// SPDX-License-Identifier: GPL-2.0-only /* * Samsung MIPI DSIM bridge driver. * * Copyright (C) 2021 Amarula Solutions(India) * Copyright (c) 2014 Samsung Electronics Co., Ltd * Author: Jagan Teki <jagan@amarulasolutions.com> * * Based on exynos_drm_dsi from * Tomasz Figa <t.figa@samsung.com> */ #include <asm/unaligned.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/irq.h> #include <linux/media-bus-format.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <video/mipi_display.h> #include <drm/bridge/samsung-dsim.h> #include <drm/drm_panel.h> #include <drm/drm_print.h> /* returns true iff both arguments logically differs */ #define NEQV(a, b) (!(a) ^ !(b)) /* DSIM_STATUS */ #define DSIM_STOP_STATE_DAT(x) (((x) & 0xf) << 0) #define DSIM_STOP_STATE_CLK BIT(8) #define DSIM_TX_READY_HS_CLK BIT(10) #define DSIM_PLL_STABLE BIT(31) /* DSIM_SWRST */ #define DSIM_FUNCRST BIT(16) #define DSIM_SWRST BIT(0) /* DSIM_TIMEOUT */ #define DSIM_LPDR_TIMEOUT(x) ((x) << 0) #define DSIM_BTA_TIMEOUT(x) ((x) << 16) /* DSIM_CLKCTRL */ #define DSIM_ESC_PRESCALER(x) (((x) & 0xffff) << 0) #define DSIM_ESC_PRESCALER_MASK (0xffff << 0) #define DSIM_LANE_ESC_CLK_EN_CLK BIT(19) #define DSIM_LANE_ESC_CLK_EN_DATA(x) (((x) & 0xf) << 20) #define DSIM_LANE_ESC_CLK_EN_DATA_MASK (0xf << 20) #define DSIM_BYTE_CLKEN BIT(24) #define DSIM_BYTE_CLK_SRC(x) (((x) & 0x3) << 25) #define DSIM_BYTE_CLK_SRC_MASK (0x3 << 25) #define DSIM_PLL_BYPASS BIT(27) #define DSIM_ESC_CLKEN BIT(28) #define DSIM_TX_REQUEST_HSCLK BIT(31) /* DSIM_CONFIG */ #define DSIM_LANE_EN_CLK BIT(0) #define DSIM_LANE_EN(x) (((x) & 0xf) << 1) #define DSIM_NUM_OF_DATA_LANE(x) (((x) & 0x3) << 5) #define DSIM_SUB_PIX_FORMAT(x) (((x) & 0x7) << 8) #define DSIM_MAIN_PIX_FORMAT_MASK (0x7 << 12) #define DSIM_MAIN_PIX_FORMAT_RGB888 (0x7 << 12) #define DSIM_MAIN_PIX_FORMAT_RGB666 (0x6 << 12) #define DSIM_MAIN_PIX_FORMAT_RGB666_P (0x5 << 12) #define DSIM_MAIN_PIX_FORMAT_RGB565 (0x4 << 12) #define DSIM_SUB_VC (((x) & 0x3) << 16) #define DSIM_MAIN_VC (((x) & 0x3) << 18) #define DSIM_HSA_DISABLE_MODE BIT(20) #define DSIM_HBP_DISABLE_MODE BIT(21) #define DSIM_HFP_DISABLE_MODE BIT(22) /* * The i.MX 8M Mini Applications Processor Reference Manual, * Rev. 3, 11/2020 Page 4091 * The i.MX 8M Nano Applications Processor Reference Manual, * Rev. 2, 07/2022 Page 3058 * The i.MX 8M Plus Applications Processor Reference Manual, * Rev. 1, 06/2021 Page 5436 * all claims this bit is 'HseDisableMode' with the definition * 0 = Disables transfer * 1 = Enables transfer * * This clearly states that HSE is not a disabled bit. * * The naming convention follows as per the manual and the * driver logic is based on the MIPI_DSI_MODE_VIDEO_HSE flag. */ #define DSIM_HSE_DISABLE_MODE BIT(23) #define DSIM_AUTO_MODE BIT(24) #define DSIM_VIDEO_MODE BIT(25) #define DSIM_BURST_MODE BIT(26) #define DSIM_SYNC_INFORM BIT(27) #define DSIM_EOT_DISABLE BIT(28) #define DSIM_MFLUSH_VS BIT(29) /* This flag is valid only for exynos3250/3472/5260/5430 */ #define DSIM_CLKLANE_STOP BIT(30) /* DSIM_ESCMODE */ #define DSIM_TX_TRIGGER_RST BIT(4) #define DSIM_TX_LPDT_LP BIT(6) #define DSIM_CMD_LPDT_LP BIT(7) #define DSIM_FORCE_BTA BIT(16) #define DSIM_FORCE_STOP_STATE BIT(20) #define DSIM_STOP_STATE_CNT(x) (((x) & 0x7ff) << 21) #define DSIM_STOP_STATE_CNT_MASK (0x7ff << 21) /* DSIM_MDRESOL */ #define DSIM_MAIN_STAND_BY BIT(31) #define DSIM_MAIN_VRESOL(x, num_bits) (((x) & ((1 << (num_bits)) - 1)) << 16) #define DSIM_MAIN_HRESOL(x, num_bits) (((x) & ((1 << (num_bits)) - 1)) << 0) /* DSIM_MVPORCH */ #define DSIM_CMD_ALLOW(x) ((x) << 28) #define DSIM_STABLE_VFP(x) ((x) << 16) #define DSIM_MAIN_VBP(x) ((x) << 0) #define DSIM_CMD_ALLOW_MASK (0xf << 28) #define DSIM_STABLE_VFP_MASK (0x7ff << 16) #define DSIM_MAIN_VBP_MASK (0x7ff << 0) /* DSIM_MHPORCH */ #define DSIM_MAIN_HFP(x) ((x) << 16) #define DSIM_MAIN_HBP(x) ((x) << 0) #define DSIM_MAIN_HFP_MASK ((0xffff) << 16) #define DSIM_MAIN_HBP_MASK ((0xffff) << 0) /* DSIM_MSYNC */ #define DSIM_MAIN_VSA(x) ((x) << 22) #define DSIM_MAIN_HSA(x) ((x) << 0) #define DSIM_MAIN_VSA_MASK ((0x3ff) << 22) #define DSIM_MAIN_HSA_MASK ((0xffff) << 0) /* DSIM_SDRESOL */ #define DSIM_SUB_STANDY(x) ((x) << 31) #define DSIM_SUB_VRESOL(x) ((x) << 16) #define DSIM_SUB_HRESOL(x) ((x) << 0) #define DSIM_SUB_STANDY_MASK ((0x1) << 31) #define DSIM_SUB_VRESOL_MASK ((0x7ff) << 16) #define DSIM_SUB_HRESOL_MASK ((0x7ff) << 0) /* DSIM_INTSRC */ #define DSIM_INT_PLL_STABLE BIT(31) #define DSIM_INT_SW_RST_RELEASE BIT(30) #define DSIM_INT_SFR_FIFO_EMPTY BIT(29) #define DSIM_INT_SFR_HDR_FIFO_EMPTY BIT(28) #define DSIM_INT_BTA BIT(25) #define DSIM_INT_FRAME_DONE BIT(24) #define DSIM_INT_RX_TIMEOUT BIT(21) #define DSIM_INT_BTA_TIMEOUT BIT(20) #define DSIM_INT_RX_DONE BIT(18) #define DSIM_INT_RX_TE BIT(17) #define DSIM_INT_RX_ACK BIT(16) #define DSIM_INT_RX_ECC_ERR BIT(15) #define DSIM_INT_RX_CRC_ERR BIT(14) /* DSIM_FIFOCTRL */ #define DSIM_RX_DATA_FULL BIT(25) #define DSIM_RX_DATA_EMPTY BIT(24) #define DSIM_SFR_HEADER_FULL BIT(23) #define DSIM_SFR_HEADER_EMPTY BIT(22) #define DSIM_SFR_PAYLOAD_FULL BIT(21) #define DSIM_SFR_PAYLOAD_EMPTY BIT(20) #define DSIM_I80_HEADER_FULL BIT(19) #define DSIM_I80_HEADER_EMPTY BIT(18) #define DSIM_I80_PAYLOAD_FULL BIT(17) #define DSIM_I80_PAYLOAD_EMPTY BIT(16) #define DSIM_SD_HEADER_FULL BIT(15) #define DSIM_SD_HEADER_EMPTY BIT(14) #define DSIM_SD_PAYLOAD_FULL BIT(13) #define DSIM_SD_PAYLOAD_EMPTY BIT(12) #define DSIM_MD_HEADER_FULL BIT(11) #define DSIM_MD_HEADER_EMPTY BIT(10) #define DSIM_MD_PAYLOAD_FULL BIT(9) #define DSIM_MD_PAYLOAD_EMPTY BIT(8) #define DSIM_RX_FIFO BIT(4) #define DSIM_SFR_FIFO BIT(3) #define DSIM_I80_FIFO BIT(2) #define DSIM_SD_FIFO BIT(1) #define DSIM_MD_FIFO BIT(0) /* DSIM_PHYACCHR */ #define DSIM_AFC_EN BIT(14) #define DSIM_AFC_CTL(x) (((x) & 0x7) << 5) /* DSIM_PLLCTRL */ #define DSIM_PLL_DPDNSWAP_CLK (1 << 25) #define DSIM_PLL_DPDNSWAP_DAT (1 << 24) #define DSIM_FREQ_BAND(x) ((x) << 24) #define DSIM_PLL_EN BIT(23) #define DSIM_PLL_P(x, offset) ((x) << (offset)) #define DSIM_PLL_M(x) ((x) << 4) #define DSIM_PLL_S(x) ((x) << 1) /* DSIM_PHYCTRL */ #define DSIM_PHYCTRL_ULPS_EXIT(x) (((x) & 0x1ff) << 0) #define DSIM_PHYCTRL_B_DPHYCTL_VREG_LP BIT(30) #define DSIM_PHYCTRL_B_DPHYCTL_SLEW_UP BIT(14) /* DSIM_PHYTIMING */ #define DSIM_PHYTIMING_LPX(x) ((x) << 8) #define DSIM_PHYTIMING_HS_EXIT(x) ((x) << 0) /* DSIM_PHYTIMING1 */ #define DSIM_PHYTIMING1_CLK_PREPARE(x) ((x) << 24) #define DSIM_PHYTIMING1_CLK_ZERO(x) ((x) << 16) #define DSIM_PHYTIMING1_CLK_POST(x) ((x) << 8) #define DSIM_PHYTIMING1_CLK_TRAIL(x) ((x) << 0) /* DSIM_PHYTIMING2 */ #define DSIM_PHYTIMING2_HS_PREPARE(x) ((x) << 16) #define DSIM_PHYTIMING2_HS_ZERO(x) ((x) << 8) #define DSIM_PHYTIMING2_HS_TRAIL(x) ((x) << 0) #define DSI_MAX_BUS_WIDTH 4 #define DSI_NUM_VIRTUAL_CHANNELS 4 #define DSI_TX_FIFO_SIZE 2048 #define DSI_RX_FIFO_SIZE 256 #define DSI_XFER_TIMEOUT_MS 100 #define DSI_RX_FIFO_EMPTY 0x30800002 #define