// SPDX-License-Identifier: MIT /* * Copyright © 2020 Intel Corporation */ #include /* fault-inject.h is not standalone! */ #include #include #include #include "gem/i915_gem_internal.h" #include "gem/i915_gem_lmem.h" #include "i915_reg.h" #include "i915_trace.h" #include "i915_utils.h" #include "intel_gt.h" #include "intel_gt_mcr.h" #include "intel_gt_regs.h" #include "intel_gtt.h" static bool intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *i915) { return IS_BROXTON(i915) && i915_vtd_active(i915); } bool intel_vm_no_concurrent_access_wa(struct drm_i915_private *i915) { return IS_CHERRYVIEW(i915) || intel_ggtt_update_needs_vtd_wa(i915); } struct drm_i915_gem_object *alloc_pt_lmem(struct i915_address_space *vm, int sz) { struct drm_i915_gem_object *obj; /* * To avoid severe over-allocation when dealing with min_page_size * restrictions, we override that behaviour here by allowing an object * size and page layout which can be smaller. In practice this should be * totally fine, since GTT paging structures are not typically inserted * into the GTT. * * Note that we also hit this path for the scratch page, and for this * case it might need to be 64K, but that should work fine here since we * used the passed in size for the page size, which should ensure it * also has the same alignment. */ obj = __i915_gem_object_create_lmem_with_ps(vm->i915, sz, sz, vm->lmem_pt_obj_flags); /* * Ensure all paging structures for this vm share the same dma-resv * object underneath, with the idea that one object_lock() will lock * them all at once. */ if (!IS_ERR(obj)) { obj->base.resv = i915_vm_resv_get(vm); obj->shares_resv_from = vm; } return obj; } struct drm_i915_gem_object *alloc_pt_dma(struct i915_address_space *vm, int sz) { struct drm_i915_gem_object *obj; if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1))) i915_gem_shrink_all(vm->i915); obj = i915_gem_object_create_internal(vm->i915, sz); /* * Ensure all paging structures for this vm share the same dma-resv * object underneath, with the idea that one object_lock() will lock * them all at once. */ if (!IS_ERR(obj)) { obj->base.resv = i915_vm_resv_get(vm); obj->shares_resv_from = vm; } return obj; } int map_pt_dma(struct i915_address_space *vm, struct drm_i915_gem_object *obj) { enum i915_map_type type; void *vaddr; type = i915_coherent_map_type(vm->i915, obj, true); vaddr = i915_gem_object_pin_map_unlocked(obj, type); if (IS_ERR(vaddr)) return PTR_ERR(vaddr); i915_gem_object_make_unshrinkable(obj); return 0; } int map_pt_dma_locked(struct i915_address_space *vm, struct drm_i915_gem_object *obj) { enum i915_map_type type; void *vaddr; type = i915_coherent_map_type(vm->i915, obj, true); vaddr = i915_gem_object_pin_map(obj, type); if (IS_ERR(vaddr)) return PTR_ERR(vaddr); i915_gem_object_make_unshrinkable(obj); return 0; } static void clear_vm_list(struct list_head *list) { struct i915_vma *vma, *vn; list_for_each_entry_safe(vma, vn, list, vm_link) { struct drm_i915_gem_object *obj = vma->obj; if (!i915_gem_object_get_rcu(obj)) { /* * Object is dying, but has not yet cleared its * vma list. * Unbind the dying vma to ensure our list * is completely drained. We leave the destruction to * the object destructor to avoid the vma * disappearing under it. */ atomic_and(~I915_VMA_PIN_MASK, &vma->flags); WARN_ON(__i915_vma_unbind(vma)); /* Remove from the unbound list */ list_del_init(&vma->vm_link); /* * Delay the vm and vm mutex freeing until the * object is done with destruction. */ i915_vm_resv_get(vma->vm); vma->vm_ddestroy = true; } else { i915_vma_destroy_locked(vma); i915_gem_object_put(obj); } } } static void __i915_vm_close(struct i915_address_space *vm) { mutex_lock(&vm->mutex); clear_vm_list(&vm->bound_list); clear_vm_list(&vm->unbound_list); /* Check for must-fix unanticipated side-effects */ GEM_BUG_ON(!list_empty(&vm->bound_list)); GEM_BUG_ON(!list_empty(&vm->unbound_list)); mutex_unlock(&vm->mutex); } /* lock the vm into the current ww, if we lock one, we lock all */ int i915_vm_lock_objects(struct i915_address_space *vm, struct i915_gem_ww_ctx *ww) { if (vm->scratch[0]->base.resv == &vm->_resv) { return i915_gem_object_lock(vm->scratch[0], ww); } else { struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); /* We borrowed the scratch page from ggtt, take the top level object */ return