// SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation * */ #include "gem/i915_gem_internal.h" #include "i915_drv.h" #include "i915_reg.h" #include "intel_de.h" #include "intel_display_types.h" #include "intel_dsb.h" struct i915_vma; enum dsb_id { INVALID_DSB = -1, DSB1, DSB2, DSB3, MAX_DSB_PER_PIPE }; struct intel_dsb { enum dsb_id id; u32 *cmd_buf; struct i915_vma *vma; /* * free_pos will point the first free entry position * and help in calculating tail of command buffer. */ int free_pos; /* * ins_start_offset will help to store start address of the dsb * instuction and help in identifying the batch of auto-increment * register. */ u32 ins_start_offset; }; #define DSB_BUF_SIZE (2 * PAGE_SIZE) /** * DOC: DSB * * A DSB (Display State Buffer) is a queue of MMIO instructions in the memory * which can be offloaded to DSB HW in Display Controller. DSB HW is a DMA * engine that can be programmed to download the DSB from memory. * It allows driver to batch submit display HW programming. This helps to * reduce loading time and CPU activity, thereby making the context switch * faster. DSB Support added from Gen12 Intel graphics based platform. * * DSB's can access only the pipe, plane, and transcoder Data Island Packet * registers. * * DSB HW can support only register writes (both indexed and direct MMIO * writes). There are no registers reads possible with DSB HW engine. */ /* DSB opcodes. */ #define DSB_OPCODE_SHIFT 24 #define DSB_OPCODE_MMIO_WRITE 0x1 #define DSB_OPCODE_INDEXED_WRITE 0x9 #define DSB_BYTE_EN 0xF #define DSB_BYTE_EN_SHIFT 20 #define DSB_REG_VALUE_MASK 0xfffff static bool is_dsb_busy(struct drm_i915_private *i915, enum pipe pipe, enum dsb_id id) { return DSB_STATUS & intel_de_read(i915, DSB_CTRL(pipe, id)); } static bool intel_dsb_enable_engine(struct drm_i915_private *i915, enum pipe pipe, enum dsb_id id) { u32 dsb_ctrl; dsb_ctrl = intel_de_read(i915, DSB_CTRL(pipe, id)); if (DSB_STATUS & dsb_ctrl) { drm_dbg_kms(&i915->drm, "DSB engine is busy.\n"); return false; } dsb_ctrl |= DSB_ENABLE; intel_de_write(i915, DSB_CTRL(pipe, id), dsb_ctrl); intel_de_posting_read(i915, DSB_CTRL(pipe, id)); return true; } static bool intel_dsb_disable_engine(struct drm_i915_private *i915, enum pipe pipe, enum dsb_id id) { u32 dsb_ctrl; dsb_ctrl = intel_de_read(i915, DSB_CTRL(pipe, id)); if (DSB_STATUS & dsb_ctrl) { drm_dbg_kms(&i915->drm, "DSB engine is busy.\n"); return false; } dsb_ctrl &= ~DSB_ENABLE; intel_de_write(i915, DSB_CTRL(pipe, id), dsb_ctrl); intel_de_posting_read(i915, DSB_CTRL(pipe, id)); return true; } /** * intel_dsb_indexed_reg_write() -Write to the DSB context for auto * increment register. * @crtc_state: intel_crtc_state structure * @reg: register address. * @val: value. * * This function is used for writing register-value pair in command * buffer of DSB for auto-increment register. During command buffer overflow, * a warning is thrown and rest all erroneous condition register programming * is done through mmio write. */ void intel_dsb_indexed_reg_write(const struct intel_crtc_state *crtc_state, i915_reg_t reg, u32 val) { struct intel_dsb *dsb = crtc_state->dsb; struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); u32 *buf; u32 reg_val; if (!dsb) { intel_de_write_fw(dev_priv, reg, val); return; } buf = dsb->cmd_buf; if (drm_WARN_ON(&dev_priv->drm, dsb->free_pos >= DSB_BUF_SIZE)) { drm_dbg_kms(&dev_priv->drm, "DSB buffer overflow\n"); return; } /* * For example the buffer will look like below for 3 dwords for auto * increment register: * +--------------------------------------------------------+ * | size = 3 | offset &| value1 | value2 | value3 | zero | * | | opcode | | | | | * +--------------------------------------------------------+ * + + + + + + + * 0 4 8 12 16 20 24 * Byte * * As every instruction is 8 byte aligned the index of dsb instruction * will start always from even number while dealing with u32 array. If * we are writing odd no of dwords, Zeros will be added in the end for * padding. */ reg_val = buf[dsb->ins_start_offset + 1] & DSB_REG_VALUE_MASK; if (reg_val != i915_mmio_reg_offset(reg)) { /* Every instruction should be 8 byte aligned. */ dsb->free_pos = ALIGN(dsb->free_pos, 2); dsb->ins_start_offset = dsb->free_pos; /* Update the size. */ buf[dsb->free_pos++] = 1; /* Update the opcode and reg. */ buf[dsb->free_pos++] = (DSB_OPCODE_INDEXED_WRITE << DSB_OPCODE_SHIFT) | i915_mmio_reg_offset(reg); /* Update the value. */ buf[dsb->free_pos++] = val; } else { /* Update the new value. */ buf[dsb->free_pos++] = val; /* Update the size. */ buf[dsb->ins_start_offset]++; } /* if number of data words is odd, then the last dword should be 0.