/* * Copyright 2020 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #define SWSMU_CODE_LAYER_L4 #include "amdgpu.h" #include "amdgpu_smu.h" #include "smu_cmn.h" #include "soc15_common.h" /* * DO NOT use these for err/warn/info/debug messages. * Use dev_err, dev_warn, dev_info and dev_dbg instead. * They are more MGPU friendly. */ #undef pr_err #undef pr_warn #undef pr_info #undef pr_debug /* * Although these are defined in each ASIC's specific header file. * They share the same definitions and values. That makes common * APIs for SMC messages issuing for all ASICs possible. */ #define mmMP1_SMN_C2PMSG_66 0x0282 #define mmMP1_SMN_C2PMSG_66_BASE_IDX 0 #define mmMP1_SMN_C2PMSG_82 0x0292 #define mmMP1_SMN_C2PMSG_82_BASE_IDX 0 #define mmMP1_SMN_C2PMSG_90 0x029a #define mmMP1_SMN_C2PMSG_90_BASE_IDX 0 #define MP1_C2PMSG_90__CONTENT_MASK 0xFFFFFFFFL #undef __SMU_DUMMY_MAP #define __SMU_DUMMY_MAP(type) #type static const char * const __smu_message_names[] = { SMU_MESSAGE_TYPES }; static const char *smu_get_message_name(struct smu_context *smu, enum smu_message_type type) { if (type < 0 || type >= SMU_MSG_MAX_COUNT) return "unknown smu message"; return __smu_message_names[type]; } static void smu_cmn_read_arg(struct smu_context *smu, uint32_t *arg) { struct amdgpu_device *adev = smu->adev; *arg = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82); } /* Redefine the SMU error codes here. * * Note that these definitions are redundant and should be removed * when the SMU has exported a unified header file containing these * macros, which header file we can just include and use the SMU's * macros. At the moment, these error codes are defined by the SMU * per-ASIC unfortunately, yet we're a one driver for all ASICs. */ #define SMU_RESP_NONE 0 #define SMU_RESP_OK 1 #define SMU_RESP_CMD_FAIL 0xFF #define SMU_RESP_CMD_UNKNOWN 0xFE #define SMU_RESP_CMD_BAD_PREREQ 0xFD #define SMU_RESP_BUSY_OTHER 0xFC #define SMU_RESP_DEBUG_END 0xFB /** * __smu_cmn_poll_stat -- poll for a status from the SMU * smu: a pointer to SMU context * * Returns the status of the SMU, which could be, * 0, the SMU is busy with your previous command; * 1, execution status: success, execution result: success; * 0xFF, execution status: success, execution result: failure; * 0xFE, unknown command; * 0xFD, valid command, but bad (command) prerequisites; * 0xFC, the command was rejected as the SMU is busy; * 0xFB, "SMC_Result_DebugDataDumpEnd". * * The values here are not defined by macros, because I'd rather we * include a single header file which defines them, which is * maintained by the SMU FW team, so that we're impervious to firmware * changes. At the moment those values are defined in various header * files, one for each ASIC, yet here we're a single ASIC-agnostic * interface. Such a change can be followed-up by a subsequent patch. */ static u32 __smu_cmn_poll_stat(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; int timeout = adev->usec_timeout * 20; u32 reg; for ( ; timeout > 0; timeout--) { reg = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90); if ((reg & MP1_C2PMSG_90__CONTENT_MASK) != 0) break; udelay(1); } return reg; } static void __smu_cmn_reg_print_error(struct smu_context *smu, u32 reg_c2pmsg_90, int msg_index, u32 param, enum smu_message_type msg) { struct amdgpu_device *adev = smu->adev; const char *message = smu_get_message_name(smu, msg); switch (reg_c2pmsg_90) { case SMU_RESP_NONE: dev_err_ratelimited(adev->dev, "SMU: I'm not done with your previous command!"); break; case SMU_RESP_OK: /* The SMU executed the command. It completed with a * successful result. */ break; case SMU_RESP_CMD_FAIL: /* The SMU executed the command. It completed with an * unsuccessful result. */ break; case SMU_RESP_CMD_UNKNOWN: dev_err_ratelimited(adev->dev, "SMU: unknown command: index:%d param:0x%08X