/* * Copyright © 2013 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Shobhit Kumar * Yogesh Mohan Marimuthu */ #include #include "i915_drv.h" #include "intel_de.h" #include "intel_display_types.h" #include "intel_dsi.h" #include "vlv_dsi_pll.h" #include "vlv_dsi_pll_regs.h" #include "vlv_sideband.h" static const u16 lfsr_converts[] = { 426, 469, 234, 373, 442, 221, 110, 311, 411, /* 62 - 70 */ 461, 486, 243, 377, 188, 350, 175, 343, 427, 213, /* 71 - 80 */ 106, 53, 282, 397, 454, 227, 113, 56, 284, 142, /* 81 - 90 */ 71, 35, 273, 136, 324, 418, 465, 488, 500, 506 /* 91 - 100 */ }; /* Get DSI clock from pixel clock */ static u32 dsi_clk_from_pclk(u32 pclk, enum mipi_dsi_pixel_format fmt, int lane_count) { u32 dsi_clk_khz; u32 bpp = mipi_dsi_pixel_format_to_bpp(fmt); /* DSI data rate = pixel clock * bits per pixel / lane count pixel clock is converted from KHz to Hz */ dsi_clk_khz = DIV_ROUND_CLOSEST(pclk * bpp, lane_count); return dsi_clk_khz; } static int dsi_calc_mnp(struct drm_i915_private *dev_priv, struct intel_crtc_state *config, int target_dsi_clk) { unsigned int m_min, m_max, p_min = 2, p_max = 6; unsigned int m, n, p; unsigned int calc_m, calc_p; int delta, ref_clk; /* target_dsi_clk is expected in kHz */ if (target_dsi_clk < 300000 || target_dsi_clk > 1150000) { drm_err(&dev_priv->drm, "DSI CLK Out of Range\n"); return -ECHRNG; } if (IS_CHERRYVIEW(dev_priv)) { ref_clk = 100000; n = 4; m_min = 70; m_max = 96; } else { ref_clk = 25000; n = 1; m_min = 62; m_max = 92; } calc_p = p_min; calc_m = m_min; delta = abs(target_dsi_clk - (m_min * ref_clk) / (p_min * n)); for (m = m_min; m <= m_max && delta; m++) { for (p = p_min; p <= p_max && delta; p++) { /* * Find the optimal m and p divisors with minimal delta * +/- the required clock */ int calc_dsi_clk = (m * ref_clk) / (p * n); int d = abs(target_dsi_clk - calc_dsi_clk); if (d < delta) { delta = d; calc_m = m; calc_p = p; } } } /* register has log2(N1), this works fine for powers of two */ config->dsi_pll.ctrl = 1 << (DSI_PLL_P1_POST_DIV_SHIFT + calc_p - 2); config->dsi_pll.div = (ffs(n) - 1) << DSI_PLL_N1_DIV_SHIFT | (u32)lfsr_converts[calc_m - 62] << DSI_PLL_M1_DIV_SHIFT; return 0; } /* * XXX: The muxing and gating is hard coded for now. Need to add support for * sharing PLLs with two DSI outputs. */ int vlv_dsi_pll_compute(struct intel_encoder *encoder, struct intel_crtc_state *config) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); int ret; u32 dsi_clk; dsi_clk = dsi_clk_from_pclk(intel_dsi->pclk, intel_dsi->pixel_format, intel_dsi->lane_count); ret = dsi_calc_mnp(dev_priv, config, dsi_clk); if (ret) { drm_dbg_kms(&dev_priv->drm, "dsi_calc_mnp failed\n"); return ret; } if (intel_dsi->ports & (1 << PORT_A)) config->dsi_pll.ctrl |= DSI_PLL_CLK_GATE_DSI0_DSIPLL; if (intel_dsi->ports & (1 << PORT_C)) config->dsi_pll.ctrl |= DSI_PLL_CLK_GATE_DSI1_DSIPLL; config->dsi_pll.ctrl |= DSI_PLL_VCO_EN; drm_dbg_kms(&dev_priv->drm, "dsi pll