OLD_SCLK_MIPI_CLK_NAME "pll_clk" #define PS_TO_CYCLE(ps, hz) DIV64_U64_ROUND_CLOSEST(((ps) * (hz)), 1000000000000ULL) static const char *const clk_names[5] = { "bus_clk", "sclk_mipi", "phyclk_mipidphy0_bitclkdiv8", "phyclk_mipidphy0_rxclkesc0", "sclk_rgb_vclk_to_dsim0" }; enum samsung_dsim_transfer_type { EXYNOS_DSI_TX, EXYNOS_DSI_RX, }; enum reg_idx { DSIM_STATUS_REG, /* Status register */ DSIM_SWRST_REG, /* Software reset register */ DSIM_CLKCTRL_REG, /* Clock control register */ DSIM_TIMEOUT_REG, /* Time out register */ DSIM_CONFIG_REG, /* Configuration register */ DSIM_ESCMODE_REG, /* Escape mode register */ DSIM_MDRESOL_REG, DSIM_MVPORCH_REG, /* Main display Vporch register */ DSIM_MHPORCH_REG, /* Main display Hporch register */ DSIM_MSYNC_REG, /* Main display sync area register */ DSIM_INTSRC_REG, /* Interrupt source register */ DSIM_INTMSK_REG, /* Interrupt mask register */ DSIM_PKTHDR_REG, /* Packet Header FIFO register */ DSIM_PAYLOAD_REG, /* Payload FIFO register */ DSIM_RXFIFO_REG, /* Read FIFO register */ DSIM_FIFOCTRL_REG, /* FIFO status and control register */ DSIM_PLLCTRL_REG, /* PLL control register */ DSIM_PHYCTRL_REG, DSIM_PHYTIMING_REG, DSIM_PHYTIMING1_REG, DSIM_PHYTIMING2_REG, NUM_REGS }; static const unsigned int exynos_reg_ofs[] = { [DSIM_STATUS_REG] = 0x00, [DSIM_SWRST_REG] = 0x04, [DSIM_CLKCTRL_REG] = 0x08, [DSIM_TIMEOUT_REG] = 0x0c, [DSIM_CONFIG_REG] = 0x10, [DSIM_ESCMODE_REG] = 0x14, [DSIM_MDRESOL_REG] = 0x18, [DSIM_MVPORCH_REG] = 0x1c, [DSIM_MHPORCH_REG] = 0x20, [DSIM_MSYNC_REG] = 0x24, [DSIM_INTSRC_REG] = 0x2c, [DSIM_INTMSK_REG] = 0x30, [DSIM_PKTHDR_REG] = 0x34, [DSIM_PAYLOAD_REG] = 0x38, [DSIM_RXFIFO_REG] = 0x3c, [DSIM_FIFOCTRL_REG] = 0x44, [DSIM_PLLCTRL_REG] = 0x4c, [DSIM_PHYCTRL_REG] = 0x5c, [DSIM_PHYTIMING_REG] = 0x64, [DSIM_PHYTIMING1_REG] = 0x68, [DSIM_PHYTIMING2_REG] = 0x6c, }; static const unsigned int exynos5433_reg_ofs[] = { [DSIM_STATUS_REG] = 0x04, [DSIM_SWRST_REG] = 0x0C, [DSIM_CLKCTRL_REG] = 0x10, [DSIM_TIMEOUT_REG] = 0x14, [DSIM_CONFIG_REG] = 0x18, [DSIM_ESCMODE_REG] = 0x1C, [DSIM_MDRESOL_REG] = 0x20, [DSIM_MVPORCH_REG] = 0x24, [DSIM_MHPORCH_REG] = 0x28, [DSIM_MSYNC_REG] = 0x2C, [DSIM_INTSRC_REG] = 0x34, [DSIM_INTMSK_REG] = 0x38, [DSIM_PKTHDR_REG] = 0x3C, [DSIM_PAYLOAD_REG] = 0x40, [DSIM_RXFIFO_REG] = 0x44, [DSIM_FIFOCTRL_REG] = 0x4C, [DSIM_PLLCTRL_REG] = 0x94, [DSIM_PHYCTRL_REG] = 0xA4, [DSIM_PHYTIMING_REG] = 0xB4, [DSIM_PHYTIMING1_REG] = 0xB8, [DSIM_PHYTIMING2_REG] = 0xBC, }; enum reg_value_idx { RESET_TYPE, PLL_TIMER, STOP_STATE_CNT, PHYCTRL_ULPS_EXIT, PHYCTRL_VREG_LP, PHYCTRL_SLEW_UP, PHYTIMING_LPX, PHYTIMING_HS_EXIT, PHYTIMING_CLK_PREPARE, PHYTIMING_CLK_ZERO, PHYTIMING_CLK_POST, PHYTIMING_CLK_TRAIL, PHYTIMING_HS_PREPARE, PHYTIMING_HS_ZERO, PHYTIMING_HS_TRAIL }; static const unsigned int reg_values[] = { [RESET_TYPE] = DSIM_SWRST, [PLL_TIMER] = 500, [STOP_STATE_CNT] = 0xf, [PHYCTRL_ULPS_EXIT] = DSIM_PHYCTRL_ULPS_EXIT(0x0af), [PHYCTRL_VREG_LP] = 0, [PHYCTRL_SLEW_UP] = 0, [PHYTIMING_LPX] = DSIM_PHYTIMING_LPX(0x06), [PHYTIMING_HS_EXIT] = DSIM_PHYTIMING_HS_EXIT(0x0b), [PHYTIMING_CLK_PREPARE] = DSIM_PHYTIMING1_CLK_PREPARE(0x07), [PHYTIMING_CLK_ZERO] = DSIM_PHYTIMING1_CLK_ZERO(0x27), [PHYTIMING_CLK_POST] = DSIM_PHYTIMING1_CLK_POST(0x0d), [PHYTIMING_CLK_TRAIL] = DSIM_PHYTIMING1_CLK_TRAIL(0x08), [PHYTIMING_HS_PREPARE] = DSIM_PHYTIMING2_HS_PREPARE(0x09), [PHYTIMING_HS_ZERO] = DSIM_PHYTIMING2_HS_ZERO(0x0d), [PHYTIMING_HS_TRAIL] = DSIM_PHYTIMING2_HS_TRAIL(0x0b), }; static const unsigned int exynos5422_reg_values[] = { [RESET_TYPE] = DSIM_SWRST, [PLL_TIMER] = 500, [STOP_STATE_CNT] = 0xf, [PHYCTRL_ULPS_EXIT] = DSIM_PHYCTRL_ULPS_EXIT(0xaf), [PHYCTRL_VREG_LP] = 0, [PHYCTRL_SLEW_UP] = 0, [PHYTIMING_LPX] = DSIM_PHYTIMING_LPX(0x08), [PHYTIMING_HS_EXIT] = DSIM_PHYTIMING_HS_EXIT(0x0d), [PHYTIMING_CLK_PREPARE] = DSIM_PHYTIMING1_CLK_PREPARE(0x09), [PHYTIMING_CLK_ZERO] = DSIM_PHYTIMING1_CLK_ZERO(0x30), [PHYTIMING_CLK_POST] = DSIM_PHYTIMING1_CLK_POST(0x0e), [PHYTIMING_CLK_TRAIL] = DSIM_PHYTIMING1_CLK_TRAIL(0x0a), [PHYTIMING_HS_PREPARE] = DSIM_PHYTIMING2_HS_PREPARE(0x0c), [PHYTIMING_HS_ZERO] = DSIM_PHYTIMING2_HS_ZERO(0x11), [PHYTIMING_HS_TRAIL] = DSIM_PHYTIMING2_HS_TRAIL(0x0d), }; static const unsigned int exynos5433_reg_values[] = { [RESET_TYPE] = DSIM_FUNCRST, [PLL_TIMER] = 22200, [STOP_STATE_CNT] = 0xa, [PHYCTRL_ULPS_EXIT] = DSIM_PHYCTRL_ULPS_EXIT(0x190), [PHYCTRL_VREG_LP] = DSIM_PHYCTRL_B_DPHYCTL_VREG_LP, [PHYCTRL_SLEW_UP] = DSIM_PHYCTRL_B_DPHYCTL_SLEW_UP, [PHYTIMING_LPX] = DSIM_PHYTIMING_LPX(0x07), [PHYTIMING_HS_EXIT] = DSIM_PHYTIMING_HS_EXIT(0x0c), [PHYTIMING_CLK_PREPARE] = DSIM_PHYTIMING1_CLK_PREPARE(0x09), [PHYTIMING_CLK_ZERO] = DSIM_PHYTIMING1_CLK_ZERO(0x2d), [PHYTIMING_CLK_POST] = DSIM_PHYTIMING1_CLK_POST(0x0e), [PHYTIMING_CLK_TRAIL] = DSIM_PHYTIMING1_CLK_TRAIL(0x09), [PHYTIMING_HS_PREPARE] = DSIM_PHYTIMING2_HS_PREPARE(0x0b), [PHYTIMING_HS_ZERO] = DSIM_PHYTIMING2_HS_ZERO(0x10), [PHYTIMING_HS_TRAIL] = DSIM_PHYTIMING2_HS_TRAIL(0x0c), }; static const unsigned int imx8mm_dsim_reg_values[] = { [RESET_TYPE] = DSIM_SWRST, [PLL_TIMER] = 500, [STOP_STATE_CNT] = 0xf, [PHYCTRL_ULPS_EXIT] = DSIM_PHYCTRL_ULPS_EXIT(0xaf), [PHYCTRL_VREG_LP] = 0, [PHYCTRL_SLEW_UP] = 0, [PHYTIMING_LPX] = DSIM_PHYTIMING_LPX(0x06), [PHYTIMING_HS_EXIT] = DSIM_PHYTIMING_HS_EXIT(0x0b), [PHYTIMING_CLK_PREPARE] = DSIM_PHYTIMING1_CLK_PREPARE(0x07), [PHYTIMING_CLK_ZERO] = DSIM_PHYTIMING1_CLK_ZERO(0x26), [PHYTIMING_CLK_POST] = DSIM_PHYTIMING1_CLK_POST(0x0d), [PHYTIMING_CLK_TRAIL] = DSIM_PHYTIMING1_CLK_TRAIL(0x08), [PHYTIMING_HS_PREPARE] = DSIM_PHYTIMING2_HS_PREPARE(0x08), [PHYTIMING_HS_ZERO] = DSIM_PHYTIMING2_HS_ZERO(0x0d), [PHYTIMING_HS_TRAIL] = DSIM_PHYTIMING2_HS_TRAIL(0x0b), }; static const struct samsung_dsim_driver_data exynos3_dsi_driver_data = { .reg_ofs = exynos_reg_ofs, .plltmr_reg = 0x50, .has_freqband = 1, .has_clklane_stop = 1, .num_clks = 2, .max_freq = 1000, .wait_for_reset = 1, .num_bits_resol = 11, .pll_p_offset = 13, .reg_values = reg_values, .m_min = 41, .m_max = 125, .min_freq = 500, .has_broken_fifoctrl_emptyhdr = 1, }; static const struct samsung_dsim_driver_data exynos4_dsi_driver_data = { .reg_ofs = exynos_reg_ofs, .plltmr_reg = 0x50, .has_freqband = 1, .has_clklane_stop = 1, .num_clks = 2, .max_freq = 1000, .wait_for_reset = 1, .num_bits_resol = 11, .pll_p_offset = 13, .reg_values = reg_values, .m_min = 41, .m_max = 125, .min_freq = 500, .has_broken_fifoctrl_emptyhdr = 1, }; static const struct samsung_dsim_driver_data exynos5_dsi_driver_data = { .reg_ofs = exynos_reg_ofs, .plltmr_reg = 0x58, .num_clks = 2, .max_freq = 1000, .wait_for_reset = 1, .num_bits_resol = 11, .pll_p_offset = 13, .reg_values = reg_values, .m_min = 41, .m_max = 125, .min_freq = 500, }; static const struct samsung_dsim_driver_data exynos5433_dsi_driver_data = { .reg_ofs = exynos5433_reg_ofs, .plltmr_reg = 0xa0, .has_clklane_stop = 1, .num_clks = 5, .max_freq = 1500, .wait_for_reset = 0, .num_bits_resol = 