/* * SPDX-License-Identifier: MIT * * Copyright © 2014-2016 Intel Corporation */ #include #include #include #include #include "gem/i915_gem_region.h" #include "i915_drv.h" #include "i915_gem_object.h" #include "i915_gem_tiling.h" #include "i915_gemfs.h" #include "i915_scatterlist.h" #include "i915_trace.h" /* * Move pages to appropriate lru and release the pagevec, decrementing the * ref count of those pages. */ static void check_release_pagevec(struct pagevec *pvec) { check_move_unevictable_pages(pvec); __pagevec_release(pvec); cond_resched(); } void shmem_sg_free_table(struct sg_table *st, struct address_space *mapping, bool dirty, bool backup) { struct sgt_iter sgt_iter; struct pagevec pvec; struct page *page; mapping_clear_unevictable(mapping); pagevec_init(&pvec); for_each_sgt_page(page, sgt_iter, st) { if (dirty) set_page_dirty(page); if (backup) mark_page_accessed(page); if (!pagevec_add(&pvec, page)) check_release_pagevec(&pvec); } if (pagevec_count(&pvec)) check_release_pagevec(&pvec); sg_free_table(st); } int shmem_sg_alloc_table(struct drm_i915_private *i915, struct sg_table *st, size_t size, struct intel_memory_region *mr, struct address_space *mapping, unsigned int max_segment) { unsigned int page_count; /* restricted by sg_alloc_table */ unsigned long i; struct scatterlist *sg; struct page *page; unsigned long last_pfn = 0; /* suppress gcc warning */ gfp_t noreclaim; int ret; if (overflows_type(size / PAGE_SIZE, page_count)) return -E2BIG; page_count = size / PAGE_SIZE; /* * If there's no chance of allocating enough pages for the whole * object, bail early. */ if (size > resource_size(&mr->region)) return -ENOMEM; if (sg_alloc_table(st, page_count, GFP_KERNEL | __GFP_NOWARN)) return -ENOMEM; /* * Get the list of pages out of our struct file. They'll be pinned * at this point until we release them. * * Fail silently without starting the shrinker */ mapping_set_unevictable(mapping); noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM); noreclaim |= __GFP_NORETRY | __GFP_NOWARN; sg = st->sgl; st->nents = 0; for (i = 0; i < page_count; i++) { const unsigned int shrink[] = { I915_SHRINK_BOUND | I915_SHRINK_UNBOUND, 0, }, *s = shrink; gfp_t gfp = noreclaim; do { cond_resched(); page = shmem_read_mapping_page_gfp(mapping, i, gfp); if (!IS_ERR(page)) break; if (!*s) { ret = PTR_ERR(page); goto err_sg; } i915_gem_shrink(NULL, i915, 2 * page_count, NULL, *s++); /* * We've tried hard to allocate the memory by reaping * our own buffer, now let the real VM do its job and * go down in flames if truly OOM. * * However, since graphics tend to be disposable, * defer the oom here by reporting the ENOMEM back * to userspace. */ if (!*s) { /* reclaim and warn, but no oom */ gfp = mapping_gfp_mask(mapping); /* * Our bo are always dirty and so we require * kswapd to reclaim our pages (direct reclaim * does not effectively begin pageout of our * buffers on its own). However, direct reclaim * only waits for kswapd when under allocation * congestion. So as a result __GFP_RECLAIM is * unreliable and fails to actually reclaim our * dirty pages -- unless you try over and over * again with !__GFP_NORETRY. However, we still * want to fail this allocation rather than * trigger the out-of-memory killer and for * this we want __GFP_RETRY_MAYFAIL. */ gfp |= __GFP_RETRY_MAYFAIL | __GFP_NOWARN; } } while (1); if (!i || sg->length >= max_segment || page_to_pfn(page) != last_pfn + 1) { if (i) sg = sg_next(sg); st->nents++; sg_set_page(sg, page, PAGE_SIZE, 0); } else { sg->length += PAGE_SIZE; } last_pfn = page_to_pfn(page); /* Check that the i965g/gm workaround works. */ GEM_BUG_ON(gfp & __GFP_DMA32 && last_pfn >= 0x00100000UL); } if (sg) /* loop terminated early; short sg table */ sg_mark_end(sg); /* Trim unused sg entries to avoid wasting memory. */ i915_sg_trim(st); return 0; err_sg: sg_mark_end(sg); if (sg != st->sgl) { shmem_sg_free_table(st, mapping, false, false); } else { mapping_clear_unevictable(mapping); sg_free_table(st); } /* * shmemfs first checks if there is enough memory to allocate the page * and reports ENOSPC should there be insufficient, along with the usual * ENOMEM for a genuine allocation failure. * * We use ENOSPC in our driver to mean that we have run out of aperture * space and so want to translate the error from shmemfs back to our * usual understanding of ENOMEM. */ if (ret == -ENOSPC) ret = -ENOMEM; return ret; } static int shmem_get_pages(struct drm_i915_gem_object *obj) { struct drm_i915_private *i915 = to_i915(obj->base.dev); struct intel_memory_region *mem = obj->mm.region; struct address_space *mapping = obj->base.filp->f_mapping; unsigned int max_segment = i915_sg_segment_size(i915->drm.dev); struct sg_table *st; struct sgt_iter sgt_iter; struct page *page; int ret; /* * Assert that the object is not currently in any GPU domain. As it * wasn't in the GTT, there shouldn't be any way it could have been in * a GPU cache */ GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS); GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS); rebuild_st: st = kmalloc(sizeof(*st), GFP_KERNEL | __GFP_NOWARN); if (!st) return -ENOMEM; ret = shmem_sg_alloc_table(i915, st, obj->base.size, mem, mapping, max_segment); if (ret) goto err_st; ret = i915_gem_gtt_prepare_pages(obj, st); if (ret) { /* * DMA remapping failed? One possible cause is that * it could not reserve enough large entries, asking * for PAGE_SIZE chunks instead may be helpful. */ if (max_segment > PAGE_SIZE) { for_each_sgt_page(page, sgt_iter, st) put_page(page); sg_free_table(st); kfree(st); max_segment = PAGE_SIZE; goto rebuild_st; } else { dev_warn(i915->drm.dev, "Failed to DMA remap %zu pages\n", obj->base.size >> PAGE_SHIFT); goto err_pages; } } if (i915_gem_object_needs_bit17_swizzle(obj)) i915_gem_object_do_bit_17_swizzle(obj, st); if (i915_gem_object_can_bypass_llc(obj)) obj->cache_dirty = true; __i915_gem_object_set_pages(obj, st); return 0; err_pages: shmem_sg_free_table(st, mapping, false, false); /* * shmemfs first checks if there is enough memory to allocate the page * and reports ENOSPC should there be insufficient, along with the usual * ENOMEM for a genuine allocation failure. * * We use ENOSPC in our driver to mean that we have run out of aperture * space and so want to translate the error from shmemfs back to our * usual understanding of ENOMEM. */ err_st: if (ret == -ENOSPC) ret = -ENOMEM; kfree(st); return ret; } static int shmem_truncate(struct drm_i915_gem_object *obj) { /* * Our goal here is to return as much of the memory as * is possible back to the system as we are called from OOM. * To do this we must instruct the shmfs to drop all of its * backing pages, *now*. */ shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1); obj->mm.madv = __I915_MADV_PURGED; obj->mm.pages = ERR_PTR(-EFAULT); return 0; } void __shmem_writeback(size_t size, struct address_space *mapping) { struct writeback_control wbc = { .sync_mode = WB_SYNC_NONE, .nr_to_write = SWAP_CLUSTER_MAX, .range_start = 0, .range_end = LLONG_MAX, .for_reclaim = 1, }; unsigned long i; /* * Leave mmapings intact (GTT will have been revoked on unbinding, * leaving only CPU mmapings around) and add those pages to the LRU * instead of invoking writeback so they are aged and paged out * as normal. */ /* Begin writeback on each dirty page */ for (i = 0; i < size >> PAGE_SHIFT; i++) { struct page *page; page = find_lock_page(mapping, i); if (!page) continue; if (!page_mapped(page) && clear_page_dirty_for_io(page)) { int ret; SetPageReclaim(page); ret = mapping->a_ops->writepage(page, &wbc); if (!PageWriteback(page)) ClearPageReclaim(page); if (!ret) goto put; } unlock_page(page); put: put_page(page); } } static void shmem_writeback(struct drm_i915_gem_object *obj) { __shmem_writeback(obj->base.size, obj->base.filp->f_mapping); } static int shmem_shrink(struct drm_i915_gem_object *obj, unsigned int flags) { switch (obj->mm.madv) { case I915_MADV_DONTNEED: return i915_gem_object_truncate(obj); case __I915_MADV_PURGED: return 0; } if (flags & I915_GEM_OBJECT_SHRINK_WRITEBACK) shmem_writeback(obj); return 0; } void __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj, struct sg_table *pages, bool needs_clflush) { struct drm_i915_private *i915 = to_i915(obj->base.dev); GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED); if (obj->mm.madv == I915_MADV_DONTNEED) obj->mm.dirty = false; if (needs_clflush && (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 && !