message:%s", msg_index, param, message); break; case SMU_RESP_CMD_BAD_PREREQ: dev_err_ratelimited(adev->dev, "SMU: valid command, bad prerequisites: index:%d param:0x%08X message:%s", msg_index, param, message); break; case SMU_RESP_BUSY_OTHER: dev_err_ratelimited(adev->dev, "SMU: I'm very busy for your command: index:%d param:0x%08X message:%s", msg_index, param, message); break; case SMU_RESP_DEBUG_END: dev_err_ratelimited(adev->dev, "SMU: I'm debugging!"); break; default: dev_err_ratelimited(adev->dev, "SMU: response:0x%08X for index:%d param:0x%08X message:%s?", reg_c2pmsg_90, msg_index, param, message); break; } } static int __smu_cmn_reg2errno(struct smu_context *smu, u32 reg_c2pmsg_90) { int res; switch (reg_c2pmsg_90) { case SMU_RESP_NONE: /* The SMU is busy--still executing your command. */ res = -ETIME; break; case SMU_RESP_OK: res = 0; break; case SMU_RESP_CMD_FAIL: /* Command completed successfully, but the command * status was failure. */ res = -EIO; break; case SMU_RESP_CMD_UNKNOWN: /* Unknown command--ignored by the SMU. */ res = -EOPNOTSUPP; break; case SMU_RESP_CMD_BAD_PREREQ: /* Valid command--bad prerequisites. */ res = -EINVAL; break; case SMU_RESP_BUSY_OTHER: /* The SMU is busy with other commands. The client * should retry in 10 us. */ res = -EBUSY; break; default: /* Unknown or debug response from the SMU. */ res = -EREMOTEIO; break; } return res; } static void __smu_cmn_send_msg(struct smu_context *smu, u16 msg, u32 param) { struct amdgpu_device *adev = smu->adev; WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0); WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82, param); WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_66, msg); } /** * smu_cmn_send_msg_without_waiting -- send the message; don't wait for status * @smu: pointer to an SMU context * @msg_index: message index * @param: message parameter to send to the SMU * * Send a message to the SMU with the parameter passed. Do not wait * for status/result of the message, thus the "without_waiting". * * Return 0 on success, -errno on error if we weren't able to _send_ * the message for some reason. See __smu_cmn_reg2errno() for details * of the -errno. */ int smu_cmn_send_msg_without_waiting(struct smu_context *smu, uint16_t msg_index, uint32_t param) { u32 reg; int res; if (smu->adev->no_hw_access) return 0; reg = __smu_cmn_poll_stat(smu); res = __smu_cmn_reg2errno(smu, reg); if (reg == SMU_RESP_NONE || reg == SMU_RESP_BUSY_OTHER || res == -EREMOTEIO) goto Out; __smu_cmn_send_msg(smu, msg_index, param); res = 0; Out: return res; } /** * smu_cmn_wait_for_response -- wait for response from the SMU * @smu: pointer to an SMU context * * Wait for status from the SMU. * * Return 0 on success, -errno on error, indicating the execution * status and result of the message being waited for. See * __smu_cmn_reg2errno() for details of the -errno. */ int smu_cmn_wait_for_response(struct smu_context *smu) { u32 reg; reg = __smu_cmn_poll_stat(smu); return __smu_cmn_reg2errno(smu, reg); } /** * smu_cmn_send_smc_msg_with_param -- send a message with parameter * @smu: pointer to an SMU context * @msg: message to send * @param: parameter to send to the SMU * @read_arg: pointer to u32 to return a value from the SMU back * to the caller * * Send the message @msg with parameter @param to the SMU, wait for * completion of the command, and return back a value from the SMU in * @read_arg pointer. * * Return 0 on success, -errno on error, if we weren't able to send * the message or if the message completed with some kind of * error. See __smu_cmn_reg2errno() for details of the -errno. * * If we weren't able to send the message to the SMU, we also print * the error to the standard log. * * Command completion status is printed only if the -errno is * -EREMOTEIO, indicating that the SMU returned back an * undefined/unknown/unspecified result. All