div %08x, ctrl %08x\n", config->dsi_pll.div, config->dsi_pll.ctrl); return 0; } void vlv_dsi_pll_enable(struct intel_encoder *encoder, const struct intel_crtc_state *config) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); drm_dbg_kms(&dev_priv->drm, "\n"); vlv_cck_get(dev_priv); vlv_cck_write(dev_priv, CCK_REG_DSI_PLL_CONTROL, 0); vlv_cck_write(dev_priv, CCK_REG_DSI_PLL_DIVIDER, config->dsi_pll.div); vlv_cck_write(dev_priv, CCK_REG_DSI_PLL_CONTROL, config->dsi_pll.ctrl & ~DSI_PLL_VCO_EN); /* wait at least 0.5 us after ungating before enabling VCO, * allow hrtimer subsystem optimization by relaxing timing */ usleep_range(10, 50); vlv_cck_write(dev_priv, CCK_REG_DSI_PLL_CONTROL, config->dsi_pll.ctrl); if (wait_for(vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL) & DSI_PLL_LOCK, 20)) { vlv_cck_put(dev_priv); drm_err(&dev_priv->drm, "DSI PLL lock failed\n"); return; } vlv_cck_put(dev_priv); drm_dbg_kms(&dev_priv->drm, "DSI PLL locked\n"); } void vlv_dsi_pll_disable(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); u32 tmp; drm_dbg_kms(&dev_priv->drm, "\n"); vlv_cck_get(dev_priv); tmp = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL); tmp &= ~DSI_PLL_VCO_EN; tmp |= DSI_PLL_LDO_GATE; vlv_cck_write(dev_priv, CCK_REG_DSI_PLL_CONTROL, tmp); vlv_cck_put(dev_priv); } bool bxt_dsi_pll_is_enabled(struct drm_i915_private *dev_priv) { bool enabled; u32 val; u32 mask; mask = BXT_DSI_PLL_DO_ENABLE | BXT_DSI_PLL_LOCKED; val = intel_de_read(dev_priv, BXT_DSI_PLL_ENABLE); enabled = (val & mask) == mask; if (!enabled) return false; /* * Dividers must be programmed with valid values. As per BSEPC, for * GEMINLAKE only PORT A divider values are checked while for BXT * both divider values are validated. Check this here for * paranoia, since BIOS is known to misconfigure PLLs in this way at * times, and since accessing DSI registers with invalid dividers * causes a system hang. */ val = intel_de_read(dev_priv, BXT_DSI_PLL_CTL); if (IS_GEMINILAKE(dev_priv)) { if (!(val & BXT_DSIA_16X_MASK)) { drm_dbg(&dev_priv->drm, "Invalid PLL divider (%08x)\n", val); enabled = false; } } else { if (!(val & BXT_DSIA_16X_MASK) || !(val & BXT_DSIC_16X_MASK)) { drm_dbg(&dev_priv->drm, "Invalid PLL divider (%08x)\n", val); enabled = false; } } return enabled; } void bxt_dsi_pll_disable(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); u32 val; drm_dbg_kms(&dev_priv->drm, "\n"); val = intel_de_read(dev_priv, BXT_DSI_PLL_ENABLE); val &= ~BXT_DSI_PLL_DO_ENABLE; intel_de_write(dev_priv, BXT_DSI_PLL_ENABLE, val); /* * PLL lock should deassert within 200us. * Wait up to 1ms before timing out. */ if (intel_de_wait_for_clear(dev_priv, BXT_DSI_PLL_ENABLE, BXT_DSI_PLL_LOCKED, 1)) drm_err(&dev_priv->drm, "Timeout waiting for PLL lock deassertion\n"); } u32 vlv_dsi_get_pclk(struct intel_encoder *encoder, struct intel_crtc_state *config) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); int bpp = mipi_dsi_pixel_format_to_bpp(intel_dsi->pixel_format); u32 dsi_clock, pclk; u32 pll_ctl, pll_div; u32 m = 0, p = 0, n; int refclk = IS_CHERRYVIEW(dev_priv) ? 