/* * Copyright © 2006-2008 Intel Corporation * Jesse Barnes * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Eric Anholt * */ /** @file * Integrated TV-out support for the 915GM and 945GM. */ #include #include #include #include "i915_drv.h" #include "i915_irq.h" #include "i915_reg.h" #include "intel_connector.h" #include "intel_crtc.h" #include "intel_de.h" #include "intel_display_types.h" #include "intel_dpll.h" #include "intel_hotplug.h" #include "intel_tv.h" #include "intel_tv_regs.h" enum tv_margin { TV_MARGIN_LEFT, TV_MARGIN_TOP, TV_MARGIN_RIGHT, TV_MARGIN_BOTTOM }; struct intel_tv { struct intel_encoder base; int type; }; struct video_levels { u16 blank, black; u8 burst; }; struct color_conversion { u16 ry, gy, by, ay; u16 ru, gu, bu, au; u16 rv, gv, bv, av; }; static const u32 filter_table[] = { 0xB1403000, 0x2E203500, 0x35002E20, 0x3000B140, 0x35A0B160, 0x2DC02E80, 0xB1403480, 0xB1603000, 0x2EA03640, 0x34002D80, 0x3000B120, 0x36E0B160, 0x2D202EF0, 0xB1203380, 0xB1603000, 0x2F303780, 0x33002CC0, 0x3000B100, 0x3820B160, 0x2C802F50, 0xB10032A0, 0xB1603000, 0x2F9038C0, 0x32202C20, 0x3000B0E0, 0x3980B160, 0x2BC02FC0, 0xB0E031C0, 0xB1603000, 0x2FF03A20, 0x31602B60, 0xB020B0C0, 0x3AE0B160, 0x2B001810, 0xB0C03120, 0xB140B020, 0x18283BA0, 0x30C02A80, 0xB020B0A0, 0x3C60B140, 0x2A201838, 0xB0A03080, 0xB120B020, 0x18383D20, 0x304029C0, 0xB040B080, 0x3DE0B100, 0x29601848, 0xB0803000, 0xB100B040, 0x18483EC0, 0xB0402900, 0xB040B060, 0x3F80B0C0, 0x28801858, 0xB060B080, 0xB0A0B060, 0x18602820, 0xB0A02820, 0x0000B060, 0xB1403000, 0x2E203500, 0x35002E20, 0x3000B140, 0x35A0B160, 0x2DC02E80, 0xB1403480, 0xB1603000, 0x2EA03640, 0x34002D80, 0x3000B120, 0x36E0B160, 0x2D202EF0, 0xB1203380, 0xB1603000, 0x2F303780, 0x33002CC0, 0x3000B100, 0x3820B160, 0x2C802F50, 0xB10032A0, 0xB1603000, 0x2F9038C0, 0x32202C20, 0x3000B0E0, 0x3980B160, 0x2BC02FC0, 0xB0E031C0, 0xB1603000, 0x2FF03A20, 0x31602B60, 0xB020B0C0, 0x3AE0B160, 0x2B001810, 0xB0C03120, 0xB140B020, 0x18283BA0, 0x30C02A80, 0xB020B0A0, 0x3C60B140, 0x2A201838, 0xB0A03080, 0xB120B020, 0x18383D20, 0x304029C0, 0xB040B080, 0x3DE0B100, 0x29601848, 0xB0803000, 0xB100B040, 0x18483EC0, 0xB0402900, 0xB040B060, 0x3F80B0C0, 0x28801858, 0xB060B080, 0xB0A0B060, 0x18602820, 0xB0A02820, 0x0000B060, 0x36403000, 0x2D002CC0, 0x30003640, 0x2D0036C0, 0x35C02CC0, 0x37403000, 0x2C802D40, 0x30003540, 0x2D8037C0, 0x34C02C40, 0x38403000, 0x2BC02E00, 0x30003440, 0x2E2038C0, 0x34002B80, 0x39803000, 0x2B402E40, 0x30003380, 0x2E603A00, 0x33402B00, 0x3A803040, 0x2A802EA0, 0x30403300, 0x2EC03B40, 0x32802A40, 0x3C003040, 0x2A002EC0, 0x30803240, 0x2EC03C80, 0x320029C0, 0x3D403080, 0x29402F00, 0x308031C0, 0x2F203DC0, 0x31802900, 0x3E8030C0, 0x28802F40, 0x30C03140, 0x2F203F40, 0x31402840, 0x28003100, 0x28002F00, 0x00003100, 0x36403000, 0x2D002CC0, 0x30003640, 0x2D0036C0, 0x35C02CC0, 0x37403000, 0x2C802D40, 0x30003540, 0x2D8037C0, 0x34C02C40, 0x38403000, 0x2BC02E00, 0x30003440, 0x2E2038C0, 0x34002B80, 0x39803000, 0x2B402E40, 0x30003380, 0x2E603A00, 0x33402B00, 0x3A803040, 0x2A802EA0, 0x30403300, 0x2EC03B40, 0x32802A40, 0x3C003040, 0x2A002EC0, 0x30803240, 0x2EC03C80, 0x320029C0, 0x3D403080, 0x29402F00, 0x308031C0, 0x2F203DC0, 0x31802900, 0x3E8030C0, 0x28802F40, 0x30C03140, 0x2F203F40, 0x31402840, 0x28003100, 0x28002F00, 0x00003100, }; /* * Color conversion values have 3 separate fixed point formats: * * 10 bit fields (ay, au) * 1.9 fixed point (b.bbbbbbbbb) * 11 bit fields (ry, by, ru, gu, gv) * exp.mantissa (ee.mmmmmmmmm) * ee = 00 = 10^-1 (0.mmmmmmmmm) * ee = 01 = 10^-2 (0.0mmmmmmmmm) * ee = 10 = 10^-3 (0.00mmmmmmmmm) * ee = 11 = 10^-4 (0.000mmmmmmmmm) * 12 bit fields (gy, rv, bu) * exp.mantissa (eee.mmmmmmmmm) * eee = 000 = 10^-1 (0.mmmmmmmmm) * eee = 001 = 10^-2 (0.0mmmmmmmmm) * eee = 010 = 10^-3 (0.00mmmmmmmmm) * eee = 011 = 10^-4 (0.000mmmmmmmmm) * eee = 100 = reserved * eee = 101 = reserved * eee = 110 = reserved * eee = 111 = 10^0 (m.mmmmmmmm) (only usable for 1.0 representation) * * Saturation and contrast are 8 bits, with their own representation: * 8 bit field (saturation, contrast) * exp.mantissa (ee.mmmmmm) * ee = 00 = 10^-1 (0.mmmmmm) * ee = 01 = 10^0 (m.mmmmm) * ee = 10 = 10^1 (mm.mmmm) * ee = 11 = 10^2 (mmm.mmm) * * Simple conversion function: * * static u32 * float_to_csc_11(float f) * { * u32 exp; * u32 mant; * u32 ret; * * if (f < 0) * f = -f; * * if (f >= 1) { * exp = 0x7; * mant = 1 << 8; * } else { * for (exp = 0; exp < 3 && f < 0.5; exp++) * f *= 2.0; * mant = (f * (1 << 9) + 0.5); * if (mant >= (1 << 9)) * mant = (1 << 9) - 1; * } * ret = (exp << 9) | mant; * return ret; * } */ /* * Behold, magic numbers! If we plant them they might grow a big * s-video cable to the sky... or something. * * Pre-converted to appropriate hex value. */ /* * PAL & NTSC values for composite & s-video connections */ static const struct color_conversion ntsc_m_csc_composite = { .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0104, .ru = 0x0733, .gu = 0x052d, .bu = 0x05c7, .au = 0x0200, .rv = 0x0340, .gv = 0x030c, .bv = 0x06d0, .av = 0x0200, }; static const struct video_levels ntsc_m_levels_composite = { .blank = 225, .black = 267, .burst = 113, }; static const struct color_conversion ntsc_m_csc_svideo = { .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0133, .ru = 0x076a, .gu = 0x0564, .bu = 0x030d, .au = 0x0200, .rv = 0x037a, .gv = 0x033d, .bv = 0x06f6, .av = 0x0200, }; static const struct video_levels ntsc_m_levels_svideo = { .blank = 266, .black = 316, .burst = 133, }; static const struct color_conversion ntsc_j_csc_composite = { .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0119, .ru = 0x074c, .gu = 0x0546, .bu = 0x05ec, .au = 0x0200, .rv = 0x035a, .gv = 0x0322, .bv = 0x06e1, .av = 0x0200, }; static const struct video_levels ntsc_j_levels_composite = { .blank = 225, .black = 225, .burst = 113, }; static const struct color_conversion ntsc_j_csc_svideo = { .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x014c, .ru = 0x0788, .gu = 0x0581, .bu = 0x0322, .au = 0x0200, .rv = 0x0399, .gv = 0x0356, .bv = 0x070a, .av = 0x0200, }; static const struct video_levels ntsc_j_levels_svideo = { .blank = 266, .black = 266, .burst = 133, }; static const struct color_conversion pal_csc_composite = { .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0113, .ru = 0x0745, .gu = 0x053f, .bu = 0x05e1, .au = 0x0200, .rv = 0x0353, .gv = 0x031c, .bv = 0x06dc, .av = 0x0200, }; static const struct video_levels pal_levels_composite = { .blank = 237, .black = 237, .burst = 118, }; static const struct color_conversion pal_csc_svideo = { .