12, .pll_p_offset = 13, .reg_values = exynos5433_reg_values, .m_min = 41, .m_max = 125, .min_freq = 500, }; static const struct samsung_dsim_driver_data exynos5422_dsi_driver_data = { .reg_ofs = exynos5433_reg_ofs, .plltmr_reg = 0xa0, .has_clklane_stop = 1, .num_clks = 2, .max_freq = 1500, .wait_for_reset = 1, .num_bits_resol = 12, .pll_p_offset = 13, .reg_values = exynos5422_reg_values, .m_min = 41, .m_max = 125, .min_freq = 500, }; static const struct samsung_dsim_driver_data imx8mm_dsi_driver_data = { .reg_ofs = exynos5433_reg_ofs, .plltmr_reg = 0xa0, .has_clklane_stop = 1, .num_clks = 2, .max_freq = 2100, .wait_for_reset = 0, .num_bits_resol = 12, /* * Unlike Exynos, PLL_P(PMS_P) offset 14 is used in i.MX8M Mini/Nano/Plus * downstream driver - drivers/gpu/drm/bridge/sec-dsim.c */ .pll_p_offset = 14, .reg_values = imx8mm_dsim_reg_values, .m_min = 64, .m_max = 1023, .min_freq = 1050, }; static const struct samsung_dsim_driver_data * samsung_dsim_types[DSIM_TYPE_COUNT] = { [DSIM_TYPE_EXYNOS3250] = &exynos3_dsi_driver_data, [DSIM_TYPE_EXYNOS4210] = &exynos4_dsi_driver_data, [DSIM_TYPE_EXYNOS5410] = &exynos5_dsi_driver_data, [DSIM_TYPE_EXYNOS5422] = &exynos5422_dsi_driver_data, [DSIM_TYPE_EXYNOS5433] = &exynos5433_dsi_driver_data, [DSIM_TYPE_IMX8MM] = &imx8mm_dsi_driver_data, [DSIM_TYPE_IMX8MP] = &imx8mm_dsi_driver_data, }; static inline struct samsung_dsim *host_to_dsi(struct mipi_dsi_host *h) { return container_of(h, struct samsung_dsim, dsi_host); } static inline struct samsung_dsim *bridge_to_dsi(struct drm_bridge *b) { return container_of(b, struct samsung_dsim, bridge); } static inline void samsung_dsim_write(struct samsung_dsim *dsi, enum reg_idx idx, u32 val) { writel(val, dsi->reg_base + dsi->driver_data->reg_ofs[idx]); } static inline u32 samsung_dsim_read(struct samsung_dsim *dsi, enum reg_idx idx) { return readl(dsi->reg_base + dsi->driver_data->reg_ofs[idx]); } static void samsung_dsim_wait_for_reset(struct samsung_dsim *dsi) { if (wait_for_completion_timeout(&dsi->completed, msecs_to_jiffies(300))) return; dev_err(dsi->dev, "timeout waiting for reset\n"); } static void samsung_dsim_reset(struct samsung_dsim *dsi) { u32 reset_val = dsi->driver_data->reg_values[RESET_TYPE]; reinit_completion(&dsi->completed); samsung_dsim_write(dsi, DSIM_SWRST_REG, reset_val); } #ifndef MHZ #define MHZ (1000 * 1000) #endif static unsigned long samsung_dsim_pll_find_pms(struct samsung_dsim *dsi, unsigned long fin, unsigned long fout, u8 *p, u16 *m, u8 *s) { const struct samsung_dsim_driver_data *driver_data = dsi->driver_data; unsigned long best_freq = 0; u32 min_delta = 0xffffffff; u8 p_min, p_max; u8 _p, best_p; u16 _m, best_m; u8 _s, best_s; p_min = DIV_ROUND_UP(fin, (12 * MHZ)); p_max = fin / (6 * MHZ); for (_p = p_min; _p <= p_max; ++_p) { for (_s = 0; _s <= 5; ++_s) { u64 tmp; u32 delta; tmp = (u64)fout * (_p << _s); do_div(tmp, fin); _m = tmp; if (_m < driver_data->m_min || _m > driver_data->m_max) continue; tmp = (u64)_m * fin; do_div(tmp, _p); if (tmp < driver_data->min_freq * MHZ || tmp > driver_data->max_freq * MHZ) continue; tmp = (u64)_m * fin; do_div(tmp, _p << _s); delta = abs(fout - tmp); if (delta < min_delta) { best_p = _p; best_m = _m; best_s = _s; min_delta = delta; best_freq = tmp; } } } if (best_freq) { *p = best_p; *m = best_m; *s = best_s; } return best_freq; } static unsigned long samsung_dsim_set_pll(struct samsung_dsim *dsi, unsigned long freq) { const struct samsung_dsim_driver_data *driver_data = dsi->driver_data; unsigned long fin, fout; int timeout; u8 p, s; u16 m; u32 reg; fin = dsi->pll_clk_rate; fout = samsung_dsim_pll_find_pms(dsi, fin, freq, &p, &m, &s); if (!fout) { dev_err(dsi->dev, "failed to find PLL PMS for requested frequency\n"); return 0; } dev_dbg(dsi->dev, "PLL freq %lu, (p %d, m %d, s %d)\n", fout, p, m, s); writel(driver_data->reg_values[PLL_TIMER], dsi->reg_base + driver_data->plltmr_reg); reg = DSIM_PLL_EN | DSIM_PLL_P(p, driver_data->pll_p_offset) | DSIM_PLL_M(m) | DSIM_PLL_S(s); if (driver_data->has_freqband) { static const unsigned long freq_bands[] = { 100 * MHZ, 120 * MHZ, 160 * MHZ, 200 * MHZ, 270 * MHZ, 320 * MHZ, 390 * MHZ, 450 * MHZ, 510 * MHZ, 560 * MHZ, 640 * MHZ, 690 * MHZ, 770 * MHZ, 870 * MHZ, 950 * MHZ, }; int band; for (band = 0; band < ARRAY_SIZE(freq_bands); ++band) if (fout < freq_bands[band]) break; dev_dbg(dsi->dev, "band %d\n", band); reg |= DSIM_FREQ_BAND(band); } if (dsi->swap_dn_dp_clk) reg |= DSIM_PLL_DPDNSWAP_CLK; if (dsi->swap_dn_dp_data) reg |= DSIM_PLL_DPDNSWAP_DAT; samsung_dsim_write(dsi, DSIM_PLLCTRL_REG, reg); timeout = 1000; do { if (timeout-- == 0) { dev_err(dsi->dev, "PLL failed to stabilize\n"); return 0; } reg = samsung_dsim_read(dsi, DSIM_STATUS_REG); } while ((reg & DSIM_PLL_STABLE) == 0); dsi->hs_clock = fout; return fout; } static int samsung_dsim_enable_clock(struct samsung_dsim *dsi) { unsigned long hs_clk, byte_clk, esc_clk, pix_clk; unsigned long esc_div; u32 reg; struct drm_display_mode *m = &dsi->mode; int bpp = mipi_dsi_pixel_format_to_bpp(dsi->format); /* m->clock is in KHz */ pix_clk = m->clock * 1000; /* Use burst_clk_rate if available, otherwise use the pix_clk */ if (dsi->burst_clk_rate) hs_clk = samsung_dsim_set_pll(dsi, dsi->burst_clk_rate); else hs_clk = samsung_dsim_set_pll(dsi, DIV_ROUND_UP(pix_clk * bpp, dsi->lanes)); if (!hs_clk) { dev_err(dsi->dev, "failed to configure DSI PLL\n"); return -EFAULT; } byte_clk = hs_clk / 8; esc_div = DIV_ROUND_UP(byte_clk, dsi->esc_clk_rate); esc_clk = byte_clk / esc_div; if (esc_clk > 20 * MHZ) { ++esc_div; esc_clk = byte_clk / esc_div; } dev_dbg(dsi->dev, "hs_clk = %lu, byte_clk = %lu, esc_clk = %lu\n", hs_clk, byte_clk, esc_clk); reg = samsung_dsim_read(dsi, DSIM_CLKCTRL_REG); reg &= ~(DSIM_ESC_PRESCALER_MASK | DSIM_LANE_ESC_CLK_EN_CLK | DSIM_LANE_ESC_CLK_EN_DATA_MASK | DSIM_PLL_BYPASS | DSIM_BYTE_CLK_SRC_MASK); reg |= DSIM_ESC_CLKEN | DSIM_BYTE_CLKEN | DSIM_ESC_PRESCALER(esc_div) | DSIM_LANE_ESC_CLK_EN_CLK | DSIM_LANE_ESC_CLK_EN_DATA(BIT(dsi->lanes) - 1) | DSIM_BYTE_CLK_SRC(0) | DSIM_TX_REQUEST_HSCLK; samsung_dsim_write(dsi, DSIM_CLKCTRL_REG, reg); return 0; } static void samsung_dsim_set_phy_ctrl(struct samsung_dsim *dsi) { const struct samsung_dsim_driver_data *driver_data = dsi->driver_data; const unsigned int *reg_values = driver_data->reg_values; u32 reg; struct phy_configure_opts_mipi_dphy cfg; int clk_prepare, lpx, clk_zero, clk_post, clk_trail; int hs_exit, hs_prepare, hs_zero, hs_trail; unsigned long long byte_clock = dsi->hs_clock / 8; if (driver_data->has_freqband) return; phy_mipi_dphy_get_default_config_for_hsclk(dsi->hs_clock, dsi->lanes, &cfg); /* * TODO: * The tech Applications Processor manuals for i.MX8M Mini, Nano, * and Plus don't state what the definition of the PHYTIMING * bits are beyond their address and bit position. * After reviewing NXP's downstream code, it appears * that the various PHYTIMING registers take the number * of