100000 : 25000; int i; drm_dbg_kms(&dev_priv->drm, "\n"); vlv_cck_get(dev_priv); pll_ctl = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL); pll_div = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_DIVIDER); vlv_cck_put(dev_priv); config->dsi_pll.ctrl = pll_ctl & ~DSI_PLL_LOCK; config->dsi_pll.div = pll_div; /* mask out other bits and extract the P1 divisor */ pll_ctl &= DSI_PLL_P1_POST_DIV_MASK; pll_ctl = pll_ctl >> (DSI_PLL_P1_POST_DIV_SHIFT - 2); /* N1 divisor */ n = (pll_div & DSI_PLL_N1_DIV_MASK) >> DSI_PLL_N1_DIV_SHIFT; n = 1 << n; /* register has log2(N1) */ /* mask out the other bits and extract the M1 divisor */ pll_div &= DSI_PLL_M1_DIV_MASK; pll_div = pll_div >> DSI_PLL_M1_DIV_SHIFT; while (pll_ctl) { pll_ctl = pll_ctl >> 1; p++; } p--; if (!p) { drm_err(&dev_priv->drm, "wrong P1 divisor\n"); return 0; } for (i = 0; i < ARRAY_SIZE(lfsr_converts); i++) { if (lfsr_converts[i] == pll_div) break; } if (i == ARRAY_SIZE(lfsr_converts)) { drm_err(&dev_priv->drm, "wrong m_seed programmed\n"); return 0; } m = i + 62; dsi_clock = (m * refclk) / (p * n); pclk = DIV_ROUND_CLOSEST(dsi_clock * intel_dsi->lane_count, bpp); return pclk; } u32 bxt_dsi_get_pclk(struct intel_encoder *encoder, struct intel_crtc_state *config) { u32 pclk; u32 dsi_clk; u32 dsi_ratio; struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); int bpp = mipi_dsi_pixel_format_to_bpp(intel_dsi->pixel_format); config->dsi_pll.ctrl = intel_de_read(dev_priv, BXT_DSI_PLL_CTL); dsi_ratio = config->dsi_pll.ctrl & BXT_DSI_PLL_RATIO_MASK; dsi_clk = (dsi_ratio * BXT_REF_CLOCK_KHZ) / 2; pclk = DIV_ROUND_CLOSEST(dsi_clk * intel_dsi->lane_count, bpp); drm_dbg(&dev_priv->drm, "Calculated pclk=%u\n", pclk); return pclk; } void vlv_dsi_reset_clocks(struct intel_encoder *encoder, enum port port) { u32 temp; struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); temp = intel_de_read(dev_priv, MIPI_CTRL(port)); temp &= ~ESCAPE_CLOCK_DIVIDER_MASK; intel_de_write(dev_priv, MIPI_CTRL(port), temp | intel_dsi->escape_clk_div << ESCAPE_CLOCK_DIVIDER_SHIFT); } static void glk_dsi_program_esc_clock(struct drm_device *dev, const struct intel_crtc_state *config) { struct drm_i915_private *dev_priv = to_i915(dev); u32 dsi_rate = 0; u32 pll_ratio = 0; u32 ddr_clk = 0; u32 div1_value = 0; u32 div2_value = 0; u32 txesc1_div = 0; u32 txesc2_div = 0; pll_ratio = config->dsi_pll.ctrl & BXT_DSI_PLL_RATIO_MASK; dsi_rate = (BXT_REF_CLOCK_KHZ * pll_ratio) / 2; ddr_clk = dsi_rate / 2; /* Variable divider value */ div1_value = DIV_ROUND_CLOSEST(ddr_clk, 20000); /* Calculate TXESC1 divider */ if (div1_value <= 10) txesc1_div = div1_value; else if ((div1_value > 10) && (div1_value <= 20)) txesc1_div = DIV_ROUND_UP(div1_value, 2); else if ((div1_value > 20) && (div1_value <= 30)) txesc1_div = DIV_ROUND_UP(div1_value, 