i915_gem_object_lock(ppgtt->pd->pt.base, ww); } } void i915_address_space_fini(struct i915_address_space *vm) { drm_mm_takedown(&vm->mm); } /** * i915_vm_resv_release - Final struct i915_address_space destructor * @kref: Pointer to the &i915_address_space.resv_ref member. * * This function is called when the last lock sharer no longer shares the * &i915_address_space._resv lock, and also if we raced when * destroying a vma by the vma destruction */ void i915_vm_resv_release(struct kref *kref) { struct i915_address_space *vm = container_of(kref, typeof(*vm), resv_ref); dma_resv_fini(&vm->_resv); mutex_destroy(&vm->mutex); kfree(vm); } static void __i915_vm_release(struct work_struct *work) { struct i915_address_space *vm = container_of(work, struct i915_address_space, release_work); __i915_vm_close(vm); /* Synchronize async unbinds. */ i915_vma_resource_bind_dep_sync_all(vm); vm->cleanup(vm); i915_address_space_fini(vm); i915_vm_resv_put(vm); } void i915_vm_release(struct kref *kref) { struct i915_address_space *vm = container_of(kref, struct i915_address_space, ref); GEM_BUG_ON(i915_is_ggtt(vm)); trace_i915_ppgtt_release(vm); queue_work(vm->i915->wq, &vm->release_work); } void i915_address_space_init(struct i915_address_space *vm, int subclass) { kref_init(&vm->ref); /* * Special case for GGTT that has already done an early * kref_init here. */ if (!kref_read(&vm->resv_ref)) kref_init(&vm->resv_ref); vm->pending_unbind = RB_ROOT_CACHED; INIT_WORK(&vm->release_work, __i915_vm_release); /* * The vm->mutex must be reclaim safe (for use in the shrinker). * Do a dummy acquire now under fs_reclaim so that any allocation * attempt holding the lock is immediately reported by lockdep. */ mutex_init(&vm->mutex); lockdep_set_subclass(&vm->mutex, subclass); if (!intel_vm_no_concurrent_access_wa(vm->i915)) { i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex); } else { /* * CHV + BXT VTD workaround use stop_machine(), * which is allowed to allocate memory. This means &vm->mutex * is the outer lock, and in theory we can allocate memory inside * it through stop_machine(). * * Add the annotation for this, we use trylock in shrinker. */ mutex_acquire(&vm->mutex.dep_map, 0, 0, _THIS_IP_); might_alloc(GFP_KERNEL); mutex_release(&vm->mutex.dep_map, _THIS_IP_); } dma_resv_init(&vm->_resv); GEM_BUG_ON(!vm->total); drm_mm_init(&vm->mm, 0, vm->total); memset64(vm->min_alignment, I915_GTT_MIN_ALIGNMENT, ARRAY_SIZE(vm->min_alignment)); if (HAS_64K_PAGES(vm->i915)) { vm->min_alignment[INTEL_MEMORY_LOCAL] = I915_GTT_PAGE_SIZE_64K; vm->min_alignment[INTEL_MEMORY_STOLEN_LOCAL] = I915_GTT_PAGE_SIZE_64K; } vm->mm.head_node.color = I915_COLOR_UNEVICTABLE; INIT_LIST_HEAD(&vm->bound_list); INIT_LIST_HEAD(&vm->unbound_list); } void *__px_vaddr(struct drm_i915_gem_object *p) { enum i915_map_type type; GEM_BUG_ON(!i915_gem_object_has_pages(p)); return page_unpack_bits(p->mm.mapping, &type); } dma_addr_t __px_dma(struct drm_i915_gem_object *p) { GEM_BUG_ON(!i915_gem_object_has_pages(p)); return sg_dma_address(p->mm.pages->sgl); } struct page *__px_page(struct drm_i915_gem_object *p) { GEM_BUG_ON(!i915_gem_object_has_pages(p)); return sg_page(p->mm.pages->sgl); } void fill_page_dma(struct drm_i915_gem_object *p, const u64 val, unsigned int count) { void *vaddr = __px_vaddr(p); memset64(vaddr, val, count); drm_clflush_virt_range(vaddr, PAGE_SIZE); } static void poison_scratch_page(struct drm_i915_gem_object *scratch) { void *vaddr = __px_vaddr(scratch); u8 val; val = 0; if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) val = POISON_FREE; memset(vaddr, val, scratch->base.size); drm_clflush_virt_range(vaddr, scratch->base.size); } int setup_scratch_page(struct i915_address_space *vm) { unsigned long size; /* * In order to utilize 64K pages for an object with a size < 2M, we will * need to support a 64K scratch page, given that every 16th entry for a * page-table operating in 64K mode must point to a properly aligned 64K * region, including any PTEs which happen to point to scratch. * * This is only relevant for the 48b PPGTT where we support * huge-gtt-pages, see also i915_vma_insert(). However, as we share the * scratch (read-only) between all vm, we create one 64k scratch page * for all. */ size = I915_GTT_PAGE_SIZE_4K; if (i915_vm_is_4lvl(vm) && HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K) && !HAS_64K_PAGES(vm->i915)) size = I915_GTT_PAGE_SIZE_64K; do { struct drm_i915_gem_object *obj; obj = vm->alloc_scratch_dma(vm, size); if (IS_ERR(obj)) goto skip; if (map_pt_dma(vm, obj)) goto skip_obj; /* We need a single contiguous page for our scratch */ if (obj->mm.page_sizes.sg < size) goto skip_obj; /* And it needs to be correspondingly aligned */ if (__px_dma(obj) & (size - 1)) goto skip_obj; /* * Use a non-zero scratch page for debugging. * * We want a value that should be reasonably obvious * to spot in the error state, while also causing a GPU hang * if executed. We prefer using a clear page in production, so * should it ever be accidentally used, the effect should be * fairly benign. */ poison_scratch_page(obj); vm->scratch[0] = obj; vm->scratch_order = get_order(size); return 0; skip_obj: i915_gem_object_put(obj); skip: if (size == I915_GTT_PAGE_SIZE_4K) return -ENOMEM; size = I915_GTT_PAGE_SIZE_4K; } while (1); } void free_scratch(struct i915_address_space *vm) { int i; if (!vm->scratch[0]) return; for (i = 0; i <= vm->top; i++) i915_gem_object_put(vm->scratch[i]); } void gtt_write_workarounds(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; struct intel_uncore *uncore = gt->uncore; /* * This function is for gtt related workarounds. This function is * called on driver load and after a GPU reset, so you can place * workarounds here even if they get overwritten by GPU reset. */ /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */ if (IS_BROADWELL(i915)) intel_uncore_write(uncore, GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW); else if (IS_CHERRYVIEW(i915)) intel_uncore_write(uncore, GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV); else if (IS_GEN9_LP(i915)) intel_uncore_write(uncore, GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT); else if (GRAPHICS_VER(i915) >= 9 && GRAPHICS_VER(i915) <= 11) intel_uncore_write(uncore, GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL); /* * To support 64K PTEs we need to first enable the use of the * Intermediate-Page-Size(IPS) bit of the PDE field via some magical * mmio, otherwise the page-walker will simply ignore the IPS bit. This * shouldn't be needed after GEN10. * * 64K pages were first introduced from BDW+, although technically they * only *work* from gen9+. For pre-BDW we instead have the option for * 32K pages, but we don't currently have any support for it in our * driver. */ if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) && GRAPHICS_VER(i915) <= 10) intel_uncore_rmw(uncore, GEN8_GAMW_ECO_DEV_RW_IA, 0, GAMW_ECO_ENABLE_64K_IPS_FIELD); if (IS_GRAPHICS_VER(i915, 8, 11)) { bool can_use_gtt_cache = true; /* * According to the BSpec if we use 2M/1G pages then we also * need to disable the GTT cache. At least on BDW we can see * visual corruption when using 2M pages, and not disabling the * GTT cache. */ if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M)) can_use_gtt_cache = false; /* WaGttCachingOffByDefault */ intel_uncore_write(uncore, HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0); drm_WARN_ON_ONCE(&i915->drm, can_use_gtt_cache && intel_uncore_read(uncore, HSW_GTT_CACHE_EN) == 0); } } static void tgl_setup_private_ppat(struct intel_uncore *uncore) { /* TGL doesn't support LLC or AGE settings */ intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB); intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC); intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT); intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC); intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB); intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB); intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB); intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB); } static void xehp_setup_private_ppat(struct intel_gt *gt) { intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(0), GEN8_PPAT_WB); intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(1), GEN8_PPAT_WC); intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(2), GEN8_PPAT_WT); intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(3), GEN8_PPAT_UC); intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(4), GEN8_PPAT_WB); intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(5), GEN8_PPAT_WB); intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(6), GEN8_PPAT_WB); intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(7), GEN8_PPAT_WB); } static