cycles and use various dividers on them. This * calculation does not result in an exact match to the * downstream code, but it is very close to the values * generated by their lookup table, and it appears * to sync at a variety of resolutions. If someone * can get a more accurate mathematical equation needed * for these registers, this should be updated. */ lpx = PS_TO_CYCLE(cfg.lpx, byte_clock); hs_exit = PS_TO_CYCLE(cfg.hs_exit, byte_clock); clk_prepare = PS_TO_CYCLE(cfg.clk_prepare, byte_clock); clk_zero = PS_TO_CYCLE(cfg.clk_zero, byte_clock); clk_post = PS_TO_CYCLE(cfg.clk_post, byte_clock); clk_trail = PS_TO_CYCLE(cfg.clk_trail, byte_clock); hs_prepare = PS_TO_CYCLE(cfg.hs_prepare, byte_clock); hs_zero = PS_TO_CYCLE(cfg.hs_zero, byte_clock); hs_trail = PS_TO_CYCLE(cfg.hs_trail, byte_clock); /* B D-PHY: D-PHY Master & Slave Analog Block control */ reg = reg_values[PHYCTRL_ULPS_EXIT] | reg_values[PHYCTRL_VREG_LP] | reg_values[PHYCTRL_SLEW_UP]; samsung_dsim_write(dsi, DSIM_PHYCTRL_REG, reg); /* * T LPX: Transmitted length of any Low-Power state period * T HS-EXIT: Time that the transmitter drives LP-11 following a HS * burst */ reg = DSIM_PHYTIMING_LPX(lpx) | DSIM_PHYTIMING_HS_EXIT(hs_exit); samsung_dsim_write(dsi, DSIM_PHYTIMING_REG, reg); /* * T CLK-PREPARE: Time that the transmitter drives the Clock Lane LP-00 * Line state immediately before the HS-0 Line state starting the * HS transmission * T CLK-ZERO: Time that the transmitter drives the HS-0 state prior to * transmitting the Clock. * T CLK_POST: Time that the transmitter continues to send HS clock * after the last associated Data Lane has transitioned to LP Mode * Interval is defined as the period from the end of T HS-TRAIL to * the beginning of T CLK-TRAIL * T CLK-TRAIL: Time that the transmitter drives the HS-0 state after * the last payload clock bit of a HS transmission burst */ reg = DSIM_PHYTIMING1_CLK_PREPARE(clk_prepare) | DSIM_PHYTIMING1_CLK_ZERO(clk_zero) | DSIM_PHYTIMING1_CLK_POST(clk_post) | DSIM_PHYTIMING1_CLK_TRAIL(clk_trail); samsung_dsim_write(dsi, DSIM_PHYTIMING1_REG, reg); /* * T HS-PREPARE: Time that the transmitter drives the Data Lane LP-00 * Line state immediately before the HS-0 Line state starting the * HS transmission * T HS-ZERO: Time that the transmitter drives the HS-0 state prior to * transmitting the Sync sequence. * T HS-TRAIL: Time that the transmitter drives the flipped differential * state after last payload data bit of a HS transmission burst */ reg = DSIM_PHYTIMING2_HS_PREPARE(hs_prepare) | DSIM_PHYTIMING2_HS_ZERO(hs_zero) | DSIM_PHYTIMING2_HS_TRAIL(hs_trail); samsung_dsim_write(dsi, DSIM_PHYTIMING2_REG, reg); } static void samsung_dsim_disable_clock(struct samsung_dsim *dsi) { u32 reg; reg = samsung_dsim_read(dsi, DSIM_CLKCTRL_REG); reg &= ~(DSIM_LANE_ESC_CLK_EN_CLK | DSIM_LANE_ESC_CLK_EN_DATA_MASK | DSIM_ESC_CLKEN | DSIM_BYTE_CLKEN); samsung_dsim_write(dsi, DSIM_CLKCTRL_REG, reg); reg = samsung_dsim_read(dsi, DSIM_PLLCTRL_REG); reg &= ~DSIM_PLL_EN; samsung_dsim_write(dsi, DSIM_PLLCTRL_REG, reg); } static void samsung_dsim_enable_lane(struct samsung_dsim *dsi, u32 lane) { u32 reg = samsung_dsim_read(dsi, DSIM_CONFIG_REG); reg |= (DSIM_NUM_OF_DATA_LANE(dsi->lanes - 1) | DSIM_LANE_EN_CLK | DSIM_LANE_EN(lane)); samsung_dsim_write(dsi, DSIM_CONFIG_REG, reg); } static int samsung_dsim_init_link(struct samsung_dsim *dsi) { const struct samsung_dsim_driver_data *driver_data = dsi->driver_data; int timeout; u32 reg; u32 lanes_mask; /* Initialize FIFO pointers */ reg = samsung_dsim_read(dsi, DSIM_FIFOCTRL_REG); reg &= ~0x1f; samsung_dsim_write(dsi, DSIM_FIFOCTRL_REG, reg); usleep_range(9000, 11000); reg |= 0x1f; samsung_dsim_write(dsi, DSIM_FIFOCTRL_REG, reg); usleep_range(9000, 11000); /* DSI configuration */ reg = 0; /* * The first bit of mode_flags specifies display configuration. * If this bit is set[= MIPI_DSI_MODE_VIDEO], dsi will support video * mode, otherwise it will support command mode. */ if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) { reg |= DSIM_VIDEO_MODE; /* * The user manual describes that following bits are ignored in * command mode. */ if (!(dsi->mode_flags & MIPI_DSI_MODE_VSYNC_FLUSH)) reg |= DSIM_MFLUSH_VS; if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) reg |= DSIM_SYNC_INFORM; if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_BURST) reg |= DSIM_BURST_MODE; if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_AUTO_VERT) reg |= DSIM_AUTO_MODE; if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HSE) reg |= DSIM_HSE_DISABLE_MODE; if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_NO_HFP) reg |= DSIM_HFP_DISABLE_MODE; if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_NO_HBP) reg |= DSIM_HBP_DISABLE_MODE; if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_NO_HSA) reg |= DSIM_HSA_DISABLE_MODE; } if (dsi->mode_flags & MIPI_DSI_MODE_NO_EOT_PACKET) reg |= DSIM_EOT_DISABLE; switch (dsi->format) { case MIPI_DSI_FMT_RGB888: reg |= DSIM_MAIN_PIX_FORMAT_RGB888; break; case MIPI_DSI_FMT_RGB666: reg |= DSIM_MAIN_PIX_FORMAT_RGB666; break; case MIPI_DSI_FMT_RGB666_PACKED: reg |= DSIM_MAIN_PIX_FORMAT_RGB666_P; break; case MIPI_DSI_FMT_RGB565: reg |= DSIM_MAIN_PIX_FORMAT_RGB565; break; default: dev_err(dsi->dev, "invalid pixel format\n"); return -EINVAL; } /* * Use non-continuous clock mode if the periparal wants and * host controller supports * * In non-continous clock mode, host controller will turn off * the HS clock between high-speed transmissions to reduce * power consumption. */ if (driver_data->has_clklane_stop && dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) reg |= DSIM_CLKLANE_STOP; samsung_dsim_write(dsi, DSIM_CONFIG_REG, reg); lanes_mask = BIT(dsi->lanes) - 1; samsung_dsim_enable_lane(dsi, lanes_mask); /* Check clock and data lane state are stop state */ timeout = 100; do { if (timeout-- == 0) { dev_err(dsi->dev, "waiting for bus lanes timed out\n"); return -EFAULT; } reg = samsung_dsim_read(dsi, DSIM_STATUS_REG); if ((reg & DSIM_STOP_STATE_DAT(lanes_mask)) != DSIM_STOP_STATE_DAT(lanes_mask)) continue; } while (!