other cases are * well-defined, not printed, but instead given back to the client to * decide what further to do. * * The return value, @read_arg is read back regardless, to give back * more information to the client, which on error would most likely be * @param, but we can't assume that. This also eliminates more * conditionals. */ int smu_cmn_send_smc_msg_with_param(struct smu_context *smu, enum smu_message_type msg, uint32_t param, uint32_t *read_arg) { int res, index; u32 reg; if (smu->adev->no_hw_access) return 0; index = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_MSG, msg); if (index < 0) return index == -EACCES ? 0 : index; mutex_lock(&smu->message_lock); reg = __smu_cmn_poll_stat(smu); res = __smu_cmn_reg2errno(smu, reg); if (reg == SMU_RESP_NONE || reg == SMU_RESP_BUSY_OTHER || res == -EREMOTEIO) { __smu_cmn_reg_print_error(smu, reg, index, param, msg); goto Out; } __smu_cmn_send_msg(smu, (uint16_t) index, param); reg = __smu_cmn_poll_stat(smu); res = __smu_cmn_reg2errno(smu, reg); if (res == -EREMOTEIO) __smu_cmn_reg_print_error(smu, reg, index, param, msg); if (read_arg) smu_cmn_read_arg(smu, read_arg); Out: mutex_unlock(&smu->message_lock); return res; } int smu_cmn_send_smc_msg(struct smu_context *smu, enum smu_message_type msg, uint32_t *read_arg) { return smu_cmn_send_smc_msg_with_param(smu, msg, 0, read_arg); } int smu_cmn_to_asic_specific_index(struct smu_context *smu, enum smu_cmn2asic_mapping_type type, uint32_t index) { struct cmn2asic_msg_mapping msg_mapping; struct cmn2asic_mapping mapping; switch (type) { case CMN2ASIC_MAPPING_MSG: if (index >= SMU_MSG_MAX_COUNT || !smu->message_map) return -EINVAL; msg_mapping = smu->message_map[index]; if (!msg_mapping.valid_mapping) return -EINVAL; if (amdgpu_sriov_vf(smu->adev) && !msg_mapping.valid_in_vf) return -EACCES; return msg_mapping.map_to; case CMN2ASIC_MAPPING_CLK: if (index >= SMU_CLK_COUNT || !smu->clock_map) return -EINVAL; mapping = smu->clock_map[index]; if (!mapping.valid_mapping) return -EINVAL; return mapping.map_to; case CMN2ASIC_MAPPING_FEATURE: if (index >= SMU_FEATURE_COUNT || !smu->feature_map) return -EINVAL; mapping = smu->feature_map[index]; if (!mapping.valid_mapping) return -EINVAL; return mapping.map_to; case CMN2ASIC_MAPPING_TABLE: if (index >= SMU_TABLE_COUNT || !smu->table_map) return -EINVAL; mapping = smu->table_map[index]; if (!mapping.valid_mapping) return -EINVAL; return mapping.map_to; case CMN2ASIC_MAPPING_PWR: if (index >= SMU_POWER_SOURCE_COUNT || !smu->pwr_src_map) return -EINVAL; mapping = smu->pwr_src_map[index]; if (!mapping.valid_mapping) return -EINVAL; return mapping.map_to; case CMN2ASIC_MAPPING_WORKLOAD: if (index > PP_SMC_POWER_PROFILE_CUSTOM || !smu->workload_map) return -EINVAL; mapping = smu->workload_map[index]; if (!mapping.valid_mapping) return -EINVAL; return mapping.map_to; default: return -EINVAL; } } int smu_cmn_feature_is_supported(struct smu_context *smu, enum smu_feature_mask mask) { struct smu_feature *feature = &smu->smu_feature; int feature_id; int ret = 0; feature_id = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_FEATURE, mask); if (feature_id < 0) return 0; WARN_ON(feature_id > feature->feature_num); mutex_lock(&feature->mutex); ret = test_bit(feature_id, feature->supported); mutex_unlock(&feature->mutex); return ret; } int smu_cmn_feature_is_enabled(struct smu_context *smu, enum smu_feature_mask mask) { struct smu_feature *feature = &smu->smu_feature; struct amdgpu_device *adev = smu->adev; int feature_id; int ret = 0; if (smu->is_apu && adev->family < AMDGPU_FAMILY_VGH) return 1; feature_id = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_FEATURE, mask); if (feature_id < 0) return 0; WARN_ON(feature_id > feature->feature_num); mutex_lock(&feature->mutex); ret = test_bit(feature_id, feature->enabled); mutex_unlock(&feature->mutex); return