4); else if ((div1_value > 30) && (div1_value <= 40)) txesc1_div = DIV_ROUND_UP(div1_value, 6); else if ((div1_value > 40) && (div1_value <= 50)) txesc1_div = DIV_ROUND_UP(div1_value, 8); else txesc1_div = 10; /* Calculate TXESC2 divider */ div2_value = DIV_ROUND_UP(div1_value, txesc1_div); if (div2_value < 10) txesc2_div = div2_value; else txesc2_div = 10; intel_de_write(dev_priv, MIPIO_TXESC_CLK_DIV1, (1 << (txesc1_div - 1)) & GLK_TX_ESC_CLK_DIV1_MASK); intel_de_write(dev_priv, MIPIO_TXESC_CLK_DIV2, (1 << (txesc2_div - 1)) & GLK_TX_ESC_CLK_DIV2_MASK); } /* Program BXT Mipi clocks and dividers */ static void bxt_dsi_program_clocks(struct drm_device *dev, enum port port, const struct intel_crtc_state *config) { struct drm_i915_private *dev_priv = to_i915(dev); u32 tmp; u32 dsi_rate = 0; u32 pll_ratio = 0; u32 rx_div; u32 tx_div; u32 rx_div_upper; u32 rx_div_lower; u32 mipi_8by3_divider; /* Clear old configurations */ tmp = intel_de_read(dev_priv, BXT_MIPI_CLOCK_CTL); tmp &= ~(BXT_MIPI_TX_ESCLK_FIXDIV_MASK(port)); tmp &= ~(BXT_MIPI_RX_ESCLK_UPPER_FIXDIV_MASK(port)); tmp &= ~(BXT_MIPI_8X_BY3_DIVIDER_MASK(port)); tmp &= ~(BXT_MIPI_RX_ESCLK_LOWER_FIXDIV_MASK(port)); /* Get the current DSI rate(actual) */ pll_ratio = config->dsi_pll.ctrl & BXT_DSI_PLL_RATIO_MASK; dsi_rate = (BXT_REF_CLOCK_KHZ * pll_ratio) / 2; /* * tx clock should be <= 20MHz and the div value must be * subtracted by 1 as per bspec */ tx_div = DIV_ROUND_UP(dsi_rate, 20000) - 1; /* * rx clock should be <= 150MHz and the div value must be * subtracted by 1 as per bspec */ rx_div = DIV_ROUND_UP(dsi_rate, 150000) - 1; /* * rx divider value needs to be updated in the * two differnt bit fields in the register hence splitting the * rx divider value accordingly */ rx_div_lower = rx_div & RX_DIVIDER_BIT_1_2; rx_div_upper = (rx_div & RX_DIVIDER_BIT_3_4) >> 2; mipi_8by3_divider = 0x2; tmp |= BXT_MIPI_8X_BY3_DIVIDER(port, mipi_8by3_divider); tmp |= BXT_MIPI_TX_ESCLK_DIVIDER(port, tx_div); tmp |= BXT_MIPI_RX_ESCLK_LOWER_DIVIDER(port, rx_div_lower); tmp |= BXT_MIPI_RX_ESCLK_UPPER_DIVIDER(port, rx_div_upper); intel_de_write(dev_priv, BXT_MIPI_CLOCK_CTL, tmp); } int bxt_dsi_pll_compute(struct intel_encoder *encoder, struct intel_crtc_state *config) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); u8 dsi_ratio, dsi_ratio_min, dsi_ratio_max; u32 dsi_clk; dsi_clk = dsi_clk_from_pclk(intel_dsi->pclk, intel_dsi->pixel_format, intel_dsi->lane_count); /* * From clock diagram, to get PLL ratio divider, divide double of DSI * link rate (i.e., 2*8x=16x frequency value) by ref clock. Make sure to * round 'up' the result */ dsi_ratio = DIV_ROUND_UP(dsi_clk * 2, BXT_REF_CLOCK_KHZ); if (IS_BROXTON(dev_priv)) { dsi_ratio_min = BXT_DSI_PLL_RATIO_MIN; dsi_ratio_max = BXT_DSI_PLL_RATIO_MAX; } else { dsi_ratio_min = GLK_DSI_PLL_RATIO_MIN; dsi_ratio_max = GLK_DSI_PLL_RATIO_MAX; } if (dsi_ratio < dsi_ratio_min || dsi_ratio > dsi_ratio_max) { drm_err(&dev_priv->drm, "Can't get a suitable ratio from DSI PLL ratios\n"); return -ECHRNG; } else drm_dbg_kms(&dev_priv->drm, "DSI PLL calculation is Done!!