(reg & (DSIM_STOP_STATE_CLK | DSIM_TX_READY_HS_CLK))); reg = samsung_dsim_read(dsi, DSIM_ESCMODE_REG); reg &= ~DSIM_STOP_STATE_CNT_MASK; reg |= DSIM_STOP_STATE_CNT(driver_data->reg_values[STOP_STATE_CNT]); samsung_dsim_write(dsi, DSIM_ESCMODE_REG, reg); reg = DSIM_BTA_TIMEOUT(0xff) | DSIM_LPDR_TIMEOUT(0xffff); samsung_dsim_write(dsi, DSIM_TIMEOUT_REG, reg); return 0; } static void samsung_dsim_set_display_mode(struct samsung_dsim *dsi) { struct drm_display_mode *m = &dsi->mode; unsigned int num_bits_resol = dsi->driver_data->num_bits_resol; u32 reg; if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) { int byte_clk_khz = dsi->hs_clock / 1000 / 8; int hfp = (m->hsync_start - m->hdisplay) * byte_clk_khz / m->clock; int hbp = (m->htotal - m->hsync_end) * byte_clk_khz / m->clock; int hsa = (m->hsync_end - m->hsync_start) * byte_clk_khz / m->clock; /* remove packet overhead when possible */ hfp = max(hfp - 6, 0); hbp = max(hbp - 6, 0); hsa = max(hsa - 6, 0); dev_dbg(dsi->dev, "calculated hfp: %u, hbp: %u, hsa: %u", hfp, hbp, hsa); reg = DSIM_CMD_ALLOW(0xf) | DSIM_STABLE_VFP(m->vsync_start - m->vdisplay) | DSIM_MAIN_VBP(m->vtotal - m->vsync_end); samsung_dsim_write(dsi, DSIM_MVPORCH_REG, reg); reg = DSIM_MAIN_HFP(hfp) | DSIM_MAIN_HBP(hbp); samsung_dsim_write(dsi, DSIM_MHPORCH_REG, reg); reg = DSIM_MAIN_VSA(m->vsync_end - m->vsync_start) | DSIM_MAIN_HSA(hsa); samsung_dsim_write(dsi, DSIM_MSYNC_REG, reg); } reg = DSIM_MAIN_HRESOL(m->hdisplay, num_bits_resol) | DSIM_MAIN_VRESOL(m->vdisplay, num_bits_resol); samsung_dsim_write(dsi, DSIM_MDRESOL_REG, reg); dev_dbg(dsi->dev, "LCD size = %dx%d\n", m->hdisplay, m->vdisplay); } static void samsung_dsim_set_display_enable(struct samsung_dsim *dsi, bool enable) { u32 reg; reg = samsung_dsim_read(dsi, DSIM_MDRESOL_REG); if (enable) reg |= DSIM_MAIN_STAND_BY; else reg &= ~DSIM_MAIN_STAND_BY; samsung_dsim_write(dsi, DSIM_MDRESOL_REG, reg); } static int samsung_dsim_wait_for_hdr_fifo(struct samsung_dsim *dsi) { int timeout = 2000; do { u32 reg = samsung_dsim_read(dsi, DSIM_FIFOCTRL_REG); if (!dsi->driver_data->has_broken_fifoctrl_emptyhdr) { if (reg & DSIM_SFR_HEADER_EMPTY) return 0; } else { if (!(reg & DSIM_SFR_HEADER_FULL)) { /* * Wait a little bit, so the pending data can * actually leave the FIFO to avoid overflow. */ if (!cond_resched()) usleep_range(950, 1050); return 0; } } if (!cond_resched()) usleep_range(950, 1050); } while (--timeout); return -ETIMEDOUT; } static void samsung_dsim_set_cmd_lpm(struct samsung_dsim *dsi, bool lpm) { u32 v = samsung_dsim_read(dsi, DSIM_ESCMODE_REG); if (lpm) v |= DSIM_CMD_LPDT_LP; else v &= ~DSIM_CMD_LPDT_LP; samsung_dsim_write(dsi, DSIM_ESCMODE_REG, v); } static void samsung_dsim_force_bta(struct samsung_dsim *dsi) { u32 v = samsung_dsim_read(dsi, DSIM_ESCMODE_REG); v |= DSIM_FORCE_BTA; samsung_dsim_write(dsi, DSIM_ESCMODE_REG, v); } static void samsung_dsim_send_to_fifo(struct samsung_dsim *dsi, struct samsung_dsim_transfer *xfer) { struct device *dev = dsi->dev; struct mipi_dsi_packet *pkt = &xfer->packet; const u8 *payload = pkt->payload + xfer->tx_done; u16 length = pkt->payload_length - xfer->tx_done; bool first = !xfer->tx_done; u32 reg; dev_dbg(dev, "< xfer %pK: tx len %u, done %u, rx len %u, done %u\n", xfer, length, xfer->tx_done, xfer->rx_len, xfer->rx_done); if (length > DSI_TX_FIFO_SIZE) length = DSI_TX_FIFO_SIZE; xfer->tx_done += length; /* Send payload */ while (length >= 4) { reg = get_unaligned_le32(payload); samsung_dsim_write(dsi, DSIM_PAYLOAD_REG, reg); payload += 4; length -= 4; } reg = 0; switch (length) { case 3: reg |= payload[2] << 16; fallthrough; case 2: reg |= payload[1] << 8; fallthrough; case 1: reg |= payload[0]; samsung_dsim_write(dsi, DSIM_PAYLOAD_REG, reg); break; } /* Send packet header */ if (!first) return; reg = get_unaligned_le32(pkt->header); if (samsung_dsim_wait_for_hdr_fifo(dsi)) { dev_err(dev, "waiting for header FIFO timed out\n"); return; } if (NEQV(xfer->flags & MIPI_DSI_MSG_USE_LPM, dsi->state & DSIM_STATE_CMD_LPM)) { samsung_dsim_set_cmd_lpm(dsi, xfer->flags & MIPI_DSI_MSG_USE_LPM); dsi->state ^= DSIM_STATE_CMD_LPM; } samsung_dsim_write(dsi, DSIM_PKTHDR_REG, reg); if (xfer->flags & MIPI_DSI_MSG_REQ_ACK) samsung_dsim_force_bta(dsi); } static void samsung_dsim_read_from_fifo(struct samsung_dsim *dsi, struct samsung_dsim_transfer *xfer) { u8 *payload = xfer->rx_payload + xfer->rx_done; bool first = !xfer->rx_done; struct device *dev = dsi->dev; u16 length; u32 reg; if (first) { reg = samsung_dsim_read(dsi, DSIM_RXFIFO_REG); switch (reg & 0x3f) { case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE: case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE: if (xfer->rx_len >= 2) { payload[1] = reg >> 16; ++xfer->rx_done; } fallthrough; case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE: case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE: payload[0] = reg >> 8; ++xfer->rx_done; xfer->rx_len = xfer->rx_done; xfer->result = 0; goto clear_fifo; case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT: dev_err(dev, "DSI Error Report: 0x%04x\n", (reg >> 8) & 0xffff); xfer->result = 0; goto clear_fifo; } length = (reg >> 8) & 0xffff; if (length > xfer->rx_len) { dev_err(dev, "response too long (%u > %u bytes), stripping\n", xfer->rx_len, length); length = xfer->rx_len; } else if (length < xfer->rx_len) { xfer->rx_len = length; } } length = xfer->rx_len - xfer->rx_done; xfer->rx_done += length; /* Receive payload */ while (length >= 4) { reg = samsung_dsim_read(dsi, DSIM_RXFIFO_REG); payload[0] = (reg >> 0) & 0xff; payload[1] = (reg >> 8) & 0xff; payload[2] = (reg >> 16) & 0xff; payload[3] = (reg >> 24) & 0xff; payload += 4; length -= 4; } if (length) { reg = samsung_dsim_read(dsi, DSIM_RXFIFO_REG); switch (length) { case 3: payload[2] = (reg >> 16) & 0xff; fallthrough; case 2: payload[1] = (reg >> 8) & 0xff; fallthrough; case 1: payload[0] = reg & 0xff; } } if (xfer->rx_done == xfer->rx_len) xfer->result = 0; clear_fifo: length = DSI_RX_FIFO_SIZE / 4; do { reg = samsung_dsim_read(dsi, DSIM_RXFIFO_REG); if (reg == DSI_RX_FIFO_EMPTY) break; } while (--length); } static void samsung_dsim_transfer_start(struct samsung_dsim *dsi) { unsigned long flags; struct samsung_dsim_transfer *xfer; bool start = false; again: spin_lock_irqsave(&dsi->transfer_lock, flags); if (list_empty(&dsi->transfer_list)) { spin_unlock_irqrestore(&dsi->transfer_lock, flags); return; } xfer = list_first_entry(&dsi->transfer_list, struct samsung_dsim_transfer, list); spin_unlock_irqrestore(&dsi->transfer_lock, flags); if (xfer->packet.payload_length && xfer->tx_done == xfer->packet.payload_length) /* waiting for RX */ return; samsung_dsim_send_to_fifo(dsi, xfer); if (xfer->packet.payload_length || xfer->rx_len) return; xfer->result = 0; complete(&xfer->completed); spin_lock_irqsave(&dsi->transfer_lock, flags); list_del_init(&xfer->list); start = !list_empty(&dsi->transfer_list); spin_unlock_irqrestore(&dsi->transfer_lock, flags); if (start) goto again; } static bool samsung_dsim_transfer_finish(struct samsung_dsim *dsi) { struct samsung_dsim_transfer *xfer; unsigned long flags; bool start = true; spin_lock_irqsave(&dsi->transfer_lock, flags); if (list_empty(&dsi->transfer_list)) { spin_unlock_irqrestore(&dsi->transfer_lock, flags); return false; } xfer = list_first_entry(&dsi->transfer_list, struct samsung_dsim_transfer, list); spin_unlock_irqrestore(&dsi->transfer_lock, flags); dev_dbg(dsi->dev, "> xfer %pK, tx_len %zu, tx_done %u, rx_len %u, rx_done %u\n", xfer, xfer->packet.payload_length, xfer->tx_done, xfer->rx_len, xfer->rx_done); if (xfer->tx_done != xfer->packet.payload_length) return true; if (xfer->rx_done != xfer->rx_len) samsung_dsim_read_from_fifo(dsi, xfer); if (xfer->rx_done != xfer->rx_len) return