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0145, .ru = 0x0780, .gu = 0x0579, .bu = 0x031c, .au = 0x0200, .rv = 0x0390, .gv = 0x034f, .bv = 0x0705, .av = 0x0200, }; static const struct video_levels pal_levels_svideo = { .blank = 280, .black = 280, .burst = 139, }; static const struct color_conversion pal_m_csc_composite = { .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0104, .ru = 0x0733, .gu = 0x052d, .bu = 0x05c7, .au = 0x0200, .rv = 0x0340, .gv = 0x030c, .bv = 0x06d0, .av = 0x0200, }; static const struct video_levels pal_m_levels_composite = { .blank = 225, .black = 267, .burst = 113, }; static const struct color_conversion pal_m_csc_svideo = { .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0133, .ru = 0x076a, .gu = 0x0564, .bu = 0x030d, .au = 0x0200, .rv = 0x037a, .gv = 0x033d, .bv = 0x06f6, .av = 0x0200, }; static const struct video_levels pal_m_levels_svideo = { .blank = 266, .black = 316, .burst = 133, }; static const struct color_conversion pal_n_csc_composite = { .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0104, .ru = 0x0733, .gu = 0x052d, .bu = 0x05c7, .au = 0x0200, .rv = 0x0340, .gv = 0x030c, .bv = 0x06d0, .av = 0x0200, }; static const struct video_levels pal_n_levels_composite = { .blank = 225, .black = 267, .burst = 118, }; static const struct color_conversion pal_n_csc_svideo = { .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0133, .ru = 0x076a, .gu = 0x0564, .bu = 0x030d, .au = 0x0200, .rv = 0x037a, .gv = 0x033d, .bv = 0x06f6, .av = 0x0200, }; static const struct video_levels pal_n_levels_svideo = { .blank = 266, .black = 316, .burst = 139, }; /* * Component connections */ static const struct color_conversion sdtv_csc_yprpb = { .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0145, .ru = 0x0559, .gu = 0x0353, .bu = 0x0100, .au = 0x0200, .rv = 0x0100, .gv = 0x03ad, .bv = 0x074d, .av = 0x0200, }; static const struct color_conversion hdtv_csc_yprpb = { .ry = 0x05b3, .gy = 0x016e, .by = 0x0728, .ay = 0x0145, .ru = 0x07d5, .gu = 0x038b, .bu = 0x0100, .au = 0x0200, .rv = 0x0100, .gv = 0x03d1, .bv = 0x06bc, .av = 0x0200, }; static const struct video_levels component_levels = { .blank = 279, .black = 279, .burst = 0, }; struct tv_mode { const char *name; u32 clock; u16 refresh; /* in millihertz (for precision) */ u8 oversample; u8 hsync_end; u16 hblank_start, hblank_end, htotal; bool progressive : 1, trilevel_sync : 1, component_only : 1; u8 vsync_start_f1, vsync_start_f2, vsync_len; bool veq_ena : 1; u8 veq_start_f1, veq_start_f2, veq_len; u8 vi_end_f1, vi_end_f2; u16 nbr_end; bool burst_ena : 1; u8 hburst_start, hburst_len; u8 vburst_start_f1; u16 vburst_end_f1; u8 vburst_start_f2; u16 vburst_end_f2; u8 vburst_start_f3; u16 vburst_end_f3; u8 vburst_start_f4; u16 vburst_end_f4; /* * subcarrier programming */ u16 dda2_size, dda3_size; u8 dda1_inc; u16 dda2_inc, dda3_inc; u32 sc_reset; bool pal_burst : 1; /* * blank/black levels */ const struct video_levels *composite_levels, *svideo_levels; const struct color_conversion *composite_color, *svideo_color; const u32 *filter_table; }; /* * Sub carrier DDA * * I think this works as follows: * * subcarrier freq = pixel_clock * (dda1_inc + dda2_inc / dda2_size) / 4096 * * Presumably, when dda3 is added in, it gets to adjust the dda2_inc value * * So, * dda1_ideal = subcarrier/pixel * 4096 * dda1_inc = floor (dda1_ideal) * dda2 = dda1_ideal - dda1_inc * * then pick a ratio for dda2 that gives the closest approximation. If * you can't get close enough, you can play with dda3 as well. This * seems likely to happen when dda2 is small as the jumps would be larger * * To invert this, * * pixel_clock = subcarrier * 4096 / (dda1_inc + dda2_inc / dda2_size) * * The constants below were all computed using a 107.520MHz clock */ /* * Register programming values for TV modes. * * These values account for -1s required. */ static const struct tv_mode tv_modes[] = { { .name = "NTSC-M", .clock = 108000, .refresh = 59940, .oversample = 8, .component_only = false, /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 3.580MHz */ .hsync_end = 64, .hblank_end = 124, .hblank_start = 836, .htotal = 857, .progressive = false, .trilevel_sync = false, .vsync_start_f1 = 6, .vsync_start_f2 = 7, .vsync_len = 6, .veq_ena = true, .veq_start_f1 = 0, .veq_start_f2 = 1, .veq_len = 18, .vi_end_f1 = 20, .vi_end_f2 = 21, .nbr_end = 240, .burst_ena = true, .hburst_start = 72, .hburst_len = 34, .vburst_start_f1 = 9, .vburst_end_f1 = 240, .vburst_start_f2 = 10, .vburst_end_f2 = 240, .vburst_start_f3 = 9, .vburst_end_f3 = 240, .vburst_start_f4 = 10, .vburst_end_f4 = 240, /* desired 3.5800000 actual 3.5800000 clock 107.52 */ .dda1_inc = 135, .dda2_inc = 20800, .dda2_size = 27456, .dda3_inc = 0, .dda3_size = 0, .sc_reset = TV_SC_RESET_EVERY_4, .pal_burst = false, .composite_levels = &ntsc_m_levels_composite, .composite_color = &ntsc_m_csc_composite, .svideo_levels = &ntsc_m_levels_svideo, .svideo_color = &ntsc_m_csc_svideo, .filter_table = filter_table, }, { .name = "NTSC-443", .clock = 108000, .refresh = 59940, .oversample = 8, .component_only = false, /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 4.43MHz */ .hsync_end = 64, .hblank_end = 124, .hblank_start = 836, .htotal = 857, .progressive = false, .trilevel_sync = false, .vsync_start_f1 = 6, .vsync_start_f2 = 7, .vsync_len = 6, .veq_ena = true, .veq_start_f1 = 0, .veq_start_f2 = 1, .veq_len = 18, .vi_end_f1 = 20, .vi_end_f2 = 21, .nbr_end = 240, .burst_ena = true, .hburst_start = 72, .hburst_len = 34, .vburst_start_f1 = 9, .vburst_end_f1 = 240, .vburst_start_f2 = 10, .vburst_end_f2 = 240, .vburst_start_f3 = 9, .vburst_end_f3 = 240, .vburst_start_f4 = 10, .vburst_end_f4 = 240, /* desired 4.4336180 actual 4.4336180 clock 107.52 */ .dda1_inc = 168, .dda2_inc = 4093, .dda2_size = 27456, .dda3_inc = 310, .dda3_size = 525, .sc_reset = TV_SC_RESET_NEVER, .pal_burst = false, .composite_levels = &ntsc_m_levels_composite, .composite_color = &ntsc_m_csc_composite, .svideo_levels = &ntsc_m_levels_svideo, .svideo_color = &ntsc_m_csc_svideo, .filter_table = filter_table, }, { .name = "NTSC-J", .clock = 108000, .refresh = 59940, .oversample = 8, .component_only = false, /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 3.580MHz */ .hsync_end = 64, .hblank_end = 124, .hblank_start = 836, .htotal = 857, .progressive = false, .trilevel_sync = false, .vsync_start_f1 = 6, .vsync_start_f2 = 7, .vsync_len = 6, .veq_ena = true, .veq_start_f1 = 0, .veq_start_f2 = 1, .veq_len = 18, .vi_end_f1 = 20, .vi_end_f2 = 21, .nbr_end = 240, .burst_ena = true, .hburst_start = 