*/ if (dsb->free_pos & 0x1) buf[dsb->free_pos] = 0; } /** * intel_dsb_reg_write() -Write to the DSB context for normal * register. * @crtc_state: intel_crtc_state structure * @reg: register address. * @val: value. * * This function is used for writing register-value pair in command * buffer of DSB. During command buffer overflow, a warning is thrown * and rest all erroneous condition register programming is done * through mmio write. */ void intel_dsb_reg_write(const struct intel_crtc_state *crtc_state, i915_reg_t reg, u32 val) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_dsb *dsb; u32 *buf; dsb = crtc_state->dsb; if (!dsb) { intel_de_write_fw(dev_priv, reg, val); return; } buf = dsb->cmd_buf; if (drm_WARN_ON(&dev_priv->drm, dsb->free_pos >= DSB_BUF_SIZE)) { drm_dbg_kms(&dev_priv->drm, "DSB buffer overflow\n"); return; } dsb->ins_start_offset = dsb->free_pos; buf[dsb->free_pos++] = val; buf[dsb->free_pos++] = (DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) | (DSB_BYTE_EN << DSB_BYTE_EN_SHIFT) | i915_mmio_reg_offset(reg); } /** * intel_dsb_commit() - Trigger workload execution of DSB. * @crtc_state: intel_crtc_state structure * * This function is used to do actual write to hardware using DSB. * On errors, fall back to MMIO. Also this function help to reset the context. */ void intel_dsb_commit(const struct intel_crtc_state *crtc_state) { struct intel_dsb *dsb = crtc_state->dsb; struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); enum pipe pipe = crtc->pipe; u32 tail; if (!(dsb && dsb->free_pos)) return; if (!intel_dsb_enable_engine(dev_priv, pipe, dsb->id)) goto reset; if (is_dsb_busy(dev_priv, pipe, dsb->id)) { drm_err(&dev_priv->drm, "HEAD_PTR write failed - dsb engine is busy.\n"); goto reset; } intel_de_write(dev_priv, DSB_HEAD(pipe, dsb->id), i915_ggtt_offset(dsb->vma)); tail = ALIGN(dsb->free_pos * 4, CACHELINE_BYTES); if (tail > dsb->free_pos * 4) memset(&dsb->cmd_buf[dsb->free_pos], 0, (tail - dsb->free_pos * 4)); if (is_dsb_busy(dev_priv, pipe, dsb->id)) { drm_err(&dev_priv->drm, "TAIL_PTR write failed - dsb engine is busy.\n"); goto reset; } drm_dbg_kms(&dev_priv->drm, "DSB execution started - head 0x%x, tail 0x%x\n", i915_ggtt_offset(dsb->vma), tail); intel_de_write(dev_priv, DSB_TAIL(pipe, dsb->id), i915_ggtt_offset(dsb->vma) + tail); if (wait_for(!is_dsb_busy(dev_priv, pipe, dsb->id), 1)) { drm_err(&dev_priv->drm, "Timed out waiting for DSB workload completion.\n"); goto reset; } reset: dsb->free_pos = 0; dsb->ins_start_offset = 0; intel_dsb_disable_engine(dev_priv, pipe, dsb->id); } /** * intel_dsb_prepare() - Allocate, pin and map the DSB command buffer. * @crtc_state: intel_crtc_state structure to prepare associated dsb instance. * * This function prepare the command buffer which is used to store dsb * instructions with data. */ void intel_dsb_prepare(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *i915 = to_i915(crtc->base.dev); struct intel_dsb *dsb; struct drm_i915_gem_object *obj; struct i915_vma *vma; u32 *buf; intel_wakeref_t wakeref; if (!HAS_DSB(i915)) return; dsb = kmalloc(sizeof(*dsb), GFP_KERNEL); if (!dsb) { drm_err(&i915->drm, "DSB object creation failed\n"); return; } wakeref = intel_runtime_pm_get(&i915->runtime_pm); obj = i915_gem_object_create_internal(i915, DSB_BUF_SIZE); if (IS_ERR(obj)) { kfree(dsb); goto out; } vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 0); if (IS_ERR(vma)) { i915_gem_object_put(obj); kfree(dsb); goto out; } buf = i915_gem_object_pin_map_unlocked(vma->obj, I915_MAP_WC); if (IS_ERR(buf)) { i915_vma_unpin_and_release(&vma, I915_VMA_RELEASE_MAP); kfree(dsb); goto out; } dsb->id = DSB1; dsb->vma = vma; dsb->cmd_buf = buf; dsb->free_pos = 0; dsb->ins_start_offset = 0; crtc_state->dsb = dsb; out: if (!crtc_state->dsb) drm_info(&i915->drm, "DSB queue setup failed, will fallback to MMIO for display HW programming\n"); intel_runtime_pm_put(&i915->runtime_pm, wakeref); } /** * intel_dsb_cleanup() - To cleanup DSB context. * @crtc_state: intel_crtc_state structure to cleanup associated dsb instance. * * This function cleanup the DSB context by unpinning and releasing * the VMA object associated with it. */ void intel_dsb_cleanup(struct intel_crtc_state *crtc_state) { if (!crtc_state->dsb) return; i915_vma_unpin_and_release(&crtc_state->dsb->vma, I915_VMA_RELEASE_MAP); kfree(crtc_state->dsb); crtc_state->dsb = NULL; }