\n"); /* * Program DSI ratio and Select MIPIC and MIPIA PLL output as 8x * Spec says both have to be programmed, even if one is not getting * used. Configure MIPI_CLOCK_CTL dividers in modeset */ config->dsi_pll.ctrl = dsi_ratio | BXT_DSIA_16X_BY2 | BXT_DSIC_16X_BY2; /* As per recommendation from hardware team, * Prog PVD ratio =1 if dsi ratio <= 50 */ if (IS_BROXTON(dev_priv) && dsi_ratio <= 50) config->dsi_pll.ctrl |= BXT_DSI_PLL_PVD_RATIO_1; return 0; } void bxt_dsi_pll_enable(struct intel_encoder *encoder, const struct intel_crtc_state *config) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); enum port port; u32 val; drm_dbg_kms(&dev_priv->drm, "\n"); /* Configure PLL vales */ intel_de_write(dev_priv, BXT_DSI_PLL_CTL, config->dsi_pll.ctrl); intel_de_posting_read(dev_priv, BXT_DSI_PLL_CTL); /* Program TX, RX, Dphy clocks */ if (IS_BROXTON(dev_priv)) { for_each_dsi_port(port, intel_dsi->ports) bxt_dsi_program_clocks(encoder->base.dev, port, config); } else { glk_dsi_program_esc_clock(encoder->base.dev, config); } /* Enable DSI PLL */ val = intel_de_read(dev_priv, BXT_DSI_PLL_ENABLE); val |= BXT_DSI_PLL_DO_ENABLE; intel_de_write(dev_priv, BXT_DSI_PLL_ENABLE, val); /* Timeout and fail if PLL not locked */ if (intel_de_wait_for_set(dev_priv, BXT_DSI_PLL_ENABLE, BXT_DSI_PLL_LOCKED, 1)) { drm_err(&dev_priv->drm, "Timed out waiting for DSI PLL to lock\n"); return; } drm_dbg_kms(&dev_priv->drm, "DSI PLL locked\n"); } void bxt_dsi_reset_clocks(struct intel_encoder *encoder, enum port port) { u32 tmp; struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); /* Clear old configurations */ if (IS_BROXTON(dev_priv)) { tmp = intel_de_read(dev_priv, BXT_MIPI_CLOCK_CTL); tmp &= ~(BXT_MIPI_TX_ESCLK_FIXDIV_MASK(port)); tmp &= ~(BXT_MIPI_RX_ESCLK_UPPER_FIXDIV_MASK(port)); tmp &= ~(BXT_MIPI_8X_BY3_DIVIDER_MASK(port)); tmp &= ~(BXT_MIPI_RX_ESCLK_LOWER_FIXDIV_MASK(port)); intel_de_write(dev_priv, BXT_MIPI_CLOCK_CTL, tmp); } else { tmp = intel_de_read(dev_priv, MIPIO_TXESC_CLK_DIV1); tmp &= ~GLK_TX_ESC_CLK_DIV1_MASK; intel_de_write(dev_priv, MIPIO_TXESC_CLK_DIV1, tmp); tmp = intel_de_read(dev_priv, MIPIO_TXESC_CLK_DIV2); tmp &= ~GLK_TX_ESC_CLK_DIV2_MASK; intel_de_write(dev_priv, MIPIO_TXESC_CLK_DIV2, tmp); } intel_de_write(dev_priv, MIPI_EOT_DISABLE(port), CLOCKSTOP); } static void assert_dsi_pll(struct drm_i915_private *i915, bool state) { bool cur_state; vlv_cck_get(i915); cur_state = vlv_cck_read(i915, CCK_REG_DSI_PLL_CONTROL) & DSI_PLL_VCO_EN; vlv_cck_put(i915); I915_STATE_WARN(cur_state != state, "DSI PLL state assertion failure (expected %s, current %s)\n", onoff(state), onoff(cur_state)); } void assert_dsi_pll_enabled(struct drm_i915_private *i915) { assert_dsi_pll(i915, true); } void assert_dsi_pll_disabled(struct drm_i915_private *i915) { assert_dsi_pll(i915, false); }