72, .hburst_len = 34, .vburst_start_f1 = 9, .vburst_end_f1 = 240, .vburst_start_f2 = 10, .vburst_end_f2 = 240, .vburst_start_f3 = 9, .vburst_end_f3 = 240, .vburst_start_f4 = 10, .vburst_end_f4 = 240, /* desired 3.5800000 actual 3.5800000 clock 107.52 */ .dda1_inc = 135, .dda2_inc = 20800, .dda2_size = 27456, .dda3_inc = 0, .dda3_size = 0, .sc_reset = TV_SC_RESET_EVERY_4, .pal_burst = false, .composite_levels = &ntsc_j_levels_composite, .composite_color = &ntsc_j_csc_composite, .svideo_levels = &ntsc_j_levels_svideo, .svideo_color = &ntsc_j_csc_svideo, .filter_table = filter_table, }, { .name = "PAL-M", .clock = 108000, .refresh = 59940, .oversample = 8, .component_only = false, /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 3.580MHz */ .hsync_end = 64, .hblank_end = 124, .hblank_start = 836, .htotal = 857, .progressive = false, .trilevel_sync = false, .vsync_start_f1 = 6, .vsync_start_f2 = 7, .vsync_len = 6, .veq_ena = true, .veq_start_f1 = 0, .veq_start_f2 = 1, .veq_len = 18, .vi_end_f1 = 20, .vi_end_f2 = 21, .nbr_end = 240, .burst_ena = true, .hburst_start = 72, .hburst_len = 34, .vburst_start_f1 = 9, .vburst_end_f1 = 240, .vburst_start_f2 = 10, .vburst_end_f2 = 240, .vburst_start_f3 = 9, .vburst_end_f3 = 240, .vburst_start_f4 = 10, .vburst_end_f4 = 240, /* desired 3.5800000 actual 3.5800000 clock 107.52 */ .dda1_inc = 135, .dda2_inc = 16704, .dda2_size = 27456, .dda3_inc = 0, .dda3_size = 0, .sc_reset = TV_SC_RESET_EVERY_8, .pal_burst = true, .composite_levels = &pal_m_levels_composite, .composite_color = &pal_m_csc_composite, .svideo_levels = &pal_m_levels_svideo, .svideo_color = &pal_m_csc_svideo, .filter_table = filter_table, }, { /* 625 Lines, 50 Fields, 15.625KHz line, Sub-Carrier 4.434MHz */ .name = "PAL-N", .clock = 108000, .refresh = 50000, .oversample = 8, .component_only = false, .hsync_end = 64, .hblank_end = 128, .hblank_start = 844, .htotal = 863, .progressive = false, .trilevel_sync = false, .vsync_start_f1 = 6, .vsync_start_f2 = 7, .vsync_len = 6, .veq_ena = true, .veq_start_f1 = 0, .veq_start_f2 = 1, .veq_len = 18, .vi_end_f1 = 24, .vi_end_f2 = 25, .nbr_end = 286, .burst_ena = true, .hburst_start = 73, .hburst_len = 34, .vburst_start_f1 = 8, .vburst_end_f1 = 285, .vburst_start_f2 = 8, .vburst_end_f2 = 286, .vburst_start_f3 = 9, .vburst_end_f3 = 286, .vburst_start_f4 = 9, .vburst_end_f4 = 285, /* desired 4.4336180 actual 4.4336180 clock 107.52 */ .dda1_inc = 135, .dda2_inc = 23578, .dda2_size = 27648, .dda3_inc = 134, .dda3_size = 625, .sc_reset = TV_SC_RESET_EVERY_8, .pal_burst = true, .composite_levels = &pal_n_levels_composite, .composite_color = &pal_n_csc_composite, .svideo_levels = &pal_n_levels_svideo, .svideo_color = &pal_n_csc_svideo, .filter_table = filter_table, }, { /* 625 Lines, 50 Fields, 15.625KHz line, Sub-Carrier 4.434MHz */ .name = "PAL", .clock = 108000, .refresh = 50000, .oversample = 8, .component_only = false, .hsync_end = 64, .hblank_end = 142, .hblank_start = 844, .htotal = 863, .progressive = false, .trilevel_sync = false, .vsync_start_f1 = 5, .vsync_start_f2 = 6, .vsync_len = 5, .veq_ena = true, .veq_start_f1 = 0, .veq_start_f2 = 1, .veq_len = 15, .vi_end_f1 = 24, .vi_end_f2 = 25, .nbr_end = 286, .burst_ena = true, .hburst_start = 73, .hburst_len = 32, .vburst_start_f1 = 8, .vburst_end_f1 = 285, .vburst_start_f2 = 8, .vburst_end_f2 = 286, .vburst_start_f3 = 9, .vburst_end_f3 = 286, .vburst_start_f4 = 9, .vburst_end_f4 = 285, /* desired 4.4336180 actual 4.4336180 clock 107.52 */ .dda1_inc = 168, .dda2_inc = 4122, .dda2_size = 27648, .dda3_inc = 67, .dda3_size = 625, .sc_reset = TV_SC_RESET_EVERY_8, .pal_burst = true, .composite_levels = &pal_levels_composite, .composite_color = &pal_csc_composite, .svideo_levels = &pal_levels_svideo, .svideo_color = &pal_csc_svideo, .filter_table = filter_table, }, { .name = "480p", .clock = 108000, .refresh = 59940, .oversample = 4, .component_only = true, .hsync_end = 64, .hblank_end = 122, .hblank_start = 842, .htotal = 857, .progressive = true, .trilevel_sync = false, .vsync_start_f1 = 12, .vsync_start_f2 = 12, .vsync_len = 12, .veq_ena = false, .vi_end_f1 = 44, .vi_end_f2 = 44, .nbr_end = 479, .burst_ena = false, .filter_table = filter_table, }, { .name = "576p", .clock = 108000, .refresh = 50000, .oversample = 4, .component_only = true, .hsync_end = 64, .hblank_end = 139, .hblank_start = 859, .htotal = 863, .progressive = true, .trilevel_sync = false, .vsync_start_f1 = 10, .vsync_start_f2 = 10, .vsync_len = 10, .veq_ena = false, .vi_end_f1 = 48, .vi_end_f2 = 48, .nbr_end = 575, .burst_ena = false, .filter_table = filter_table, }, { .name = "720p@60Hz", .clock = 148500, .refresh = 60000, .oversample = 2, .component_only = true, .hsync_end = 80, .hblank_end = 300, .hblank_start = 1580, .htotal = 1649, .progressive = true, .trilevel_sync = true, .vsync_start_f1 = 10, .vsync_start_f2 = 10, .vsync_len = 10, .veq_ena = false, .vi_end_f1 = 29, .vi_end_f2 = 29, .nbr_end = 719, .burst_ena = false, .filter_table = filter_table, }, { .name = "720p@50Hz", .clock = 148500, .refresh = 50000, .oversample = 2, .component_only = true, .hsync_end = 80, .hblank_end = 300, .hblank_start = 1580, .htotal = 1979, .progressive = true, .trilevel_sync = true, .vsync_start_f1 = 10, .vsync_start_f2 = 10, .vsync_len = 10, .veq_ena = false, .vi_end_f1 = 29, .vi_end_f2 = 29, .nbr_end = 719, .burst_ena = false, .filter_table = filter_table, }, { .name = "1080i@50Hz", .clock = 148500, .refresh = 50000, .oversample = 2, .component_only = true, .hsync_end = 88, .hblank_end = 235, .hblank_start = 2155, .htotal = 2639, .progressive = false, .trilevel_sync = true, .vsync_start_f1 = 4, .vsync_start_f2 = 5, .vsync_len = 10, .veq_ena = true, .veq_start_f1 = 4, .veq_start_f2 = 4, .veq_len = 10, .vi_end_f1 = 21, .vi_end_f2 = 22, .nbr_end = 539, .burst_ena = false, .filter_table = filter_table, }, { .name = "1080i@60Hz", .clock = 148500, .refresh = 60000, .oversample = 2, .component_only = true, .hsync_end = 88, .hblank_end = 235, .hblank_start = 2155, .htotal = 2199, .progressive = false, .trilevel_sync = true, .vsync_start_f1 = 4, .vsync_start_f2 = 5, .vsync_len = 10, .veq_ena = true, .veq_start_f1 = 4, .veq_start_f2 = 4, .veq_len = 10, .vi_end_f1 = 21, .vi_end_f2 = 22, .nbr_end = 539, .burst_ena = false, .filter_table = filter_table, }, { .name = "1080p@30Hz", .clock = 148500, .refresh = 30000, .oversample = 2, .component_only = true, .hsync_end = 88, .hblank_end = 235, .hblank_start = 2155, .htotal = 2199, .progressive = true, .trilevel_sync = true, .vsync_start_f1 = 8, .vsync_start_f2 = 8, .vsync_len = 10, .veq_ena = false, .veq_start_f1 = 0, .veq_start_f2 = 0, .veq_len = 0, .vi_end_f1 = 44, .vi_end_f2 = 44, .nbr_end = 1079, .burst_ena = false, .filter_table = filter_table, }, { .name = "1080p@50Hz", .clock = 148500, .refresh = 50000, .oversample = 1, .component_only = true, .hsync_end = 88, .hblank_end = 235, .hblank_start = 2155, .htotal = 2639, .progressive = true, .trilevel_sync = true, .vsync_start_f1 = 8, .vsync_start_f2 = 8, .vsync_len = 10, .veq_ena = false, .veq_start_f1 = 0, .veq_start_f2 = 0, .veq_len = 0, .vi_end_f1 = 44, .vi_end_f2 = 44, .nbr_end = 1079, .burst_ena = false, .filter_table = filter_table, }, { .name = "1080p@60Hz", .clock = 148500, .refresh = 60000, .oversample = 1, .component_only = true, .hsync_end = 88, .hblank_end = 235, .hblank_start = 2155, .htotal = 2199, .progressive = true, .trilevel_sync = true, .vsync_start_f1 = 8, .vsync_start_f2 = 8, .vsync_len = 10, .veq_ena = false, .veq_start_f1 = 0, .veq_start_f2 = 0, .veq_len = 0, .vi_end_f1 = 44, .vi_end_f2 = 44, .nbr_end = 1079, .burst_ena = false, .filter_table = filter_table, }, }; struct intel_tv_connector_state { struct drm_connector_state base; /* * May need to override the user margins for * gen3 >1024 wide source vertical centering. */ struct { u16 top, bottom; } margins; bool bypass_vfilter; }; #define to_intel_tv_connector_state(x) container_of(x, struct intel_tv_connector_state, base) static struct drm_connector_state * intel_tv_connector_duplicate_state(struct drm_connector *connector) { struct intel_tv_connector_state *state; state = kmemdup(connector->state, sizeof(*state), GFP_KERNEL); if (!state) return NULL; __drm_atomic_helper_connector_duplicate_state(connector, &state->base); return &state->base; } static struct intel_tv *enc_to_tv(struct intel_encoder *encoder) { return container_of(encoder, struct intel_tv, base); } static struct intel_tv *intel_attached_tv(struct intel_connector *connector) { return enc_to_tv(intel_attached_encoder(connector)); } static bool intel_tv_get_hw_state(struct intel_encoder *encoder, enum pipe *pipe) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); u32 tmp = intel_de_read(dev_priv, TV_CTL); *pipe = (tmp & TV_ENC_PIPE_SEL_MASK) >> TV_ENC_PIPE_SEL_SHIFT; return tmp & TV_ENC_ENABLE; } static void intel_enable_tv(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); /* Prevents vblank waits from timing out in intel_tv_detect_type() */ intel_crtc_wait_for_next_vblank(to_intel_crtc(pipe_config->uapi.crtc)); intel_de_rmw(dev_priv, TV_CTL, 0, TV_ENC_ENABLE); } static void intel_disable_tv(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); intel_de_rmw(dev_priv, TV_CTL, TV_ENC_ENABLE, 0); } static const struct tv_mode *intel_tv_mode_find(const struct drm_connector_state *conn_state) { int format = conn_state->tv.mode; return &tv_modes[format]; } static enum drm_mode_status intel_tv_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { const struct tv_mode *tv_mode = intel_tv_mode_find(connector->state); int max_dotclk = to_i915(connector->dev)->max_dotclk_freq; if (mode->flags & DRM_MODE_FLAG_DBLSCAN) return MODE_NO_DBLESCAN; if (mode->clock > max_dotclk) return MODE_CLOCK_HIGH; /* Ensure TV refresh is close to desired refresh */ if (abs(tv_mode->refresh - drm_mode_vrefresh(mode) * 1000) >= 1000) return MODE_CLOCK_RANGE; return MODE_OK; } static int intel_tv_mode_vdisplay(const struct tv_mode *tv_mode) { if (tv_mode->progressive) return tv_mode->nbr_end + 1; else return 2 * (tv_mode->nbr_end + 1); } static void intel_tv_mode_to_mode(struct drm_display_mode *mode, const struct tv_mode *tv_mode, int clock) { mode->clock = clock / (tv_mode->oversample >> !tv_mode->progressive); /* * tv_mode horizontal timings: * * hsync_end * | hblank_end * | | hblank_start * | | | htotal * | _______ | * ____/ \___ * \__/ \ */ mode->hdisplay = tv_mode->hblank_start - tv_mode->hblank_end; mode->hsync_start = mode->hdisplay + tv_mode->htotal - tv_mode->hblank_start; mode->hsync_end = mode->hsync_start + tv_mode->hsync_end; mode->htotal = tv_mode->htotal + 1; /* * tv_mode vertical timings: * * vsync_start * | vsync_end * | | vi_end nbr_end * | | | | * | | _______ * \__ ____/ \ * \__/ */ mode->vdisplay = intel_tv_mode_vdisplay(tv_mode); if (tv_mode->progressive) { mode->vsync_start = mode->vdisplay + tv_mode->vsync_start_f1 + 1; mode->vsync_end = mode->vsync_start + tv_mode->vsync_len; mode->vtotal = mode->vdisplay + tv_mode->vi_end_f1 + 1; } else { mode->vsync_start = mode->vdisplay + tv_mode->vsync_start_f1 + 1 + tv_mode->vsync_start_f2 + 1; mode->vsync_end = mode->vsync_start + 2 * tv_mode->vsync_len; mode->vtotal = mode->vdisplay + tv_mode->vi_end_f1 + 1 + tv_mode->vi_end_f2 + 1; } /* TV has it's own notion of sync and other mode flags, so clear them. */ mode->flags = 0; snprintf(mode->name, sizeof(mode->name), "%dx%d%c (%s)", mode->hdisplay, mode->vdisplay, tv_mode->progressive ? 'p' : 'i', tv_mode->name); } static void intel_tv_scale_mode_horiz(struct drm_display_mode *mode, int hdisplay, int left_margin, int right_margin) { int hsync_start = mode->hsync_start - mode->hdisplay + right_margin; int hsync_end = mode->hsync_end - mode->hdisplay + right_margin; int new_htotal = mode->htotal * hdisplay / (mode->hdisplay - left_margin - right_margin); mode->clock = mode->clock * new_htotal / mode->htotal; mode->hdisplay = hdisplay; mode->hsync_start = hdisplay + hsync_start * new_htotal / mode->htotal; mode->hsync_end = hdisplay + hsync_end * new_htotal / mode->htotal; mode->htotal = new_htotal; } static void intel_tv_scale_mode_vert(struct drm_display_mode *mode, int vdisplay, int top_margin, int bottom_margin) { int vsync_start = mode->vsync_start - mode->vdisplay + bottom_margin; int vsync_end = mode->vsync_end - mode->vdisplay + bottom_margin; int new_vtotal = mode->vtotal * vdisplay / (mode->vdisplay - top_margin - bottom_margin); mode->clock = mode->clock * new_vtotal / mode->vtotal; mode->vdisplay = vdisplay; mode->vsync_start = vdisplay + vsync_start * new_vtotal / mode->vtotal; mode->vsync_end = vdisplay + vsync_end * new_vtotal / mode->vtotal; mode->vtotal = new_vtotal; } static void intel_tv_get_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; struct drm_display_mode mode = {}; u32 tv_ctl, hctl1, hctl3, vctl1, vctl2, tmp; struct tv_mode tv_mode = {}; int hdisplay = adjusted_mode->crtc_hdisplay; int vdisplay = adjusted_mode->crtc_vdisplay; int xsize, ysize, xpos, ypos; pipe_config->output_types |= BIT(INTEL_OUTPUT_TVOUT); tv_ctl = intel_de_read(dev_priv, TV_CTL); hctl1 = intel_de_read(dev_priv, TV_H_CTL_1); hctl3 = intel_de_read(dev_priv, TV_H_CTL_3); vctl1 = intel_de_read(dev_priv, TV_V_CTL_1); vctl2 = intel_de_read(dev_priv, TV_V_CTL_2); tv_mode.htotal = (hctl1 & TV_HTOTAL_MASK) >> TV_HTOTAL_SHIFT; tv_mode.hsync_end = (hctl1 & TV_HSYNC_END_MASK) >> TV_HSYNC_END_SHIFT; tv_mode.hblank_start = (hctl3 & TV_HBLANK_START_MASK) >> TV_HBLANK_START_SHIFT; tv_mode.hblank_end = (hctl3 & TV_HSYNC_END_MASK) >> TV_HBLANK_END_SHIFT; tv_mode.nbr_end = (vctl1 & TV_NBR_END_MASK) >> TV_NBR_END_SHIFT; tv_mode.vi_end_f1 = (vctl1 & TV_VI_END_F1_MASK) >> TV_VI_END_F1_SHIFT; tv_mode.vi_end_f2 = (vctl1 & TV_VI_END_F2_MASK) >> TV_VI_END_F2_SHIFT; tv_mode.vsync_len = (vctl2 & TV_VSYNC_LEN_MASK) >> TV_VSYNC_LEN_SHIFT; tv_mode.vsync_start_f1 = (vctl2 & TV_VSYNC_START_F1_MASK) >> TV_VSYNC_START_F1_SHIFT; tv_mode.vsync_start_f2 = (vctl2 & TV_VSYNC_START_F2_MASK) >> TV_VSYNC_START_F2_SHIFT; tv_mode.clock = pipe_config->port_clock; tv_mode.progressive = tv_ctl & TV_PROGRESSIVE; switch (tv_ctl & TV_OVERSAMPLE_MASK) { case TV_OVERSAMPLE_8X: tv_mode.oversample = 8; break; case TV_OVERSAMPLE_4X: tv_mode.oversample = 4; break; case TV_OVERSAMPLE_2X: tv_mode.oversample = 2; break; default: tv_mode.oversample = 1; break; } tmp = intel_de_read(dev_priv, TV_WIN_POS); xpos = tmp >> 16; ypos = tmp & 0xffff; tmp = intel_de_read(dev_priv, TV_WIN_SIZE); xsize = tmp >> 16; ysize = tmp & 0xffff; intel_tv_mode_to_mode(&mode, &tv_mode, pipe_config->port_clock); drm_dbg_kms(&dev_priv->drm, "TV mode: " DRM_MODE_FMT "\n", DRM_MODE_ARG(&mode)); intel_tv_scale_mode_horiz(&mode, hdisplay, xpos, mode.hdisplay - xsize - xpos); intel_tv_scale_mode_vert(&mode, vdisplay, ypos, mode.vdisplay - ysize - ypos); adjusted_mode->crtc_clock = mode.clock; if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) adjusted_mode->crtc_clock /= 2; /* pixel counter doesn't work on i965gm TV output */ if (IS_I965GM(dev_priv)) pipe_config->mode_flags |= I915_MODE_FLAG_USE_SCANLINE_COUNTER; } static bool intel_tv_source_too_wide(struct drm_i915_private *dev_priv, int hdisplay) { return DISPLAY_VER(dev_priv) == 3 && hdisplay > 1024; } static bool intel_tv_vert_scaling(const struct drm_display_mode *tv_mode, const struct drm_connector_state *conn_state, int vdisplay) { return tv_mode->crtc_vdisplay - conn_state->tv.margins.top - conn_state->tv.margins.bottom != vdisplay; } static int intel_tv_compute_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config, struct drm_connector_state *conn_state) { struct intel_atomic_state *state = to_intel_atomic_state(pipe_config->uapi.state); struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_tv_connector_state *tv_conn_state = to_intel_tv_connector_state(conn_state); const struct tv_mode *tv_mode = intel_tv_mode_find(conn_state); struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; int hdisplay = adjusted_mode->crtc_hdisplay; int vdisplay = adjusted_mode->crtc_vdisplay; int ret; if (!tv_mode) return -EINVAL; if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) return -EINVAL; pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; drm_dbg_kms(&dev_priv->drm, "forcing bpc to 8 for TV\n"); pipe_config->pipe_bpp = 8*3; pipe_config->port_clock = tv_mode->clock; ret = intel_dpll_crtc_compute_clock(state, crtc); if (ret) return ret; pipe_config->clock_set = true; intel_tv_mode_to_mode(adjusted_mode, tv_mode, pipe_config->port_clock); drm_mode_set_crtcinfo(adjusted_mode, 0); if (intel_tv_source_too_wide(dev_priv, hdisplay) || !intel_tv_vert_scaling(adjusted_mode, conn_state, vdisplay)) { int extra, top, bottom; extra = adjusted_mode->crtc_vdisplay - vdisplay; if (extra < 0) { drm_dbg_kms(&dev_priv->drm, "No vertical scaling for >1024 pixel wide modes\n"); return -EINVAL; } /* Need to turn off the vertical filter and center the image */ /* Attempt to maintain the relative sizes of the margins */ top = conn_state->tv.margins.top; bottom = conn_state->tv.margins.bottom; if (top + bottom) top = extra * top / (top + bottom); else top = extra / 2; bottom = extra - top; tv_conn_state->margins.top = top; tv_conn_state->margins.bottom = bottom; tv_conn_state->bypass_vfilter = true; if (!tv_mode->progressive) { adjusted_mode->clock /= 2; adjusted_mode->crtc_clock /= 2; adjusted_mode->flags |= DRM_MODE_FLAG_INTERLACE; } } else { tv_conn_state->margins.top = conn_state->tv.margins.top; tv_conn_state->margins.bottom = conn_state->tv.margins.bottom; tv_conn_state->bypass_vfilter = false; } drm_dbg_kms(&dev_priv->drm, "TV mode: " DRM_MODE_FMT "\n", DRM_MODE_ARG(adjusted_mode)); /* * The pipe scanline counter behaviour looks as follows when * using the TV encoder: * * time -> * * dsl=vtotal-1 | | * || || * ___| | ___| | * / | / | * / | / | * dsl=0 ___/ |_____/ | * | | | | | | * ^ ^ ^ ^ ^ * | | | | pipe vblank/first part of tv vblank * | | | bottom margin * | | active * | top margin * remainder of tv vblank * * When the TV encoder is used the pipe wants to run faster * than expected rate. During the active portion the TV * encoder stalls the pipe every few lines to keep it in * check. When the TV encoder reaches the bottom margin the * pipe simply stops. Once we reach the TV vblank the pipe is * no longer stalled and it runs at the max rate (apparently * oversample clock on gen3, cdclk on gen4). Once the pipe * reaches the pipe vtotal the pipe stops for the remainder * of the TV vblank/top margin. The pipe starts up again when * the TV encoder exits the top margin. * * To avoid huge hassles for vblank timestamping we scale * the pipe timings as if the pipe always runs at the average * rate it maintains during the active period. This also * gives us a reasonable guesstimate as to the pixel rate. * Due to the variation in the actual pipe speed the scanline * counter will give us slightly erroneous results during the * TV vblank/margins. But since vtotal was selected such that * it matches the average rate of the pipe during the active * portion the error shouldn't cause any serious grief to * vblank timestamps. * * For posterity here is the empirically derived formula * that gives us the maximum length of the pipe vblank * we can use without causing display corruption. Following * this would allow us to have a ticking scanline counter * everywhere except during the bottom margin (there the * pipe always stops). Ie. this would eliminate the second * flat portion of the above graph. However this would also * complicate vblank timestamping as the pipe vtotal would * no longer match the average rate the pipe runs at during * the active portion. Hence following this formula seems * more trouble that it's worth. * * if (GRAPHICS_VER(dev_priv) == 4) { * num = cdclk * (tv_mode->oversample >> !tv_mode->progressive); * den = tv_mode->clock; * } else { * num = tv_mode->oversample >> !tv_mode->progressive; * den = 1; * } * max_pipe_vblank_len ~= * (num * tv_htotal * (tv_vblank_len + top_margin)) / * (den * pipe_htotal); */ intel_tv_scale_mode_horiz(adjusted_mode, hdisplay, conn_state->tv.margins.left, conn_state->tv.margins.right); intel_tv_scale_mode_vert(adjusted_mode, vdisplay, tv_conn_state->margins.top, tv_conn_state->margins.bottom); drm_mode_set_crtcinfo(adjusted_mode, 0); adjusted_mode->name[0] = '\0'; /* pixel counter doesn't work on i965gm TV output */ if (IS_I965GM(dev_priv)) pipe_config->mode_flags |= I915_MODE_FLAG_USE_SCANLINE_COUNTER; return 0; } static void set_tv_mode_timings(struct drm_i915_private *dev_priv, const struct tv_mode *tv_mode, bool burst_ena) { u32 hctl1, hctl2, hctl3; u32 vctl1, vctl2, vctl3, vctl4, vctl5, vctl6, vctl7; hctl1 = (tv_mode->hsync_end << TV_HSYNC_END_SHIFT) | (tv_mode->htotal << TV_HTOTAL_SHIFT); hctl2 = (tv_mode->hburst_start << 16) | (tv_mode->hburst_len << TV_HBURST_LEN_SHIFT); if (burst_ena) hctl2 |= TV_BURST_ENA; hctl3 = (tv_mode->hblank_start << TV_HBLANK_START_SHIFT) | (tv_mode->hblank_end << TV_HBLANK_END_SHIFT); vctl1 = (tv_mode->nbr_end << TV_NBR_END_SHIFT) | (tv_mode->vi_end_f1 << TV_VI_END_F1_SHIFT) | (tv_mode->vi_end_f2 << TV_VI_END_F2_SHIFT); vctl2 = (tv_mode->vsync_len << TV_VSYNC_LEN_SHIFT) | (tv_mode->vsync_start_f1 << TV_VSYNC_START_F1_SHIFT) | (tv_mode->vsync_start_f2 << TV_VSYNC_START_F2_SHIFT); vctl3 = (tv_mode->veq_len << TV_VEQ_LEN_SHIFT) | (tv_mode->veq_start_f1 << TV_VEQ_START_F1_SHIFT) | (tv_mode->veq_start_f2 << TV_VEQ_START_F2_SHIFT); if (tv_mode->veq_ena) vctl3 |= TV_EQUAL_ENA; vctl4 = (tv_mode->vburst_start_f1 << TV_VBURST_START_F1_SHIFT) | (tv_mode->vburst_end_f1 << TV_VBURST_END_F1_SHIFT); vctl5 = (tv_mode->vburst_start_f2 << TV_VBURST_START_F2_SHIFT) | (tv_mode->vburst_end_f2 << TV_VBURST_END_F2_SHIFT); vctl6 = (tv_mode->vburst_start_f3 << TV_VBURST_START_F3_SHIFT) | (tv_mode->vburst_end_f3 << TV_VBURST_END_F3_SHIFT); vctl7 = (tv_mode->vburst_start_f4 << TV_VBURST_START_F4_SHIFT) | (tv_mode->vburst_end_f4 << TV_VBURST_END_F4_SHIFT); intel_de_write(dev_priv, TV_H_CTL_1, hctl1); intel_de_write(dev_priv, TV_H_CTL_2, hctl2); intel_de_write(dev_priv, TV_H_CTL_3, hctl3); intel_de_write(dev_priv, TV_V_CTL_1, vctl1); intel_de_write(dev_priv, TV_V_CTL_2, vctl2); intel_de_write(dev_priv, TV_V_CTL_3, vctl3); intel_de_write(dev_priv, TV_V_CTL_4, vctl4); intel_de_write(dev_priv, TV_V_CTL_5, vctl5); intel_de_write(dev_priv, TV_V_CTL_6, vctl6); intel_de_write(dev_priv, TV_V_CTL_7, vctl7); } static void set_color_conversion(struct drm_i915_private *dev_priv, const struct color_conversion *color_conversion) { if (!color_conversion) return; intel_de_write(dev_priv, TV_CSC_Y, (color_conversion->ry << 16) | color_conversion->gy); intel_de_write(dev_priv, TV_CSC_Y2, (color_conversion->by << 16) | color_conversion->ay); intel_de_write(dev_priv, TV_CSC_U, (color_conversion->ru << 16) | color_conversion->gu); intel_de_write(dev_priv, TV_CSC_U2, (color_conversion->bu << 16) | color_conversion->au); intel_de_write(dev_priv, TV_CSC_V, (color_conversion->rv << 16) | color_conversion->gv); intel_de_write(dev_priv, TV_CSC_V2, (color_conversion->bv << 16) | color_conversion->av); } static void intel_tv_pre_enable(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); struct intel_tv *intel_tv = enc_to_tv(encoder); const struct intel_tv_connector_state *tv_conn_state = to_intel_tv_connector_state(conn_state); const struct tv_mode *tv_mode = intel_tv_mode_find(conn_state); u32 tv_ctl, tv_filter_ctl; u32 scctl1, scctl2, scctl3; int i, j; const struct video_levels *video_levels; const struct color_conversion *color_conversion; bool burst_ena; int xpos, ypos; unsigned int xsize, ysize; if (!tv_mode) return; /* can't happen (mode_prepare prevents this) */ tv_ctl = intel_de_read(dev_priv, TV_CTL); tv_ctl &= TV_CTL_SAVE; switch (intel_tv->type) { default: case DRM_MODE_CONNECTOR_Unknown: case DRM_MODE_CONNECTOR_Composite: tv_ctl |= TV_ENC_OUTPUT_COMPOSITE; video_levels = tv_mode->composite_levels; color_conversion = tv_mode->composite_color; burst_ena = tv_mode->burst_ena; break; case DRM_MODE_CONNECTOR_Component: tv_ctl |= TV_ENC_OUTPUT_COMPONENT; video_levels = &component_levels; if (tv_mode->burst_ena) color_conversion = &sdtv_csc_yprpb; else color_conversion = &hdtv_csc_yprpb; burst_ena = false; break; case DRM_MODE_CONNECTOR_SVIDEO: tv_ctl |= TV_ENC_OUTPUT_SVIDEO; video_levels = tv_mode->svideo_levels; color_conversion = tv_mode->svideo_color; burst_ena = tv_mode->burst_ena; break; } tv_ctl |= TV_ENC_PIPE_SEL(crtc->pipe); switch (tv_mode->oversample) { case 8: tv_ctl |= TV_OVERSAMPLE_8X; break; case 4: tv_ctl |= TV_OVERSAMPLE_4X; break; case 2: tv_ctl |= TV_OVERSAMPLE_2X; break; default: tv_ctl |= TV_OVERSAMPLE_NONE; break; } if (tv_mode->progressive) tv_ctl |= TV_PROGRESSIVE; if (tv_mode->trilevel_sync) tv_ctl |= TV_TRILEVEL_SYNC; if (tv_mode->pal_burst) tv_ctl |= TV_PAL_BURST; scctl1 = 0; if (tv_mode->dda1_inc) scctl1 |= TV_SC_DDA1_EN; if (tv_mode->dda2_inc) scctl1 |= TV_SC_DDA2_EN; if (tv_mode->dda3_inc) scctl1 |= TV_SC_DDA3_EN; scctl1 |= tv_mode->sc_reset; if (video_levels) scctl1 |= video_levels->burst << TV_BURST_LEVEL_SHIFT; scctl1 |= tv_mode->dda1_inc << TV_SCDDA1_INC_SHIFT; scctl2 = tv_mode->dda2_size << TV_SCDDA2_SIZE_SHIFT | tv_mode->dda2_inc << TV_SCDDA2_INC_SHIFT; scctl3 = tv_mode->dda3_size << TV_SCDDA3_SIZE_SHIFT | tv_mode->dda3_inc << TV_SCDDA3_INC_SHIFT; /* Enable two fixes for the chips that need them. */ if (IS_I915GM(dev_priv)) tv_ctl |= TV_ENC_C0_FIX | TV_ENC_SDP_FIX; set_tv_mode_timings(dev_priv, tv_mode, burst_ena); intel_de_write(dev_priv, TV_SC_CTL_1, scctl1); intel_de_write(dev_priv, TV_SC_CTL_2, scctl2); intel_de_write(dev_priv, TV_SC_CTL_3, scctl3); set_color_conversion(dev_priv, color_conversion); if (DISPLAY_VER(dev_priv) >= 4) intel_de_write(dev_priv, TV_CLR_KNOBS, 0x00404000); else intel_de_write(dev_priv, TV_CLR_KNOBS, 0x00606000); if (video_levels) intel_de_write(dev_priv, TV_CLR_LEVEL, ((video_levels->black << TV_BLACK_LEVEL_SHIFT) | (video_levels->blank << TV_BLANK_LEVEL_SHIFT))); assert_transcoder_disabled(dev_priv, pipe_config->cpu_transcoder); /* Filter ctl must be set before TV_WIN_SIZE */ tv_filter_ctl = TV_AUTO_SCALE; if (tv_conn_state->bypass_vfilter) tv_filter_ctl |= TV_V_FILTER_BYPASS; intel_de_write(dev_priv, TV_FILTER_CTL_1, tv_filter_ctl); xsize = tv_mode->hblank_start - tv_mode->hblank_end; ysize = intel_tv_mode_vdisplay(tv_mode); xpos = conn_state->tv.margins.left; ypos = tv_conn_state->margins.top; xsize -= (conn_state->tv.margins.left + conn_state->tv.margins.right); ysize -= (tv_conn_state->margins.top + tv_conn_state->margins.bottom); intel_de_write(dev_priv, TV_WIN_POS, (xpos << 16) | ypos); intel_de_write(dev_priv, TV_WIN_SIZE, (xsize << 16) | ysize); j = 0; for (i = 0; i < 60; i++) intel_de_write(dev_priv, TV_H_LUMA(i), tv_mode->filter_table[j++]); for (i = 0; i < 60; i++) intel_de_write(dev_priv, TV_H_CHROMA(i), tv_mode->filter_table[j++]); for (i = 0; i < 43; i++) intel_de_write(dev_priv, TV_V_LUMA(i), tv_mode->filter_table[j++]); for (i = 0; i < 43; i++) intel_de_write(dev_priv, TV_V_CHROMA(i), tv_mode->filter_table[j++]); intel_de_write(dev_priv, TV_DAC, intel_de_read(dev_priv, TV_DAC) & TV_DAC_SAVE); intel_de_write(dev_priv, TV_CTL, tv_ctl); } static int intel_tv_detect_type(struct intel_tv *intel_tv, struct drm_connector *connector) { struct intel_crtc *crtc = to_intel_crtc(connector->state->crtc); struct drm_device *dev = connector->dev; struct drm_i915_private *dev_priv = to_i915(dev); u32 tv_ctl, save_tv_ctl; u32 tv_dac, save_tv_dac; int type; /* Disable TV interrupts around load detect or we'll recurse */ if (connector->polled & DRM_CONNECTOR_POLL_HPD) { spin_lock_irq(&dev_priv->irq_lock); i915_disable_pipestat(dev_priv, 0, PIPE_HOTPLUG_INTERRUPT_STATUS | PIPE_HOTPLUG_TV_INTERRUPT_STATUS); spin_unlock_irq(&dev_priv->irq_lock); } save_tv_dac = tv_dac = intel_de_read(dev_priv, TV_DAC); save_tv_ctl = tv_ctl = intel_de_read(dev_priv, TV_CTL); /* Poll for TV detection */ tv_ctl &= ~(TV_ENC_ENABLE | TV_ENC_PIPE_SEL_MASK | TV_TEST_MODE_MASK); tv_ctl |= TV_TEST_MODE_MONITOR_DETECT; tv_ctl |= TV_ENC_PIPE_SEL(crtc->pipe); tv_dac &= ~(TVDAC_SENSE_MASK | DAC_A_MASK | DAC_B_MASK | DAC_C_MASK); tv_dac |= (TVDAC_STATE_CHG_EN | TVDAC_A_SENSE_CTL | TVDAC_B_SENSE_CTL | TVDAC_C_SENSE_CTL | DAC_CTL_OVERRIDE | DAC_A_0_7_V | DAC_B_0_7_V | DAC_C_0_7_V); /* * The TV sense state should be cleared to zero on cantiga platform. Otherwise * the TV is misdetected. This is hardware requirement. */ if (IS_GM45(dev_priv)) tv_dac &= ~(TVDAC_STATE_CHG_EN | TVDAC_A_SENSE_CTL | TVDAC_B_SENSE_CTL | TVDAC_C_SENSE_CTL); intel_de_write(dev_priv, TV_CTL, tv_ctl); intel_de_write(dev_priv, TV_DAC, tv_dac); intel_de_posting_read(dev_priv, TV_DAC); intel_crtc_wait_for_next_vblank(crtc); type = -1; tv_dac = intel_de_read(dev_priv, TV_DAC); drm_dbg_kms(&dev_priv->drm, "TV detected: %x, %x\n", tv_ctl, tv_dac); /* * A B C * 0 1 1 Composite * 1 0 X svideo * 0 0 0 Component */ if ((tv_dac & TVDAC_SENSE_MASK) == (TVDAC_B_SENSE | TVDAC_C_SENSE)) { drm_dbg_kms(&dev_priv->drm, "Detected Composite TV connection\n"); type = DRM_MODE_CONNECTOR_Composite; } else if ((tv_dac & (TVDAC_A_SENSE|TVDAC_B_SENSE)) == TVDAC_A_SENSE) { drm_dbg_kms(&dev_priv->drm, "Detected S-Video TV connection\n"); type = DRM_MODE_CONNECTOR_SVIDEO; } else if ((tv_dac & TVDAC_SENSE_MASK) == 0) { drm_dbg_kms(&dev_priv->drm, "Detected Component TV connection\n"); type = DRM_MODE_CONNECTOR_Component; } else { drm_dbg_kms(&dev_priv->drm, "Unrecognised TV connection\n"); type = -1; } intel_de_write(dev_priv, TV_DAC, save_tv_dac & ~TVDAC_STATE_CHG_EN); intel_de_write(dev_priv, TV_CTL, save_tv_ctl); intel_de_posting_read(dev_priv, TV_CTL); /* For unknown reasons the hw barfs if we don't do this vblank wait. */ intel_crtc_wait_for_next_vblank(crtc); /* Restore interrupt config */ if (connector->polled & DRM_CONNECTOR_POLL_HPD) { spin_lock_irq(&dev_priv->irq_lock); i915_enable_pipestat(dev_priv, 0, PIPE_HOTPLUG_INTERRUPT_STATUS | PIPE_HOTPLUG_TV_INTERRUPT_STATUS); spin_unlock_irq(&dev_priv->irq_lock); } return type; } /* * Here we set accurate tv format according to connector type * i.e Component TV should not be assigned by NTSC or PAL */ static void intel_tv_find_better_format(struct drm_connector *connector) { struct intel_tv *intel_tv = intel_attached_tv(to_intel_connector(connector)); const struct tv_mode *tv_mode = intel_tv_mode_find(connector->state); int i; /* Component supports everything so we can keep the current mode */ if (intel_tv->type == DRM_MODE_CONNECTOR_Component) return; /* If the current mode is fine don't change it */ if (!tv_mode->component_only) return; for (i = 0; i < ARRAY_SIZE(tv_modes); i++) { tv_mode = &tv_modes[i]; if (!tv_mode->component_only) break; } connector->state->tv.mode = i; } static int intel_tv_detect(struct drm_connector *connector, struct drm_modeset_acquire_ctx *ctx, bool force) { struct drm_i915_private *i915 = to_i915(connector->dev); struct intel_tv *intel_tv = intel_attached_tv(to_intel_connector(connector)); enum drm_connector_status status; int type; drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] force=%d\n", connector->base.id, connector->name, force); if (!INTEL_DISPLAY_ENABLED(i915)) return connector_status_disconnected; if (force) { struct intel_load_detect_pipe tmp; int ret; ret = intel_get_load_detect_pipe(connector, &tmp, ctx); if (ret < 0) return ret; if (ret > 0) { type = intel_tv_detect_type(intel_tv, connector); intel_release_load_detect_pipe(connector, &tmp, ctx); status = type < 0 ? connector_status_disconnected : connector_status_connected; } else status = connector_status_unknown; if (status == connector_status_connected) { intel_tv->type = type; intel_tv_find_better_format(connector); } return status; } else return connector->status; } static const struct input_res { u16 w, h; } input_res_table[] = { { 640, 480 }, { 800, 600 }, { 1024, 768 }, { 1280, 1024 }, { 848, 480 }, { 1280, 720 }, { 1920, 1080 }, }; /* Choose preferred mode according to line number of TV format */ static bool intel_tv_is_preferred_mode(const struct drm_display_mode *mode, const struct tv_mode *tv_mode) { int vdisplay = intel_tv_mode_vdisplay(tv_mode); /* prefer 480 line modes for all SD TV modes */ if (vdisplay <= 576) vdisplay = 480; return vdisplay == mode->vdisplay; } static void intel_tv_set_mode_type(struct drm_display_mode *mode, const struct tv_mode *tv_mode) { mode->type = DRM_MODE_TYPE_DRIVER; if (intel_tv_is_preferred_mode(mode, tv_mode)) mode->type |= DRM_MODE_TYPE_PREFERRED; } static int intel_tv_get_modes(struct drm_connector *connector) { struct drm_i915_private *dev_priv = to_i915(connector->dev); const struct tv_mode *tv_mode = intel_tv_mode_find(connector->state); int i, count = 0; for (i = 0; i < ARRAY_SIZE(input_res_table); i++) { const struct input_res *input = &input_res_table[i]; struct drm_display_mode *mode; if (input->w > 