true; spin_lock_irqsave(&dsi->transfer_lock, flags); list_del_init(&xfer->list); start = !list_empty(&dsi->transfer_list); spin_unlock_irqrestore(&dsi->transfer_lock, flags); if (!xfer->rx_len) xfer->result = 0; complete(&xfer->completed); return start; } static void samsung_dsim_remove_transfer(struct samsung_dsim *dsi, struct samsung_dsim_transfer *xfer) { unsigned long flags; bool start; spin_lock_irqsave(&dsi->transfer_lock, flags); if (!list_empty(&dsi->transfer_list) && xfer == list_first_entry(&dsi->transfer_list, struct samsung_dsim_transfer, list)) { list_del_init(&xfer->list); start = !list_empty(&dsi->transfer_list); spin_unlock_irqrestore(&dsi->transfer_lock, flags); if (start) samsung_dsim_transfer_start(dsi); return; } list_del_init(&xfer->list); spin_unlock_irqrestore(&dsi->transfer_lock, flags); } static int samsung_dsim_transfer(struct samsung_dsim *dsi, struct samsung_dsim_transfer *xfer) { unsigned long flags; bool stopped; xfer->tx_done = 0; xfer->rx_done = 0; xfer->result = -ETIMEDOUT; init_completion(&xfer->completed); spin_lock_irqsave(&dsi->transfer_lock, flags); stopped = list_empty(&dsi->transfer_list); list_add_tail(&xfer->list, &dsi->transfer_list); spin_unlock_irqrestore(&dsi->transfer_lock, flags); if (stopped) samsung_dsim_transfer_start(dsi); wait_for_completion_timeout(&xfer->completed, msecs_to_jiffies(DSI_XFER_TIMEOUT_MS)); if (xfer->result == -ETIMEDOUT) { struct mipi_dsi_packet *pkt = &xfer->packet; samsung_dsim_remove_transfer(dsi, xfer); dev_err(dsi->dev, "xfer timed out: %*ph %*ph\n", 4, pkt->header, (int)pkt->payload_length, pkt->payload); return -ETIMEDOUT; } /* Also covers hardware timeout condition */ return xfer->result; } static irqreturn_t samsung_dsim_irq(int irq, void *dev_id) { struct samsung_dsim *dsi = dev_id; u32 status; status = samsung_dsim_read(dsi, DSIM_INTSRC_REG); if (!status) { static unsigned long j; if (printk_timed_ratelimit(&j, 500)) dev_warn(dsi->dev, "spurious interrupt\n"); return IRQ_HANDLED; } samsung_dsim_write(dsi, DSIM_INTSRC_REG, status); if (status & DSIM_INT_SW_RST_RELEASE) { unsigned long mask = ~(DSIM_INT_RX_DONE | DSIM_INT_SFR_FIFO_EMPTY | DSIM_INT_SFR_HDR_FIFO_EMPTY | DSIM_INT_RX_ECC_ERR | DSIM_INT_SW_RST_RELEASE); samsung_dsim_write(dsi, DSIM_INTMSK_REG, mask); complete(&dsi->completed); return IRQ_HANDLED; } if (!(status & (DSIM_INT_RX_DONE | DSIM_INT_SFR_FIFO_EMPTY | DSIM_INT_PLL_STABLE))) return IRQ_HANDLED; if (samsung_dsim_transfer_finish(dsi)) samsung_dsim_transfer_start(dsi); return IRQ_HANDLED; } static void samsung_dsim_enable_irq(struct samsung_dsim *dsi) { enable_irq(dsi->irq); if (dsi->te_gpio) enable_irq(gpiod_to_irq(dsi->te_gpio)); } static void samsung_dsim_disable_irq(struct samsung_dsim *dsi) { if (dsi->te_gpio) disable_irq(gpiod_to_irq(dsi->te_gpio)); disable_irq(dsi->irq); } static int samsung_dsim_init(struct samsung_dsim *dsi) { const struct samsung_dsim_driver_data *driver_data = dsi->driver_data; if (dsi->state & DSIM_STATE_INITIALIZED) return 0; samsung_dsim_reset(dsi); samsung_dsim_enable_irq(dsi); if (driver_data->reg_values[RESET_TYPE] == DSIM_FUNCRST) samsung_dsim_enable_lane(dsi, BIT(dsi->lanes) - 1); samsung_dsim_enable_clock(dsi); if (driver_data->wait_for_reset) samsung_dsim_wait_for_reset(dsi); samsung_dsim_set_phy_ctrl(dsi); samsung_dsim_init_link(dsi); dsi->state |= DSIM_STATE_INITIALIZED; return 0; } static void samsung_dsim_atomic_pre_enable(struct drm_bridge *bridge, struct drm_bridge_state *old_bridge_state) { struct samsung_dsim *dsi = bridge_to_dsi(bridge); int ret; if (dsi->state & DSIM_STATE_ENABLED) return; ret = pm_runtime_resume_and_get(dsi->dev); if (ret < 0) { dev_err(dsi->dev, "failed to enable DSI device.\n"); return; } dsi->state |= DSIM_STATE_ENABLED; /* * For Exynos-DSIM the downstream bridge, or panel are expecting * the host initialization during DSI transfer. */ if (!samsung_dsim_hw_is_exynos(dsi->plat_data->hw_type)) { ret = samsung_dsim_init(dsi); if (ret) return; } } static void samsung_dsim_atomic_enable(struct drm_bridge *bridge, struct drm_bridge_state *old_bridge_state) { struct samsung_dsim *dsi = bridge_to_dsi(bridge); samsung_dsim_set_display_mode(dsi); samsung_dsim_set_display_enable(dsi, true); dsi->state |= DSIM_STATE_VIDOUT_AVAILABLE; } static void samsung_dsim_atomic_disable(struct drm_bridge *bridge, struct drm_bridge_state *old_bridge_state) { struct samsung_dsim *dsi = bridge_to_dsi(bridge); if (!(dsi->state & DSIM_STATE_ENABLED)) return; dsi->state &= ~DSIM_STATE_VIDOUT_AVAILABLE; } static void samsung_dsim_atomic_post_disable(struct drm_bridge *bridge, struct drm_bridge_state *old_bridge_state) { struct samsung_dsim *dsi = bridge_to_dsi(bridge); samsung_dsim_set_display_enable(dsi, false); dsi->state &= ~DSIM_STATE_ENABLED; pm_runtime_put_sync(dsi->dev); } /* * This pixel output formats list referenced from, * AN13573 i.MX 8/RT MIPI DSI/CSI-2, Rev. 0, 21 March 2022 * 3.7.4 Pixel formats * Table 14. DSI pixel packing formats */ static const u32 samsung_dsim_pixel_output_fmts[] = { MEDIA_BUS_FMT_YUYV10_1X20, MEDIA_BUS_FMT_YUYV12_1X24, MEDIA_BUS_FMT_UYVY8_1X16, MEDIA_BUS_FMT_RGB101010_1X30, MEDIA_BUS_FMT_RGB121212_1X36, MEDIA_BUS_FMT_RGB565_1X16, MEDIA_BUS_FMT_RGB666_1X18, MEDIA_BUS_FMT_RGB888_1X24, }; static bool samsung_dsim_pixel_output_fmt_supported(u32 fmt) { int i; if (fmt == MEDIA_BUS_FMT_FIXED) return false; for (i = 0; i < ARRAY_SIZE(samsung_dsim_pixel_output_fmts); i++) { if (samsung_dsim_pixel_output_fmts[i] == fmt) return true; } return false; } static u32 * samsung_dsim_atomic_get_input_bus_fmts(struct drm_bridge *bridge, struct drm_bridge_state *bridge_state, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state, u32 output_fmt, unsigned int *num_input_fmts) { u32 *input_fmts; input_fmts = kmalloc(sizeof(*input_fmts), GFP_KERNEL); if (!input_fmts) return NULL; if (!samsung_dsim_pixel_output_fmt_supported(output_fmt)) /* * Some bridge/display drivers are still not able to pass the * correct format, so handle those pipelines by falling back * to the default format till the supported formats finalized. */ output_fmt = MEDIA_BUS_FMT_RGB888_1X24; input_fmts[0] = output_fmt; *num_input_fmts = 1; return input_fmts; } static int samsung_dsim_atomic_check(struct drm_bridge *bridge, struct drm_bridge_state *bridge_state, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct samsung_dsim *dsi = bridge_to_dsi(bridge); struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode; /* * The i.MX8M Mini/Nano glue logic between LCDIF and DSIM * inverts HS/VS/DE sync signals polarity, therefore, while * i.MX 8M Mini Applications Processor Reference Manual Rev. 3, 11/2020 * 13.6.3.5.2 RGB interface * i.MX 8M Nano Applications Processor Reference Manual Rev. 2, 07/2022 * 13.6.2.7.2 RGB interface * both claim "Vsync, Hsync, and VDEN are active high signals.", the * LCDIF must generate inverted HS/VS/DE signals, i.e. active LOW. * * The