/* SPDX-License-Identifier: MIT */ /* * Copyright © 2014-2019 Intel Corporation */ #ifndef _INTEL_GUC_H_ #define _INTEL_GUC_H_ #include #include #include #include "intel_guc_ct.h" #include "intel_guc_fw.h" #include "intel_guc_fwif.h" #include "intel_guc_log.h" #include "intel_guc_reg.h" #include "intel_guc_slpc_types.h" #include "intel_uc_fw.h" #include "intel_uncore.h" #include "i915_utils.h" #include "i915_vma.h" struct __guc_ads_blob; struct intel_guc_state_capture; /** * struct intel_guc - Top level structure of GuC. * * It handles firmware loading and manages client pool. intel_guc owns an * i915_sched_engine for submission. */ struct intel_guc { /** @fw: the GuC firmware */ struct intel_uc_fw fw; /** @log: sub-structure containing GuC log related data and objects */ struct intel_guc_log log; /** @ct: the command transport communication channel */ struct intel_guc_ct ct; /** @slpc: sub-structure containing SLPC related data and objects */ struct intel_guc_slpc slpc; /** @capture: the error-state-capture module's data and objects */ struct intel_guc_state_capture *capture; /** @sched_engine: Global engine used to submit requests to GuC */ struct i915_sched_engine *sched_engine; /** * @stalled_request: if GuC can't process a request for any reason, we * save it until GuC restarts processing. No other request can be * submitted until the stalled request is processed. */ struct i915_request *stalled_request; /** * @submission_stall_reason: reason why submission is stalled */ enum { STALL_NONE, STALL_REGISTER_CONTEXT, STALL_MOVE_LRC_TAIL, STALL_ADD_REQUEST, } submission_stall_reason; /* intel_guc_recv interrupt related state */ /** @irq_lock: protects GuC irq state */ spinlock_t irq_lock; /** * @msg_enabled_mask: mask of events that are processed when receiving * an INTEL_GUC_ACTION_DEFAULT G2H message. */ unsigned int msg_enabled_mask; /** * @outstanding_submission_g2h: number of outstanding GuC to Host * responses related to GuC submission, used to determine if the GT is * idle */ atomic_t outstanding_submission_g2h; /** @interrupts: pointers to GuC interrupt-managing functions. */ struct { bool enabled; void (*reset)(struct intel_guc *guc); void (*enable)(struct intel_guc *guc); void (*disable)(struct intel_guc *guc); } interrupts; /** * @submission_state: sub-structure for submission state protected by * single lock */ struct { /** * @lock: protects everything in submission_state, * ce->guc_id.id, and ce->guc_id.ref when transitioning in and * out of zero */ spinlock_t lock; /** * @guc_ids: used to allocate new guc_ids, single-lrc */ struct ida guc_ids; /** * @num_guc_ids: Number of guc_ids, selftest feature to be able * to reduce this number while testing. */ int num_guc_ids; /** * @guc_ids_bitmap: used to allocate new guc_ids, multi-lrc */ unsigned long *guc_ids_bitmap; /** * @guc_id_list: list of intel_context with valid guc_ids but no * refs */ struct list_head guc_id_list; /** * @guc_ids_in_use: Number single-lrc guc_ids in use */ unsigned int guc_ids_in_use; /** * @destroyed_contexts: list of contexts waiting to be destroyed * (deregistered with the GuC) */ struct list_head destroyed_contexts; /** * @destroyed_worker: worker to deregister contexts, need as we * need to take a GT PM reference and can't from destroy * function as it might be in an atomic context (no sleeping) */ struct work_struct destroyed_worker; /** * @reset_fail_worker: worker to trigger a GT reset after an * engine reset fails */ struct work_struct reset_fail_worker; /** * @reset_fail_mask: mask of engines that failed to reset */ intel_engine_mask_t reset_fail_mask; /** * @sched_disable_delay_ms: schedule disable delay, in ms, for * contexts */ unsigned int sched_disable_delay_ms; /** * @sched_disable_gucid_threshold: threshold of min remaining available * guc_ids before we start bypassing the schedule disable delay */ unsigned int sched_disable_gucid_threshold; } submission_state; /** * @submission_supported: tracks whether we support GuC submission on * the current platform */ bool submission_supported; /** @submission_selected: tracks whether the user enabled GuC submission */ bool submission_selected; /** @submission_initialized: tracks whether GuC submission has been initialised */ bool submission_initialized; /** * @rc_supported: tracks whether we support GuC rc on the current platform */ bool rc_supported; /** @rc_selected: tracks whether the user enabled GuC rc */ bool rc_selected; /** @ads_vma: object allocated to hold the GuC ADS */ struct i915_vma *ads_vma; /** @ads_map: contents