1024 && !tv_mode->progressive && !tv_mode->component_only) continue; /* no vertical scaling with wide sources on gen3 */ if (DISPLAY_VER(dev_priv) == 3 && input->w > 1024 && input->h > intel_tv_mode_vdisplay(tv_mode)) continue; mode = drm_mode_create(connector->dev); if (!mode) continue; /* * We take the TV mode and scale it to look * like it had the expected h/vdisplay. This * provides the most information to userspace * about the actual timings of the mode. We * do ignore the margins though. */ intel_tv_mode_to_mode(mode, tv_mode, tv_mode->clock); if (count == 0) { drm_dbg_kms(&dev_priv->drm, "TV mode: " DRM_MODE_FMT "\n", DRM_MODE_ARG(mode)); } intel_tv_scale_mode_horiz(mode, input->w, 0, 0); intel_tv_scale_mode_vert(mode, input->h, 0, 0); intel_tv_set_mode_type(mode, tv_mode); drm_mode_set_name(mode); drm_mode_probed_add(connector, mode); count++; } return count; } static const struct drm_connector_funcs intel_tv_connector_funcs = { .late_register = intel_connector_register, .early_unregister = intel_connector_unregister, .destroy = intel_connector_destroy, .fill_modes = drm_helper_probe_single_connector_modes, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, .atomic_duplicate_state = intel_tv_connector_duplicate_state, }; static int intel_tv_atomic_check(struct drm_connector *connector, struct drm_atomic_state *state) { struct drm_connector_state *new_state; struct drm_crtc_state *new_crtc_state; struct drm_connector_state *old_state; new_state = drm_atomic_get_new_connector_state(state, connector); if (!new_state->crtc) return 0; old_state = drm_atomic_get_old_connector_state(state, connector); new_crtc_state = drm_atomic_get_new_crtc_state(state, new_state->crtc); if (old_state->tv.mode != new_state->tv.mode || old_state->tv.margins.left != new_state->tv.margins.left || old_state->tv.margins.right != new_state->tv.margins.right || old_state->tv.margins.top != new_state->tv.margins.top || old_state->tv.margins.bottom != new_state->tv.margins.bottom) { /* Force a modeset. */ new_crtc_state->connectors_changed = true; } return 0; } static const struct drm_connector_helper_funcs intel_tv_connector_helper_funcs = { .detect_ctx = intel_tv_detect, .mode_valid = intel_tv_mode_valid, .get_modes = intel_tv_get_modes, .atomic_check = intel_tv_atomic_check, }; static const struct drm_encoder_funcs intel_tv_enc_funcs = { .destroy = intel_encoder_destroy, }; static void intel_tv_add_properties(struct drm_connector *connector) { struct drm_i915_private *i915 = to_i915(connector->dev); struct drm_connector_state *conn_state = connector->state; const char *tv_format_names[ARRAY_SIZE(tv_modes)]; int i; /* BIOS margin values */ conn_state->tv.margins.left = 54; conn_state->tv.margins.top = 36; conn_state->tv.margins.right = 46; conn_state->tv.margins.bottom = 37; conn_state->tv.mode = 0; /* Create TV properties then attach current values */ for (i = 0; i < ARRAY_SIZE(tv_modes); i++) { /* 1080p50/1080p60 not supported on gen3 */ if (DISPLAY_VER(i915) == 3 && tv_modes[i].oversample == 1) break; tv_format_names[i] = tv_modes[i].name; } drm_mode_create_tv_properties_legacy(&i915->drm, i, tv_format_names); drm_object_attach_property(&connector->base, i915->drm.mode_config.legacy_tv_mode_property, conn_state->tv.mode); drm_object_attach_property(&connector->base, i915->drm.mode_config.tv_left_margin_property, conn_state->tv.margins.left); drm_object_attach_property(&connector->base, i915->drm.mode_config.tv_top_margin_property, conn_state->tv.margins.top); drm_object_attach_property(&connector->base, i915->drm.mode_config.tv_right_margin_property, conn_state->tv.margins.right); drm_object_attach_property(&connector->base, i915->drm.mode_config.tv_bottom_margin_property, conn_state->tv.margins.bottom); } void intel_tv_init(struct drm_i915_private *dev_priv) { struct drm_connector *connector; struct intel_tv *intel_tv; struct intel_encoder *intel_encoder; struct intel_connector *intel_connector; u32 tv_dac_on, tv_dac_off, save_tv_dac; if ((intel_de_read(dev_priv, TV_CTL) & TV_FUSE_STATE_MASK) == TV_FUSE_STATE_DISABLED) return; if (!intel_bios_is_tv_present(dev_priv)) { drm_dbg_kms(&dev_priv->drm, "Integrated TV is not present.\n"); return; } /* * Sanity check the TV output by checking to see if the * DAC register holds a value */ save_tv_dac = intel_de_read(dev_priv, TV_DAC); intel_de_write(dev_priv, TV_DAC, save_tv_dac | TVDAC_STATE_CHG_EN); tv_dac_on = intel_de_read(dev_priv, TV_DAC); intel_de_write(dev_priv, TV_DAC, save_tv_dac & ~TVDAC_STATE_CHG_EN); tv_dac_off = intel_de_read(dev_priv, TV_DAC); intel_de_write(dev_priv, TV_DAC, save_tv_dac); /* * If the register does not hold the state change enable * bit, (either as a 0 or a 1), assume it doesn't really * exist */ if ((tv_dac_on & TVDAC_STATE_CHG_EN) == 0 || (tv_dac_off & TVDAC_STATE_CHG_EN) != 0) return; intel_tv = kzalloc(sizeof(*intel_tv), GFP_KERNEL); if (!intel_tv) { return; } intel_connector = intel_connector_alloc(); if (!intel_connector) { kfree(intel_tv); return; } intel_encoder = &intel_tv->base; connector = &intel_connector->base; /* * The documentation, for the older chipsets at least, recommend * using a polling method rather than hotplug detection for TVs. * This is because in order to perform the hotplug detection, the PLLs * for the TV must be kept alive increasing power drain and starving * bandwidth from other encoders. Notably for instance, it causes * pipe underruns on Crestline when this encoder is supposedly idle. * * More recent chipsets favour HDMI rather than integrated S-Video. */ intel_connector->polled = DRM_CONNECTOR_POLL_CONNECT; drm_connector_init(&dev_priv->drm, connector, &intel_tv_connector_funcs, DRM_MODE_CONNECTOR_SVIDEO); drm_encoder_init(&dev_priv->drm, &intel_encoder->base, &intel_tv_enc_funcs, DRM_MODE_ENCODER_TVDAC, "TV"); intel_encoder->compute_config = intel_tv_compute_config; intel_encoder->get_config = intel_tv_get_config; intel_encoder->pre_enable = intel_tv_pre_enable; intel_encoder->enable = intel_enable_tv; intel_encoder->disable = intel_disable_tv; intel_encoder->get_hw_state = intel_tv_get_hw_state; intel_connector->get_hw_state = intel_connector_get_hw_state; intel_connector_attach_encoder(intel_connector, intel_encoder); intel_encoder->type = INTEL_OUTPUT_TVOUT; intel_encoder->power_domain = POWER_DOMAIN_PORT_OTHER; intel_encoder->port = PORT_NONE; intel_encoder->pipe_mask = ~0; intel_encoder->cloneable = 0; intel_tv->type = DRM_MODE_CONNECTOR_Unknown; drm_connector_helper_add(connector, &intel_tv_connector_helper_funcs); intel_tv_add_properties(connector); }