ret; } bool smu_cmn_clk_dpm_is_enabled(struct smu_context *smu, enum smu_clk_type clk_type) { enum smu_feature_mask feature_id = 0; switch (clk_type) { case SMU_MCLK: case SMU_UCLK: feature_id = SMU_FEATURE_DPM_UCLK_BIT; break; case SMU_GFXCLK: case SMU_SCLK: feature_id = SMU_FEATURE_DPM_GFXCLK_BIT; break; case SMU_SOCCLK: feature_id = SMU_FEATURE_DPM_SOCCLK_BIT; break; default: return true; } if (!smu_cmn_feature_is_enabled(smu, feature_id)) return false; return true; } int smu_cmn_get_enabled_mask(struct smu_context *smu, uint32_t *feature_mask, uint32_t num) { uint32_t feature_mask_high = 0, feature_mask_low = 0; struct smu_feature *feature = &smu->smu_feature; int ret = 0; if (!feature_mask || num < 2) return -EINVAL; if (bitmap_empty(feature->enabled, feature->feature_num)) { ret = smu_cmn_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesHigh, &feature_mask_high); if (ret) return ret; ret = smu_cmn_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesLow, &feature_mask_low); if (ret) return ret; feature_mask[0] = feature_mask_low; feature_mask[1] = feature_mask_high; } else { bitmap_copy((unsigned long *)feature_mask, feature->enabled, feature->feature_num); } return ret; } int smu_cmn_get_enabled_32_bits_mask(struct smu_context *smu, uint32_t *feature_mask, uint32_t num) { uint32_t feature_mask_en_low = 0; uint32_t feature_mask_en_high = 0; struct smu_feature *feature = &smu->smu_feature; int ret = 0; if (!feature_mask || num < 2) return -EINVAL; if (bitmap_empty(feature->enabled, feature->feature_num)) { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GetEnabledSmuFeatures, 0, &feature_mask_en_low); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GetEnabledSmuFeatures, 1, &feature_mask_en_high); if (ret) return ret; feature_mask[0] = feature_mask_en_low; feature_mask[1] = feature_mask_en_high; } else { bitmap_copy((unsigned long *)feature_mask, feature->enabled, feature->feature_num); } return ret; } uint64_t smu_cmn_get_indep_throttler_status( const unsigned long dep_status, const uint8_t *throttler_map) { uint64_t indep_status = 0; uint8_t dep_bit = 0; for_each_set_bit(dep_bit, &dep_status, 32) indep_status |= 1ULL << throttler_map[dep_bit]; return indep_status; } int smu_cmn_feature_update_enable_state(struct smu_context *smu, uint64_t feature_mask, bool enabled) { struct smu_feature *feature = &smu->smu_feature; int ret = 0; if (enabled) { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesLow, lower_32_bits(feature_mask), NULL); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesHigh, upper_32_bits(feature_mask), NULL); if (ret) return ret; } else { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesLow, lower_32_bits(feature_mask), NULL); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesHigh, upper_32_bits(feature_mask), NULL); if (ret) return ret; } mutex_lock(&feature->mutex); if (enabled) bitmap_or(feature->enabled, feature->enabled, (unsigned long *)(&feature_mask), SMU_FEATURE_MAX); else bitmap_andnot(feature->enabled, feature->enabled, (unsigned long *)(&feature_mask), SMU_FEATURE_MAX); mutex_unlock(&feature->mutex); return ret; } int smu_cmn_feature_set_enabled(struct smu_context *smu, enum smu_feature_mask mask, bool enable) { struct smu_feature *feature = &smu->smu_feature; int feature_id; feature_id = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_FEATURE, mask); if (feature_id < 0) return -EINVAL; WARN_ON(feature_id > feature->feature_num); return smu_cmn_feature_update_enable_state(smu, 1ULL << feature_id, enable); } #undef __SMU_DUMMY_MAP #define __SMU_DUMMY_MAP(fea) #fea static const char* __smu_feature_names[] = { SMU_FEATURE_MASKS }; static const char *smu_get_feature_name(struct smu_context *smu, enum smu_feature_mask feature) { if (feature < 0 || feature >= SMU_FEATURE_COUNT) return "unknown smu feature"; return __smu_feature_names[feature]; } size_t smu_cmn_get_pp_feature_mask(struct smu_context *smu, char *buf) { uint32_t feature_mask[2] = { 0 }; int feature_index = 0; uint32_t count = 0; int8_t sort_feature[SMU_FEATURE_COUNT]; size_t size = 0; int ret = 0, i; if (!smu->is_apu) { ret = smu_cmn_get_enabled_mask(smu, feature_mask, 2); if (ret) return 0; } else { ret = smu_cmn_get_enabled_32_bits_mask(smu, feature_mask, 2); if (ret) return 0; } size = sysfs_emit_at(buf, size, "features high: 0x%08x low: 0x%08x\n", feature_mask[1], feature_mask[0]); memset(sort_feature, -1, sizeof(sort_feature)); for (i = 0; i < SMU_FEATURE_COUNT; i++) { feature_index = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_FEATURE, i); if (feature_index < 0) continue; sort_feature[feature_index] = i; } size += sysfs_emit_at(buf, size, "%-2s. %-20s %-3s : %-s\n", "No", "Feature", "Bit", "State"); for (i = 0; i < SMU_FEATURE_COUNT; i++) { if (sort_feature[i] < 0) continue; size += sysfs_emit_at(buf, size, "%02d. %-20s (%2d) : %s\n", count++, smu_get_feature_name(smu, sort_feature[i]), i, !!smu_cmn_feature_is_enabled(smu, sort_feature[i]) ? "enabled" : "disabled"); } return size; } int smu_cmn_set_pp_feature_mask(struct smu_context *smu, uint64_t new_mask) { int ret = 0; uint32_t feature_mask[2] = { 0 }; uint64_t feature_2_enabled = 0; uint64_t feature_2_disabled = 0; uint64_t feature_enables = 0; ret = smu_cmn_get_enabled_mask(smu, feature_mask, 2); if (ret) return ret; feature_enables = ((uint64_t)feature_mask[1] << 32 | (uint64_t)feature_mask[0]); feature_2_enabled = ~feature_enables & new_mask; feature_2_disabled = feature_enables & ~new_mask; if (feature_2_enabled) { ret = smu_cmn_feature_update_enable_state(smu, feature_2_enabled, true); if (ret) return ret; } if (feature_2_disabled) { ret = smu_cmn_feature_update_enable_state(smu, feature_2_disabled, false); if (ret) return ret; } return ret; } /** * smu_cmn_disable_all_features_with_exception - disable all dpm features * except this specified by * @mask * * @smu: smu_context pointer * @no_hw_disablement: whether real dpm disablement should be performed * true: update the cache(about dpm enablement state) only * false: real dpm disablement plus cache update * @mask: the dpm feature which should not be disabled * SMU_FEATURE_COUNT: no exception, all dpm features * to disable * * Returns: * 0 on success or a negative error code on failure. */ int smu_cmn_disable_all_features_with_exception(struct smu_context *smu, bool no_hw_disablement, enum smu_feature_mask mask) { struct smu_feature *feature = &smu->smu_feature; uint64_t features_to_disable = U64_MAX; int skipped_feature_id; if (mask != SMU_FEATURE_COUNT) { skipped_feature_id = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_FEATURE, mask); if (skipped_feature_id < 0) return -EINVAL; features_to_disable &= ~(1ULL << skipped_feature_id); } if (no_hw_disablement) { mutex_lock(&feature->mutex); bitmap_andnot(feature->enabled, feature->enabled, (unsigned long *)(&features_to_disable), SMU_FEATURE_MAX); mutex_unlock(&feature->mutex); return 0; } else { return smu_cmn_feature_update_enable_state(smu, features_to_disable, 0); } } int smu_cmn_get_smc_version(struct smu_context *smu, uint32_t *if_version, uint32_t *smu_version) { int ret = 0; if (!if_version && !smu_version) return -EINVAL; if (smu->smc_fw_if_version && smu->smc_fw_version) { if (if_version) *if_version = smu->smc_fw_if_version; if (smu_version) *smu_version = smu->smc_fw_version; return 0; } if (if_version) { ret = smu_cmn_send_smc_msg(smu, SMU_MSG_GetDriverIfVersion, if_version); if (ret) return ret; smu->smc_fw_if_version = *if_version; } if (smu_version) { ret = smu_cmn_send_smc_msg(smu, SMU_MSG_GetSmuVersion, smu_version); if (ret) return ret; smu->smc_fw_version = *smu_version; } return ret; } int smu_cmn_update_table(struct smu_context *smu, enum smu_table_id