MSG_TO_DATA(*status); } unlink: spin_lock_irqsave(&ct->requests.lock, flags); list_del(&request.link); spin_unlock_irqrestore(&ct->requests.lock, flags); return err; } /* * Command Transport (CT) buffer based GuC send function. */ int intel_guc_ct_send(struct intel_guc_ct *ct, const u32 *action, u32 len, u32 *response_buf, u32 response_buf_size) { u32 status = ~0; /* undefined */ int ret; if (unlikely(!ct->enabled)) { WARN(1, "Unexpected send: action=%#x\n", *action); return -ENODEV; } ret = ct_send(ct, action, len, response_buf, response_buf_size, &status); if (unlikely(ret < 0)) { CT_ERROR(ct, "Sending action %#x failed (err=%d status=%#X)\n", action[0], ret, status); } else if (unlikely(ret)) { CT_DEBUG(ct, "send action %#x returned %d (%#x)\n", action[0], ret, ret); } return ret; } static inline unsigned int ct_header_get_len(u32 header) { return (header >> GUC_CT_MSG_LEN_SHIFT) & GUC_CT_MSG_LEN_MASK; } static inline unsigned int ct_header_get_action(u32 header) { return (header >> GUC_CT_MSG_ACTION_SHIFT) & GUC_CT_MSG_ACTION_MASK; } static inline bool ct_header_is_response(u32 header) { return !!(header & GUC_CT_MSG_IS_RESPONSE); } static struct ct_incoming_msg *ct_alloc_msg(u32 num_dwords) { struct ct_incoming_msg *msg; msg = kmalloc(sizeof(*msg) + sizeof(u32) * num_dwords, GFP_ATOMIC); if (msg) msg->size = num_dwords; return msg; } static void ct_free_msg(struct ct_incoming_msg *msg) { kfree(msg); } /* * Return: number available remaining dwords to read (0 if empty) * or a negative error code on failure */ static int ct_read(struct intel_guc_ct *ct, struct ct_incoming_msg **msg) { struct intel_guc_ct_buffer *ctb = &ct->ctbs.recv; struct guc_ct_buffer_desc *desc = ctb->desc; u32 head = desc->head; u32 tail = desc->tail; u32 size = ctb->size; u32 *cmds = ctb->cmds; s32 available; unsigned int len; unsigned int i; u32 header; if (unlikely(desc->is_in_error)) return -EPIPE; if (unlikely(!IS_ALIGNED(head | tail, 4) || (tail | head) >= size)) goto corrupted; /* later calculations will be done in dwords */ head /= 4; tail /= 4; size /= 4; /* tail == head condition indicates empty */ available = tail - head; if (unlikely(available == 0)) { *msg = NULL; return 0; } /* beware of buffer wrap case */ if (unlikely(available < 0)) available += size; CT_DEBUG(ct, "available %d (%u:%u)\n", available, head, tail); GEM_BUG_ON(available < 0); header = cmds[head]; head = (head + 1) % size; /* message len with header */ len = ct_header_get_len(header) + 1; if (unlikely(len > (u32)available)) { CT_ERROR(ct, "Incomplete message %*ph %*ph %*ph\n", 4, &header, 4 * (head + available - 1 > size ? size - head : available - 1), &cmds[head], 4 * (head + available - 1 > size ? available - 1 - size + head : 0), &cmds[0]); goto corrupted; } *msg = ct_alloc_msg(len); if (!*msg) { CT_ERROR(ct, "No memory for message %*ph %*ph %*ph\n", 4, &header, 4 * (head + available - 1 > size ? size - head : available - 1), &cmds[head], 4 * (head + available - 1 > size ? available - 1 - size + head : 0), &cmds[0]); return available; } (*msg)->msg[0] = header; for (i = 1; i < len; i++) { (*msg)->msg[i] = cmds[head]; head = (head + 1) % size; } CT_DEBUG(ct, "received %*ph\n", 4 * len, (*msg)->msg); desc->head = head * 4; return available - len; corrupted: CT_ERROR(ct, "Corrupted descriptor addr=%#x head=%u tail=%u size=%u\n", desc->addr, desc->head, desc->tail, desc->size); desc->is_in_error = 1; return -EPIPE; } /** * DOC: CTB GuC to Host response * * Format of the CTB GuC to Host response message is as follows:: * * +------------+---------+---------+---------+---------+---------+ * | msg[0] | [1] | [2] | [3] | ... | [n-1] | * +------------+---------+---------+---------+---------+---------+ * | MESSAGE | MESSAGE PAYLOAD | * + HEADER +---------+---------+---------+---------+---------+ * | | 0 | 1 | 2 | ... | n | * +============+=========+=========+=========+=========+=========+ * | len >= 2 | FENCE | STATUS | response specific data | * +------+-----+---------+---------+---------+---------+---------+ * * ^-----------------------len-----------------------^ */ static int ct_handle_response(struct intel_guc_ct *ct, struct ct_incoming_msg *response) { u32 header = response->msg[0]; u32 len = ct_header_get_len(header); u32 fence; u32 status; u32 datalen; struct ct_request *req; unsigned long flags; bool found = false; int err = 0; GEM_BUG_ON(!ct_header_is_response(header)); /* Response payload shall at least include fence and status */ if (unlikely(len < 2)) { CT_ERROR(ct, "Corrupted response (len %u)\n", len); return -EPROTO; } fence = response->msg[1]; status = response->msg[2]; datalen = len - 2; /* Format of the status follows RESPONSE message */ if (unlikely(!INTEL_GUC_MSG_IS_RESPONSE(status))) { CT_ERROR(ct, "Corrupted response (status %#x)\n", status); return -EPROTO; } CT_DEBUG(ct, "response fence %u status %#x\n", fence, status); spin_lock_irqsave(&ct->requests.lock, flags); list_for_each_entry(req, &ct->requests.pending, link) { if (unlikely(fence != req->fence)) { CT_DEBUG(ct, "request %u awaits response\n", req->fence); continue; } if (unlikely(datalen > req->response_len)) { CT_ERROR(ct, "Response %u too long (datalen %u > %u)\n", req->fence, datalen, req->response_len); datalen = min(datalen, req->response_len); err = -EMSGSIZE; } if (datalen) memcpy(req->response_buf, response->msg + 3, 4 * datalen); req->response_len = datalen; WRITE_ONCE(req->status, status); found = true; break; } spin_unlock_irqrestore(&ct->requests.lock, flags); if (!found) { CT_ERROR(ct, "Unsolicited response (fence %u)\n", fence); return -ENOKEY; } if (unlikely(err)) return err; ct_free_msg(response); return 0; } static int ct_process_request(struct intel_guc_ct *ct, struct ct_incoming_msg *request) { struct intel_guc *guc = ct_to_guc(ct); u32 header, action, len; const u32 *payload; int ret; header = request->msg[0]; payload = &request->msg[1]; action = ct_header_get_action(header); len = ct_header_get_len(header); CT_DEBUG(ct, "request %x %*ph\n", action, 4 * len, payload); switch (action) { case INTEL_GUC_ACTION_DEFAULT: ret = intel_guc_to_host_process_recv_msg(guc, payload, len); break; default: ret = -EOPNOTSUPP; break; } if (unlikely(ret)) { CT_ERROR(ct, "Failed to process request %04x (%pe)\n", action, ERR_PTR(ret)); return ret; } ct_free_msg(request); return 0; } static bool ct_process_incoming_requests(struct intel_guc_ct *ct) { unsigned long flags; struct ct_incoming_msg *request; bool done; int err; spin_lock_irqsave(&ct->requests.lock, flags); request = list_first_entry_or_null(&ct->requests.incoming, struct ct_incoming_msg, link); if (request) list_del(&request->link); done = !!list_empty(&ct->requests.incoming); spin_unlock_irqrestore(&ct->requests.lock, flags); if (!request) return true; err = ct_process_request(ct, request); if (unlikely(err)) { CT_ERROR(ct, "Failed to process CT message (%pe) %*ph\n", ERR_PTR(err), 4 * request->size, request->msg); ct_free_msg(request); } return done; } static void ct_incoming_request_worker_func(struct work_struct *w) { struct intel_guc_ct *ct = container_of(w, struct intel_guc_ct, requests.worker); bool done; done = ct_process_incoming_requests(ct); if (!done) queue_work(system_unbound_wq, &ct->requests.worker); } /** * DOC: CTB GuC to Host request * * Format of the CTB GuC to Host request message is as follows:: * * +------------+---------+---------+---------+---------+---------+ * | msg[0] | [1] | [2] | [3] | ... | [n-1] | * +------------+---------+---------+---------+---------+---------+ * | MESSAGE | MESSAGE PAYLOAD | * + HEADER +---------+---------+---------+---------+---------+ * | | 0 | 1 | 2 | ... | n | * +============+=========+=========+=========+=========+=========+ * | len | request specific data | * +------+-----+---------+---------+---------+---------+---------+ * * ^-----------------------len-----------------------^ */ static int ct_handle_request(struct intel_guc_ct *ct, struct ct_incoming_msg *request) { unsigned long flags; GEM_BUG_ON(ct_header_is_response(request->msg[0])); spin_lock_irqsave(&ct->requests.lock, flags); list_add_tail(&request->link, &ct->requests.incoming); spin_unlock_irqrestore(&ct->requests.lock, flags); queue_work(system_unbound_wq, &ct->requests.worker); return 0; } static void ct_handle_msg(struct intel_guc_ct *ct, struct ct_incoming_msg *msg) { u32 header = msg->msg[0]; int err; if (ct_header_is_response(header)) err = ct_handle_response(ct, msg); else err = ct_handle_request(ct, msg); if (unlikely(err)) { CT_ERROR(ct, "Failed to process CT message (%pe) %*ph\n", ERR_PTR(err), 4 * msg->size, msg->msg); ct_free_msg(msg); } } /* * Return: number available remaining dwords to read (0 if empty) * or a negative error code on failure */ static int ct_receive(struct intel_guc_ct *ct) { struct ct_incoming_msg *msg = NULL; unsigned long flags; int ret; spin_lock_irqsave(&ct->ctbs.recv.lock, flags); ret = ct_read(ct, &msg); spin_unlock_irqrestore(&ct->ctbs.recv.lock, flags); if (ret < 0) return ret; if (msg) ct_handle_msg(ct, msg); return ret; } static void ct_try_receive_message(struct intel_guc_ct *ct) { int ret; if (GEM_WARN_ON(!ct->enabled)) return; ret = ct_receive(ct); if (ret > 0) tasklet_hi_schedule(&ct->receive_tasklet); } static void ct_receive_tasklet_func(struct tasklet_struct *t) { struct intel_guc_ct *ct = from_tasklet(ct, t, receive_tasklet); ct_try_receive_message(ct); } /* * When we're communicating with the GuC over CT, GuC uses events * to notify us about new messages being posted on the RECV buffer. */ void intel_guc_ct_event_handler(struct intel_guc_ct *ct) { if (unlikely(!ct->enabled)) { WARN(1, "Unexpected GuC event received while CT disabled!\n"); return; } ct_try_receive_message(ct); }