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)) drm_clflush_sg(pages); __start_cpu_write(obj); /* * On non-LLC igfx platforms, force the flush-on-acquire if this is ever * swapped-in. Our async flush path is not trust worthy enough yet(and * happens in the wrong order), and with some tricks it's conceivable * for userspace to change the cache-level to I915_CACHE_NONE after the * pages are swapped-in, and since execbuf binds the object before doing * the async flush, we have a race window. */ if (!HAS_LLC(i915) && !IS_DGFX(i915)) obj->cache_dirty = true; } void i915_gem_object_put_pages_shmem(struct drm_i915_gem_object *obj, struct sg_table *pages) { __i915_gem_object_release_shmem(obj, pages, true); i915_gem_gtt_finish_pages(obj, pages); if (i915_gem_object_needs_bit17_swizzle(obj)) i915_gem_object_save_bit_17_swizzle(obj, pages); shmem_sg_free_table(pages, file_inode(obj->base.filp)->i_mapping, obj->mm.dirty, obj->mm.madv == I915_MADV_WILLNEED); kfree(pages); obj->mm.dirty = false; } static void shmem_put_pages(struct drm_i915_gem_object *obj, struct sg_table *pages) { if (likely(i915_gem_object_has_struct_page(obj))) i915_gem_object_put_pages_shmem(obj, pages); else i915_gem_object_put_pages_phys(obj, pages); } static int shmem_pwrite(struct drm_i915_gem_object *obj, const struct drm_i915_gem_pwrite *arg) { struct address_space *mapping = obj->base.filp->f_mapping; const struct address_space_operations *aops = mapping->a_ops; char __user *user_data = u64_to_user_ptr(arg->data_ptr); u64 remain, offset; unsigned int pg; /* Caller already validated user args */ GEM_BUG_ON(!access_ok(user_data, arg->size)); if (!i915_gem_object_has_struct_page(obj)) return i915_gem_object_pwrite_phys(obj, arg); /* * Before we instantiate/pin the backing store for our use, we * can prepopulate the shmemfs filp efficiently using a write into * the pagecache. We avoid the penalty of instantiating all the * pages, important if the user is just writing to a few and never * uses the object on the GPU, and using a direct write into shmemfs * allows it to avoid the cost of retrieving a page (either swapin * or clearing-before-use) before it is overwritten. */ if (i915_gem_object_has_pages(obj)) return -ENODEV; if (obj->mm.madv != I915_MADV_WILLNEED) return -EFAULT; /* * Before the pages are instantiated the object is treated as being * in the CPU domain. The pages will be clflushed as required before * use, and we can freely write into the pages directly. If userspace * races pwrite with any other operation; corruption will ensue - * that is userspace's prerogative! */ remain = arg->size; offset = arg->offset; pg = offset_in_page(offset); do { unsigned int len, unwritten; struct page *page; void *data, *vaddr; int err; char __maybe_unused c; len = PAGE_SIZE - pg; if (len > remain) len = remain; /* Prefault the user page to reduce potential recursion */ err = __get_user(c, user_data); if (err) return err; err = __get_user(c, user_data + len - 1); if (err) return err; err = aops->write_begin(obj->base.filp, mapping, offset, len, &page, &data); if (err < 0) return err; vaddr = kmap_atomic(page); unwritten = __copy_from_user_inatomic(vaddr + pg, user_data, len); kunmap_atomic(vaddr); err = aops->write_end(obj->base.filp, mapping, offset, len, len - unwritten, page, data); if (err < 0) return err; /* We don't handle -EFAULT, leave it to the caller to check */ if (unwritten) return -ENODEV; remain -= len; user_data += len; offset += len; pg = 0; } while (remain); return 0; } static int shmem_pread(struct drm_i915_gem_object *obj, const struct drm_i915_gem_pread *arg) { if (!i915_gem_object_has_struct_page(obj)) return i915_gem_object_pread_phys(obj, arg); return -ENODEV; } static void shmem_release(struct drm_i915_gem_object *obj) { if (i915_gem_object_has_struct_page(obj)) i915_gem_object_release_memory_region(obj); fput(obj->base.filp); } const struct drm_i915_gem_object_ops i915_gem_shmem_ops = { .name = "i915_gem_object_shmem", .flags = I915_GEM_OBJECT_IS_SHRINKABLE, .get_pages = shmem_get_pages, .put_pages = shmem_put_pages, .truncate = shmem_truncate, .shrink = shmem_shrink, .pwrite = shmem_pwrite, .pread = shmem_pread, .release = shmem_release, }; static int __create_shmem(struct drm_i915_private *i915, struct drm_gem_object *obj, resource_size_t size) { unsigned long flags = VM_NORESERVE; struct file *filp; drm_gem_private_object_init(&i915->drm, obj, size); /* XXX: The __shmem_file_setup() function returns -EINVAL if size is * greater than MAX_LFS_FILESIZE. * To handle the same error as other code that returns -E2BIG when * the size is too large, we add a code that returns -E2BIG when the * size is larger than the size that can be handled. * If BITS_PER_LONG is 32, size > MAX_LFS_FILESIZE is always false, * so we only needs to check when BITS_PER_LONG is 64. * If BITS_PER_LONG is 32, E2BIG checks are processed when * i915_gem_object_size_2big() is called before init_object() callback * is called. */ if (BITS_PER_LONG == 64 && size > MAX_LFS_FILESIZE) return -E2BIG; if (i915->mm.gemfs) filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size, flags); else filp = shmem_file_setup("i915", size, flags); if (IS_ERR(filp)) return PTR_ERR(filp); obj->filp = filp; return 0; } static int shmem_object_init(struct intel_memory_region *mem, struct drm_i915_gem_object *obj, resource_size_t offset, resource_size_t size, resource_size_t page_size, unsigned int flags) { static struct lock_class_key lock_class; struct drm_i915_private *i915 = mem->i915; struct address_space *mapping; unsigned int cache_level; gfp_t mask; int ret; ret = __create_shmem(i915, &obj->base, size); if (ret) return ret; mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; if (IS_I965GM(i915) || IS_I965G(i915)) { /* 965gm cannot relocate objects above 4GiB. */ mask &= ~__GFP_HIGHMEM; mask |= __GFP_DMA32; } mapping = obj->base.filp->f_mapping; mapping_set_gfp_mask(mapping, mask); GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM)); i915_gem_object_init(obj, &i915_gem_shmem_ops, &lock_class, flags); obj->mem_flags |= I915_BO_FLAG_STRUCT_PAGE; obj->write_domain = I915_GEM_DOMAIN_CPU; obj->read_domains = I915_GEM_DOMAIN_CPU; /* * MTL doesn't snoop CPU cache by default for GPU access (namely * 1-way coherency). However some UMD's are currently depending on * that. Make 1-way coherent the default setting for MTL. A follow * up patch will extend the GEM_CREATE uAPI to allow UMD's specify * caching mode at BO creation time */ if (HAS_LLC(i915) || (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))) /* On some devices, we can have the GPU use the LLC (the CPU * cache) for about a 10% performance improvement * compared to uncached. Graphics requests other than * display scanout are coherent with the CPU in * accessing this cache. This means in this mode we * don't need to clflush on the CPU side, and on the * GPU side we only need to flush internal caches to * get data visible to the CPU. * * However, we maintain the display planes as UC, and so * need to rebind when first used as such. */ cache_level = I915_CACHE_LLC; else cache_level = I915_CACHE_NONE; i915_gem_object_set_cache_coherency(obj, cache_level); i915_gem_object_init_memory_region(obj, mem); return 0; } struct drm_i915_gem_object * i915_gem_object_create_shmem(struct drm_i915_private *i915, resource_size_t size) { return i915_gem_object_create_region(i915->mm.regions[INTEL_REGION_SMEM], size, 0, 0); } /* Allocate a new GEM object and fill it with the supplied data */ struct drm_i915_gem_object * i915_gem_object_create_shmem_from_data(struct drm_i915_private *dev_priv, const void *data, resource_size_t size) { struct drm_i915_gem_object *obj; struct file *file; const struct address_space_operations *aops; resource_size_t offset; int err; GEM_WARN_ON(IS_DGFX(dev_priv)); obj = i915_gem_object_create_shmem(dev_priv, round_up(size, PAGE_SIZE)); if (IS_ERR(obj)) return obj; GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU); file = obj->base.filp; aops = file->f_mapping->a_ops; offset = 0; do { unsigned int len = min_t(typeof(size), size, PAGE_SIZE); struct page *page; void *pgdata, *vaddr; err = aops->write_begin(file, file->f_mapping, offset, len, &page, &pgdata); if (err < 0) goto fail; vaddr = kmap(page); memcpy(vaddr, data, len); kunmap(page); err = aops->write_end(file, file->f_mapping, offset, len, len, page, pgdata); if (err < 0) goto fail; size -= len; data += len; offset += len; } while (size); return obj; fail: i915_gem_object_put(obj); return ERR_PTR(err); } static int init_shmem(struct intel_memory_region *mem) { i915_gemfs_init(mem->i915); intel_memory_region_set_name(mem, "system"); return 0; /* We have fallback to the kernel mnt if gemfs init failed. */ } static int release_shmem(struct intel_memory_region *mem) { i915_gemfs_fini(mem->i915); return 0; } static const struct intel_memory_region_ops shmem_region_ops = { .init = init_shmem, .release = release_shmem, .init_object = shmem_object_init, }; struct intel_memory_region *i915_gem_shmem_setup(struct drm_i915_private *i915, u16 type, u16 instance) { return intel_memory_region_create(i915, 0, totalram_pages() << PAGE_SHIFT, PAGE_SIZE, 0, 0, type, instance, &shmem_region_ops); } bool i915_gem_object_is_shmem(const struct drm_i915_gem_object *obj) { return obj->ops == &i915_gem_shmem_ops; }