table_index, int argument, void *table_data, bool drv2smu) { struct smu_table_context *smu_table = &smu->smu_table; struct amdgpu_device *adev = smu->adev; struct smu_table *table = &smu_table->driver_table; int table_id = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_TABLE, table_index); uint32_t table_size; int ret = 0; if (!table_data || table_id >= SMU_TABLE_COUNT || table_id < 0) return -EINVAL; table_size = smu_table->tables[table_index].size; if (drv2smu) { memcpy(table->cpu_addr, table_data, table_size); /* * Flush hdp cache: to guard the content seen by * GPU is consitent with CPU. */ amdgpu_asic_flush_hdp(adev, NULL); } ret = smu_cmn_send_smc_msg_with_param(smu, drv2smu ? SMU_MSG_TransferTableDram2Smu : SMU_MSG_TransferTableSmu2Dram, table_id | ((argument & 0xFFFF) << 16), NULL); if (ret) return ret; if (!drv2smu) { amdgpu_asic_invalidate_hdp(adev, NULL); memcpy(table_data, table->cpu_addr, table_size); } return 0; } int smu_cmn_write_watermarks_table(struct smu_context *smu) { void *watermarks_table = smu->smu_table.watermarks_table; if (!watermarks_table) return -EINVAL; return smu_cmn_update_table(smu, SMU_TABLE_WATERMARKS, 0, watermarks_table, true); } int smu_cmn_write_pptable(struct smu_context *smu) { void *pptable = smu->smu_table.driver_pptable; return smu_cmn_update_table(smu, SMU_TABLE_PPTABLE, 0, pptable, true); } int smu_cmn_get_metrics_table_locked(struct smu_context *smu, void *metrics_table, bool bypass_cache) { struct smu_table_context *smu_table= &smu->smu_table; uint32_t table_size = smu_table->tables[SMU_TABLE_SMU_METRICS].size; int ret = 0; if (bypass_cache || !smu_table->metrics_time || time_after(jiffies, smu_table->metrics_time + msecs_to_jiffies(1))) { ret = smu_cmn_update_table(smu, SMU_TABLE_SMU_METRICS, 0, smu_table->metrics_table, false); if (ret) { dev_info(smu->adev->dev, "Failed to export SMU metrics table!\n"); return ret; } smu_table->metrics_time = jiffies; } if (metrics_table) memcpy(metrics_table, smu_table->metrics_table, table_size); return 0; } int smu_cmn_get_metrics_table(struct smu_context *smu, void *metrics_table, bool bypass_cache) { int ret = 0; mutex_lock(&smu->metrics_lock); ret = smu_cmn_get_metrics_table_locked(smu, metrics_table, bypass_cache); mutex_unlock(&smu->metrics_lock); return ret; } void smu_cmn_init_soft_gpu_metrics(void *table, uint8_t frev, uint8_t crev) { struct metrics_table_header *header = (struct metrics_table_header *)table; uint16_t structure_size; #define METRICS_VERSION(a, b) ((a << 16) | b ) switch (METRICS_VERSION(frev, crev)) { case METRICS_VERSION(1, 0): structure_size = sizeof(struct gpu_metrics_v1_0); break; case METRICS_VERSION(1, 1): structure_size = sizeof(struct gpu_metrics_v1_1); break; case METRICS_VERSION(1, 2): structure_size = sizeof(struct gpu_metrics_v1_2); break; case METRICS_VERSION(1, 3): structure_size = sizeof(struct gpu_metrics_v1_3); break; case METRICS_VERSION(2, 0): structure_size = sizeof(struct gpu_metrics_v2_0); break; case METRICS_VERSION(2, 1): structure_size = sizeof(struct gpu_metrics_v2_1); break; case METRICS_VERSION(2, 2): structure_size = sizeof(struct gpu_metrics_v2_2); break; default: return; } #undef METRICS_VERSION memset(header, 0xFF, structure_size); header->format_revision = frev; header->content_revision = crev; header->structure_size = structure_size; } int smu_cmn_set_mp1_state(struct smu_context *smu, enum pp_mp1_state mp1_state) { enum smu_message_type msg; int ret; switch (mp1_state) { case PP_MP1_STATE_SHUTDOWN: msg = SMU_MSG_PrepareMp1ForShutdown; break; case PP_MP1_STATE_UNLOAD: msg = SMU_MSG_PrepareMp1ForUnload; break; case PP_MP1_STATE_RESET: msg = SMU_MSG_PrepareMp1ForReset; break; case PP_MP1_STATE_NONE: default: return 0; } ret = smu_cmn_send_smc_msg(smu, msg, NULL); if (ret) dev_err(smu->adev->dev, "[PrepareMp1] Failed!\n"); return ret; }