void icl_setup_private_ppat(struct intel_uncore *uncore) { intel_uncore_write(uncore, GEN10_PAT_INDEX(0), GEN8_PPAT_WB | GEN8_PPAT_LLC); intel_uncore_write(uncore, GEN10_PAT_INDEX(1), GEN8_PPAT_WC | GEN8_PPAT_LLCELLC); intel_uncore_write(uncore, GEN10_PAT_INDEX(2), GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE); intel_uncore_write(uncore, GEN10_PAT_INDEX(3), GEN8_PPAT_UC); intel_uncore_write(uncore, GEN10_PAT_INDEX(4), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)); intel_uncore_write(uncore, GEN10_PAT_INDEX(5), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)); intel_uncore_write(uncore, GEN10_PAT_INDEX(6), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)); intel_uncore_write(uncore, GEN10_PAT_INDEX(7), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); } /* * The GGTT and PPGTT need a private PPAT setup in order to handle cacheability * bits. When using advanced contexts each context stores its own PAT, but * writing this data shouldn't be harmful even in those cases. */ static void bdw_setup_private_ppat(struct intel_uncore *uncore) { struct drm_i915_private *i915 = uncore->i915; u64 pat; pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */ GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */ GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */ GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) | GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) | GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) | GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); /* for scanout with eLLC */ if (GRAPHICS_VER(i915) >= 9) pat |= GEN8_PPAT(2, GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE); else pat |= GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC); intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat)); intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat)); } static void chv_setup_private_ppat(struct intel_uncore *uncore) { u64 pat; /* * Map WB on BDW to snooped on CHV. * * Only the snoop bit has meaning for CHV, the rest is * ignored. * * The hardware will never snoop for certain types of accesses: * - CPU GTT (GMADR->GGTT->no snoop->memory) * - PPGTT page tables * - some other special cycles * * As with BDW, we also need to consider the following for GT accesses: * "For GGTT, there is NO pat_sel[2:0] from the entry, * so RTL will always use the value corresponding to * pat_sel = 000". * Which means we must set the snoop bit in PAT entry 0 * in order to keep the global status page working. */ pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) | GEN8_PPAT(1, 0) | GEN8_PPAT(2, 0) | GEN8_PPAT(3, 0) | GEN8_PPAT(4, CHV_PPAT_SNOOP) | GEN8_PPAT(5, CHV_PPAT_SNOOP) | GEN8_PPAT(6, CHV_PPAT_SNOOP) | GEN8_PPAT(7, CHV_PPAT_SNOOP); intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat)); intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat)); } void setup_private_pat(struct intel_gt *gt) { struct intel_uncore *uncore = gt->uncore; struct drm_i915_private *i915 = gt->i915; GEM_BUG_ON(GRAPHICS_VER(i915) < 8); if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) xehp_setup_private_ppat(gt); else if (GRAPHICS_VER(i915) >= 12) tgl_setup_private_ppat(uncore); else if (GRAPHICS_VER(i915) >= 11) icl_setup_private_ppat(uncore); else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915)) chv_setup_private_ppat(uncore); else bdw_setup_private_ppat(uncore); } struct i915_vma * __vm_create_scratch_for_read(struct i915_address_space *vm, unsigned long size) { struct drm_i915_gem_object *obj; struct i915_vma *vma; obj = i915_gem_object_create_internal(vm->i915, PAGE_ALIGN(size)); if (IS_ERR(obj)) return ERR_CAST(obj); i915_gem_object_set_cache_coherency(obj, I915_CACHING_CACHED); vma = i915_vma_instance(obj, vm, NULL); if (IS_ERR(vma)) { i915_gem_object_put(obj); return vma; } return vma; } struct i915_vma * __vm_create_scratch_for_read_pinned(struct i915_address_space *vm, unsigned long size) { struct i915_vma *vma; int err; vma = __vm_create_scratch_for_read(vm, size); if (IS_ERR(vma)) return vma; err = i915_vma_pin(vma, 0, 0, i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER); if (err) { i915_vma_put(vma); return ERR_PTR(err); } return vma; } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftests/mock_gtt.c" #endif