i.MX8M Plus glue logic between LCDIFv3 and DSIM does not * implement the same behavior, therefore LCDIFv3 must generate * HS/VS/DE signals active HIGH. */ if (dsi->plat_data->hw_type == DSIM_TYPE_IMX8MM) { adjusted_mode->flags |= (DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC); adjusted_mode->flags &= ~(DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC); } else if (dsi->plat_data->hw_type == DSIM_TYPE_IMX8MP) { adjusted_mode->flags &= ~(DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC); adjusted_mode->flags |= (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC); } return 0; } static void samsung_dsim_mode_set(struct drm_bridge *bridge, const struct drm_display_mode *mode, const struct drm_display_mode *adjusted_mode) { struct samsung_dsim *dsi = bridge_to_dsi(bridge); drm_mode_copy(&dsi->mode, adjusted_mode); } static int samsung_dsim_attach(struct drm_bridge *bridge, enum drm_bridge_attach_flags flags) { struct samsung_dsim *dsi = bridge_to_dsi(bridge); return drm_bridge_attach(bridge->encoder, dsi->out_bridge, bridge, flags); } static const struct drm_bridge_funcs samsung_dsim_bridge_funcs = { .atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state, .atomic_destroy_state = drm_atomic_helper_bridge_destroy_state, .atomic_reset = drm_atomic_helper_bridge_reset, .atomic_get_input_bus_fmts = samsung_dsim_atomic_get_input_bus_fmts, .atomic_check = samsung_dsim_atomic_check, .atomic_pre_enable = samsung_dsim_atomic_pre_enable, .atomic_enable = samsung_dsim_atomic_enable, .atomic_disable = samsung_dsim_atomic_disable, .atomic_post_disable = samsung_dsim_atomic_post_disable, .mode_set = samsung_dsim_mode_set, .attach = samsung_dsim_attach, }; static irqreturn_t samsung_dsim_te_irq_handler(int irq, void *dev_id) { struct samsung_dsim *dsi = (struct samsung_dsim *)dev_id; const struct samsung_dsim_plat_data *pdata = dsi->plat_data; if (pdata->host_ops && pdata->host_ops->te_irq_handler) return pdata->host_ops->te_irq_handler(dsi); return IRQ_HANDLED; } static int samsung_dsim_register_te_irq(struct samsung_dsim *dsi, struct device *dev) { int te_gpio_irq; int ret; dsi->te_gpio = devm_gpiod_get_optional(dev, "te", GPIOD_IN); if (!dsi->te_gpio) return 0; else if (IS_ERR(dsi->te_gpio)) return dev_err_probe(dev, PTR_ERR(dsi->te_gpio), "failed to get te GPIO\n"); te_gpio_irq = gpiod_to_irq(dsi->te_gpio); ret = request_threaded_irq(te_gpio_irq, samsung_dsim_te_irq_handler, NULL, IRQF_TRIGGER_RISING | IRQF_NO_AUTOEN, "TE", dsi); if (ret) { dev_err(dsi->dev, "request interrupt failed with %d\n", ret); gpiod_put(dsi->te_gpio); return ret; } return 0; } static int samsung_dsim_host_attach(struct mipi_dsi_host *host, struct mipi_dsi_device *device) { struct samsung_dsim *dsi = host_to_dsi(host); const struct samsung_dsim_plat_data *pdata = dsi->plat_data; struct device *dev = dsi->dev; struct device_node *np = dev->of_node; struct device_node *remote; struct drm_panel *panel; int ret; /* * Devices can also be child nodes when we also control that device * through the upstream device (ie, MIPI-DCS for a MIPI-DSI device). * * Lookup for a child node of the given parent that isn't either port * or ports. */ for_each_available_child_of_node(np, remote) { if (of_node_name_eq(remote, "port") || of_node_name_eq(remote, "ports")) continue; goto of_find_panel_or_bridge; } /* * of_graph_get_remote_node() produces a noisy error message if port * node isn't found and the absence of the port is a legit case here, * so at first we silently check whether graph presents in the * device-tree node. */ if (!of_graph_is_present(np)) return -ENODEV; remote = of_graph_get_remote_node(np, 1, 0); of_find_panel_or_bridge: if (!remote) return -ENODEV; panel = of_drm_find_panel(remote); if (!IS_ERR(panel)) { dsi->out_bridge = devm_drm_panel_bridge_add(dev, panel); } else { dsi->out_bridge = of_drm_find_bridge(remote); if (!dsi->out_bridge) dsi->out_bridge = ERR_PTR(-EINVAL); } of_node_put(remote); if (IS_ERR(dsi->out_bridge)) { ret = PTR_ERR(dsi->out_bridge); DRM_DEV_ERROR(dev, "failed to find the bridge: %d\n", ret); return ret; } DRM_DEV_INFO(dev, "Attached %s device\n", device->name); drm_bridge_add(&dsi->bridge); /* * This is a temporary solution and should be made by more generic way. * * If attached panel device is for command mode one, dsi should register * TE interrupt handler. */ if (!(device->mode_flags & MIPI_DSI_MODE_VIDEO)) { ret = samsung_dsim_register_te_irq(dsi, &device->dev); if (ret) return ret; } if (pdata->host_ops && pdata->host_ops->attach) { ret = pdata->host_ops->attach(dsi, device); if (ret) return ret; } dsi->lanes = device->lanes; dsi->format = device->format; dsi->mode_flags = device->mode_flags; return 0; } static void samsung_dsim_unregister_te_irq(struct samsung_dsim *dsi) { if (dsi->te_gpio) { free_irq(gpiod_to_irq(dsi->te_gpio), dsi); gpiod_put(dsi->te_gpio); } } static int samsung_dsim_host_detach(struct mipi_dsi_host *host, struct mipi_dsi_device *device) { struct samsung_dsim *dsi = host_to_dsi(host); const struct samsung_dsim_plat_data *pdata = dsi->plat_data; dsi->out_bridge = NULL; if (pdata->host_ops && pdata->host_ops->detach) pdata->host_ops->detach(dsi, device); samsung_dsim_unregister_te_irq(dsi); drm_bridge_remove(&dsi->bridge); return 0; } static ssize_t samsung_dsim_host_transfer(struct mipi_dsi_host *host, const struct mipi_dsi_msg *msg) { struct samsung_dsim *dsi = host_to_dsi(host); struct samsung_dsim_transfer xfer; int ret; if (!(dsi->state & DSIM_STATE_ENABLED)) return -EINVAL; ret = samsung_dsim_init(dsi); if (ret) return ret; ret = mipi_dsi_create_packet(&xfer.packet, msg); if (ret < 0) return ret; xfer.rx_len = msg->rx_len; xfer.rx_payload = msg->rx_buf; xfer.flags = msg->flags; ret = samsung_dsim_transfer(dsi, &xfer); return (ret < 0) ? ret : xfer.rx_done; } static const struct mipi_dsi_host_ops samsung_dsim_ops = { .attach = samsung_dsim_host_attach, .detach = samsung_dsim_host_detach, .transfer = samsung_dsim_host_transfer, }; static int samsung_dsim_of_read_u32(const struct device_node *np, const char *propname, u32 *out_value, bool optional) { int ret = of_property_read_u32(np, propname, out_value); if (ret < 0 && !optional) pr_err("%pOF: failed to get '%s' property\n", np, propname); return ret; } static int samsung_dsim_parse_dt(struct samsung_dsim *dsi) { struct device *dev = dsi->dev; struct device_node *node = dev->of_node; u32 lane_polarities[5] = { 0 }; struct device_node *endpoint; int i, nr_lanes, ret; struct clk *pll_clk; ret = samsung_dsim_of_read_u32(node, "samsung,pll-clock-frequency", &dsi->pll_clk_rate, 1); /* If it doesn't exist, read it from the clock instead of failing */ if (ret < 0) { dev_dbg(dev, "Using sclk_mipi for pll clock frequency\n"); pll_clk = devm_clk_get(dev, "sclk_mipi"); if (!IS_ERR(pll_clk)) dsi->pll_clk_rate = clk_get_rate(pll_clk); else return PTR_ERR(pll_clk); } /* If it doesn't exist, use pixel clock instead