of the GuC ADS */ struct iosys_map ads_map; /** @ads_regset_size: size of the save/restore regsets in the ADS */ u32 ads_regset_size; /** * @ads_regset_count: number of save/restore registers in the ADS for * each engine */ u32 ads_regset_count[I915_NUM_ENGINES]; /** @ads_regset: save/restore regsets in the ADS */ struct guc_mmio_reg *ads_regset; /** @ads_golden_ctxt_size: size of the golden contexts in the ADS */ u32 ads_golden_ctxt_size; /** @ads_capture_size: size of register lists in the ADS used for error capture */ u32 ads_capture_size; /** @ads_engine_usage_size: size of engine usage in the ADS */ u32 ads_engine_usage_size; /** @lrc_desc_pool_v69: object allocated to hold the GuC LRC descriptor pool */ struct i915_vma *lrc_desc_pool_v69; /** @lrc_desc_pool_vaddr_v69: contents of the GuC LRC descriptor pool */ void *lrc_desc_pool_vaddr_v69; /** * @context_lookup: used to resolve intel_context from guc_id, if a * context is present in this structure it is registered with the GuC */ struct xarray context_lookup; /** @params: Control params for fw initialization */ u32 params[GUC_CTL_MAX_DWORDS]; /** @send_regs: GuC's FW specific registers used for sending MMIO H2G */ struct { u32 base; unsigned int count; enum forcewake_domains fw_domains; } send_regs; /** @notify_reg: register used to send interrupts to the GuC FW */ i915_reg_t notify_reg; /** * @mmio_msg: notification bitmask that the GuC writes in one of its * registers when the CT channel is disabled, to be processed when the * channel is back up. */ u32 mmio_msg; /** @send_mutex: used to serialize the intel_guc_send actions */ struct mutex send_mutex; /** * @timestamp: GT timestamp object that stores a copy of the timestamp * and adjusts it for overflow using a worker. */ struct { /** * @lock: Lock protecting the below fields and the engine stats. */ spinlock_t lock; /** * @gt_stamp: 64 bit extended value of the GT timestamp. */ u64 gt_stamp; /** * @ping_delay: Period for polling the GT timestamp for * overflow. */ unsigned long ping_delay; /** * @work: Periodic work to adjust GT timestamp, engine and * context usage for overflows. */ struct delayed_work work; /** * @shift: Right shift value for the gpm timestamp */ u32 shift; /** * @last_stat_jiffies: jiffies at last actual stats collection time * We use this timestamp to ensure we don't oversample the * stats because runtime power management events can trigger * stats collection at much higher rates than required. */ unsigned long last_stat_jiffies; } timestamp; #ifdef CONFIG_DRM_I915_SELFTEST /** * @number_guc_id_stolen: The number of guc_ids that have been stolen */ int number_guc_id_stolen; #endif }; static inline struct intel_guc *log_to_guc(struct intel_guc_log *log) { return container_of(log, struct intel_guc, log); } static inline int intel_guc_send(struct intel_guc *guc, const u32 *action, u32 len) { return intel_guc_ct_send(&guc->ct, action, len, NULL, 0, 0); } static inline int intel_guc_send_nb(struct intel_guc *guc, const u32 *action, u32 len, u32 g2h_len_dw) { return intel_guc_ct_send(&guc->ct, action, len, NULL, 0, MAKE_SEND_FLAGS(g2h_len_dw)); } static inline int intel_guc_send_and_receive(struct intel_guc *guc, const u32 *action, u32 len, u32 *response_buf, u32 response_buf_size) { return intel_guc_ct_send(&guc->ct, action, len, response_buf, response_buf_size, 0); } static inline int intel_guc_send_busy_loop(struct intel_guc *guc, const u32 *action, u32 len, u32 g2h_len_dw, bool loop) { int err; unsigned int sleep_period_ms = 1; bool not_atomic = !in_atomic() && !irqs_disabled(); /* * FIXME: Have caller pass in if we are in an atomic context to avoid * using in_atomic(). It is likely safe here as we check for irqs * disabled which basically all the spin locks in the i915 do but * regardless this should be cleaned up. */ /* No sleeping with spin locks, just busy loop */ might_sleep_if(loop && not_atomic); retry: err = intel_guc_send_nb(guc, action, len, g2h_len_dw); if (unlikely(err == -EBUSY && loop)) { if (likely(not_atomic)) { if (msleep_interruptible(sleep_period_ms)) return -EINTR; sleep_period_ms = sleep_period_ms << 1; } else { cpu_relax(); } goto retry; } return err; } /* Only call this from the interrupt handler code */ static inline void intel_guc_to_host_event_handler(struct intel_guc *guc) { if (guc->interrupts.enabled) intel_guc_ct_event_handler(&guc->ct); } /* GuC addresses above GUC_GGTT_TOP also don't map through the GTT */ #define GUC_GGTT_TOP 0xFEE00000 /** * intel_guc_ggtt_offset() - Get and validate the GGTT offset of @vma * @guc: intel_guc structure. * @vma: i915 graphics virtual memory area. * * GuC does not allow any gfx GGTT address that falls into range * [0, ggtt.pin_bias), which is reserved for Boot ROM, SRAM and WOPCM. * Currently, in order to exclude [0, ggtt.pin_bias) address space from * GGTT, all gfx objects used by GuC are allocated with intel_guc_allocate_vma() * and pinned with PIN_OFFSET_BIAS along with the value of ggtt.pin_bias. * * Return: GGTT offset of the @vma. */ static inline u32 intel_guc_ggtt_offset(struct intel_guc *guc, struct i915_vma *vma) { u32 offset = i915_ggtt_offset(vma); GEM_BUG_ON(offset < i915_ggtt_pin_bias(vma)); GEM_BUG_ON(range_overflows_t(u64, offset, vma->size, GUC_GGTT_TOP)); return offset; } void intel_guc_init_early(struct intel_guc *guc); void intel_guc_init_late(struct intel_guc *guc); void intel_guc_init_send_regs(struct intel_guc *guc); void intel_guc_write_params(struct intel_guc *guc); int intel_guc_init(struct intel_guc *guc); void intel_guc_fini(struct intel_guc *guc); void intel_guc_notify(struct intel_guc *guc); int intel_guc_send_mmio(struct intel_guc *guc, const u32 *action, u32 len, u32 *response_buf, u32 response_buf_size); int intel_guc_to_host_process_recv_msg(struct intel_guc *guc, const u32 *payload, u32 len); int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset); int intel_guc_suspend(struct intel_guc *guc); int intel_guc_resume(struct intel_guc *guc); struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size); int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size, struct i915_vma **out_vma, void **out_vaddr); int intel_guc_self_cfg32(struct intel_guc *guc, u16 key, u32 value); int intel_guc_self_cfg64(struct intel_guc *guc, u16 key, u64 value); static inline bool intel_guc_is_supported(struct intel_guc *guc) { return intel_uc_fw_is_supported(&guc->fw); } static inline bool intel_guc_is_wanted(struct intel_guc *guc) { return intel_uc_fw_is_enabled(&guc->fw); } static inline bool intel_guc_is_used(struct intel_guc *guc) { GEM_BUG_ON(__intel_uc_fw_status(&guc->fw) == INTEL_UC_FIRMWARE_SELECTED); return intel_uc_fw_is_available(&guc->fw); } static inline bool intel_guc_is_fw_running(struct intel_guc *guc) { return intel_uc_fw_is_running(&guc->fw); } static inline bool intel_guc_is_ready(struct intel_guc *guc) { return intel_guc_is_fw_running(guc) && intel_guc_ct_enabled(&guc->ct); } static inline void intel_guc_reset_interrupts(struct intel_guc *guc) { guc->interrupts.reset(guc); } static inline void intel_guc_enable_interrupts(struct intel_guc *guc) { guc->interrupts.enable(guc); } static inline void intel_guc_disable_interrupts(struct intel_guc *guc) { guc->interrupts.disable(guc); } static inline int intel_guc_sanitize(struct intel_guc *guc) { intel_uc_fw_sanitize(&guc->fw); intel_guc_disable_interrupts(guc); intel_guc_ct_sanitize(&guc->ct); guc->mmio_msg = 0; return 0; } static inline void intel_guc_enable_msg(struct intel_guc *guc, u32 mask) { spin_lock_irq(&guc->irq_lock); guc->msg_enabled_mask |= mask; spin_unlock_irq(&guc->irq_lock); } static inline void intel_guc_disable_msg(struct intel_guc *guc, u32 mask) { spin_lock_irq(&guc->irq_lock); guc->msg_enabled_mask &= ~mask; spin_unlock_irq(&guc->irq_lock); } int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout); int intel_guc_deregister_done_process_msg(struct intel_guc *guc, const u32 *msg, u32 len); int intel_guc_sched_done_process_msg(struct intel_guc *guc, const u32 *msg, u32 len); int intel_guc_context_reset_process_msg(struct intel_guc *guc, const u32 *msg, u32 len); int intel_guc_engine_failure_process_msg(struct intel_guc *guc, const u32 *msg, u32 len); int intel_guc_error_capture_process_msg(struct intel_guc *guc, const u32 *msg, u32 len); struct intel_engine_cs * intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance); void intel_guc_find_hung_context(struct intel_engine_cs *engine); int intel_guc_global_policies_update(struct intel_guc *guc); void intel_guc_context_ban(struct intel_context *ce, struct i915_request *rq); void intel_guc_submission_reset_prepare(struct intel_guc *guc); void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled); void intel_guc_submission_reset_finish(struct intel_guc *guc); void intel_guc_submission_cancel_requests(struct intel_guc *guc); void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p); void intel_guc_write_barrier(struct intel_guc *guc); void intel_guc_dump_time_info(struct intel_guc *guc, struct drm_printer *p); int intel_guc_sched_disable_gucid_threshold_max(struct intel_guc *guc); #endif