of failing */ ret = samsung_dsim_of_read_u32(node, "samsung,burst-clock-frequency", &dsi->burst_clk_rate, 1); if (ret < 0) { dev_dbg(dev, "Using pixel clock for HS clock frequency\n"); dsi->burst_clk_rate = 0; } ret = samsung_dsim_of_read_u32(node, "samsung,esc-clock-frequency", &dsi->esc_clk_rate, 0); if (ret < 0) return ret; endpoint = of_graph_get_endpoint_by_regs(node, 1, -1); nr_lanes = of_property_count_u32_elems(endpoint, "data-lanes"); if (nr_lanes > 0 && nr_lanes <= 4) { /* Polarity 0 is clock lane, 1..4 are data lanes. */ of_property_read_u32_array(endpoint, "lane-polarities", lane_polarities, nr_lanes + 1); for (i = 1; i <= nr_lanes; i++) { if (lane_polarities[1] != lane_polarities[i]) DRM_DEV_ERROR(dsi->dev, "Data lanes polarities do not match"); } if (lane_polarities[0]) dsi->swap_dn_dp_clk = true; if (lane_polarities[1]) dsi->swap_dn_dp_data = true; } return 0; } static int generic_dsim_register_host(struct samsung_dsim *dsi) { return mipi_dsi_host_register(&dsi->dsi_host); } static void generic_dsim_unregister_host(struct samsung_dsim *dsi) { mipi_dsi_host_unregister(&dsi->dsi_host); } static const struct samsung_dsim_host_ops generic_dsim_host_ops = { .register_host = generic_dsim_register_host, .unregister_host = generic_dsim_unregister_host, }; static const struct drm_bridge_timings samsung_dsim_bridge_timings_de_high = { .input_bus_flags = DRM_BUS_FLAG_DE_HIGH, }; static const struct drm_bridge_timings samsung_dsim_bridge_timings_de_low = { .input_bus_flags = DRM_BUS_FLAG_DE_LOW, }; int samsung_dsim_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct samsung_dsim *dsi; int ret, i; dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL); if (!dsi) return -ENOMEM; init_completion(&dsi->completed); spin_lock_init(&dsi->transfer_lock); INIT_LIST_HEAD(&dsi->transfer_list); dsi->dsi_host.ops = &samsung_dsim_ops; dsi->dsi_host.dev = dev; dsi->dev = dev; dsi->plat_data = of_device_get_match_data(dev); dsi->driver_data = samsung_dsim_types[dsi->plat_data->hw_type]; dsi->supplies[0].supply = "vddcore"; dsi->supplies[1].supply = "vddio"; ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(dsi->supplies), dsi->supplies); if (ret) return dev_err_probe(dev, ret, "failed to get regulators\n"); dsi->clks = devm_kcalloc(dev, dsi->driver_data->num_clks, sizeof(*dsi->clks), GFP_KERNEL); if (!dsi->clks) return -ENOMEM; for (i = 0; i < dsi->driver_data->num_clks; i++) { dsi->clks[i] = devm_clk_get(dev, clk_names[i]); if (IS_ERR(dsi->clks[i])) { if (strcmp(clk_names[i], "sclk_mipi") == 0) { dsi->clks[i] = devm_clk_get(dev, OLD_SCLK_MIPI_CLK_NAME); if (!IS_ERR(dsi->clks[i])) continue; } dev_info(dev, "failed to get the clock: %s\n", clk_names[i]); return PTR_ERR(dsi->clks[i]); } } dsi->reg_base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(dsi->reg_base)) return PTR_ERR(dsi->reg_base); dsi->phy = devm_phy_optional_get(dev, "dsim"); if (IS_ERR(dsi->phy)) { dev_info(dev, "failed to get dsim phy\n"); return PTR_ERR(dsi->phy); } dsi->irq = platform_get_irq(pdev, 0); if (dsi->irq < 0) return dsi->irq; ret = devm_request_threaded_irq(dev, dsi->irq, NULL, samsung_dsim_irq, IRQF_ONESHOT | IRQF_NO_AUTOEN, dev_name(dev), dsi); if (ret) { dev_err(dev, "failed to request dsi irq\n"); return ret; } ret = samsung_dsim_parse_dt(dsi); if (ret) return ret; platform_set_drvdata(pdev, dsi); pm_runtime_enable(dev); dsi->bridge.funcs = &samsung_dsim_bridge_funcs; dsi->bridge.of_node = dev->of_node; dsi->bridge.type = DRM_MODE_CONNECTOR_DSI; /* DE_LOW: i.MX8M Mini/Nano LCDIF-DSIM glue logic inverts HS/VS/DE */ if (dsi->plat_data->hw_type == DSIM_TYPE_IMX8MM) dsi->bridge.timings = &samsung_dsim_bridge_timings_de_low; else dsi->bridge.timings = &samsung_dsim_bridge_timings_de_high; if (dsi->plat_data->host_ops && dsi->plat_data->host_ops->register_host) ret = dsi->plat_data->host_ops->register_host(dsi); if (ret) goto err_disable_runtime; return 0; err_disable_runtime: pm_runtime_disable(dev); return ret; } EXPORT_SYMBOL_GPL(samsung_dsim_probe); int samsung_dsim_remove(struct platform_device *pdev) { struct samsung_dsim *dsi = platform_get_drvdata(pdev); pm_runtime_disable(&pdev->dev); if (dsi->plat_data->host_ops && dsi->plat_data->host_ops->unregister_host) dsi->plat_data->host_ops->unregister_host(dsi); return 0; } EXPORT_SYMBOL_GPL(samsung_dsim_remove); static int __maybe_unused samsung_dsim_suspend(struct device *dev) { struct samsung_dsim *dsi = dev_get_drvdata(dev); const struct samsung_dsim_driver_data *driver_data = dsi->driver_data; int ret, i; usleep_range(10000, 20000); if (dsi->state & DSIM_STATE_INITIALIZED) { dsi->state &= ~DSIM_STATE_INITIALIZED; samsung_dsim_disable_clock(dsi); samsung_dsim_disable_irq(dsi); } dsi->state &= ~DSIM_STATE_CMD_LPM; phy_power_off(dsi->phy); for (i = driver_data->num_clks - 1; i > -1; i--) clk_disable_unprepare(dsi->clks[i]); ret = regulator_bulk_disable(ARRAY_SIZE(dsi->supplies), dsi->supplies); if (ret < 0) dev_err(dsi->dev, "cannot disable regulators %d\n", ret); return 0; } static int __maybe_unused samsung_dsim_resume(struct device *dev) { struct samsung_dsim *dsi = dev_get_drvdata(dev); const struct samsung_dsim_driver_data *driver_data = dsi->driver_data; int ret, i; ret = regulator_bulk_enable(ARRAY_SIZE(dsi->supplies), dsi->supplies); if (ret < 0) { dev_err(dsi->dev, "cannot enable regulators %d\n", ret); return ret; } for (i = 0; i < driver_data->num_clks; i++) { ret = clk_prepare_enable(dsi->clks[i]); if (ret < 0) goto err_clk; } ret = phy_power_on(dsi->phy); if (ret < 0) { dev_err(dsi->dev, "cannot enable phy %d\n", ret); goto err_clk; } return 0; err_clk: while (--i > -1) clk_disable_unprepare(dsi->clks[i]); regulator_bulk_disable(ARRAY_SIZE(dsi->supplies), dsi->supplies); return ret; } const struct dev_pm_ops samsung_dsim_pm_ops = { SET_RUNTIME_PM_OPS(samsung_dsim_suspend, samsung_dsim_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) }; EXPORT_SYMBOL_GPL(samsung_dsim_pm_ops); static const struct samsung_dsim_plat_data samsung_dsim_imx8mm_pdata = { .hw_type = DSIM_TYPE_IMX8MM, .host_ops = &generic_dsim_host_ops, }; static const struct samsung_dsim_plat_data samsung_dsim_imx8mp_pdata = { .hw_type = DSIM_TYPE_IMX8MP, .host_ops = &generic_dsim_host_ops, }; static const struct of_device_id samsung_dsim_of_match[] = { { .compatible = "fsl,imx8mm-mipi-dsim", .data = &samsung_dsim_imx8mm_pdata, }, { .compatible = "fsl,imx8mp-mipi-dsim", .data = &samsung_dsim_imx8mp_pdata, }, { /* sentinel. */ } }; MODULE_DEVICE_TABLE(of, samsung_dsim_of_match); static struct platform_driver samsung_dsim_driver = { .probe = samsung_dsim_probe, .remove = samsung_dsim_remove, .driver = { .name = "samsung-dsim", .pm = &samsung_dsim_pm_ops, .of_match_table = samsung_dsim_of_match, }, }; module_platform_driver(samsung_dsim_driver); MODULE_AUTHOR("Jagan Teki <jagan@amarulasolutions.com>"); MODULE_DESCRIPTION("Samsung MIPI DSIM controller bridge"); MODULE_LICENSE("GPL");