// SPDX-License-Identifier: MIT /* * Copyright 2022 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dm_services.h" #include "dc.h" #include "dcn32_init.h" #include "resource.h" #include "include/irq_service_interface.h" #include "dcn32_resource.h" #include "dcn20/dcn20_resource.h" #include "dcn30/dcn30_resource.h" #include "dcn10/dcn10_ipp.h" #include "dcn30/dcn30_hubbub.h" #include "dcn31/dcn31_hubbub.h" #include "dcn32/dcn32_hubbub.h" #include "dcn32/dcn32_mpc.h" #include "dcn32_hubp.h" #include "irq/dcn32/irq_service_dcn32.h" #include "dcn32/dcn32_dpp.h" #include "dcn32/dcn32_optc.h" #include "dcn20/dcn20_hwseq.h" #include "dcn30/dcn30_hwseq.h" #include "dce110/dce110_hw_sequencer.h" #include "dcn30/dcn30_opp.h" #include "dcn20/dcn20_dsc.h" #include "dcn30/dcn30_vpg.h" #include "dcn30/dcn30_afmt.h" #include "dcn30/dcn30_dio_stream_encoder.h" #include "dcn32/dcn32_dio_stream_encoder.h" #include "dcn31/dcn31_hpo_dp_stream_encoder.h" #include "dcn31/dcn31_hpo_dp_link_encoder.h" #include "dcn32/dcn32_hpo_dp_link_encoder.h" #include "dc_link_dp.h" #include "dcn31/dcn31_apg.h" #include "dcn31/dcn31_dio_link_encoder.h" #include "dcn32/dcn32_dio_link_encoder.h" #include "dce/dce_clock_source.h" #include "dce/dce_audio.h" #include "dce/dce_hwseq.h" #include "clk_mgr.h" #include "virtual/virtual_stream_encoder.h" #include "dml/display_mode_vba.h" #include "dcn32/dcn32_dccg.h" #include "dcn10/dcn10_resource.h" #include "dc_link_ddc.h" #include "dcn31/dcn31_panel_cntl.h" #include "dcn30/dcn30_dwb.h" #include "dcn32/dcn32_mmhubbub.h" #include "dcn/dcn_3_2_0_offset.h" #include "dcn/dcn_3_2_0_sh_mask.h" #include "nbio/nbio_4_3_0_offset.h" #include "reg_helper.h" #include "dce/dmub_abm.h" #include "dce/dmub_psr.h" #include "dce/dce_aux.h" #include "dce/dce_i2c.h" #include "dml/dcn30/display_mode_vba_30.h" #include "vm_helper.h" #include "dcn20/dcn20_vmid.h" #define DCN_BASE__INST0_SEG1 0x000000C0 #define DCN_BASE__INST0_SEG2 0x000034C0 #define DCN_BASE__INST0_SEG3 0x00009000 #define NBIO_BASE__INST0_SEG1 0x00000014 #define MAX_INSTANCE 6 #define MAX_SEGMENT 6 struct IP_BASE_INSTANCE { unsigned int segment[MAX_SEGMENT]; }; struct IP_BASE { struct IP_BASE_INSTANCE instance[MAX_INSTANCE]; }; static const struct IP_BASE DCN_BASE = { { { { 0x00000012, 0x000000C0, 0x000034C0, 0x00009000, 0x02403C00, 0 } }, { { 0, 0, 0, 0, 0, 0 } }, { { 0, 0, 0, 0, 0, 0 } }, { { 0, 0, 0, 0, 0, 0 } }, { { 0, 0, 0, 0, 0, 0 } }, { { 0, 0, 0, 0, 0, 0 } } } }; #define DC_LOGGER_INIT(logger) #define DCN3_2_DEFAULT_DET_SIZE 256 #define DCN3_2_MAX_DET_SIZE 1152 #define DCN3_2_MIN_DET_SIZE 128 #define DCN3_2_MIN_COMPBUF_SIZE_KB 128 struct _vcs_dpi_ip_params_st dcn3_2_ip = { .gpuvm_enable = 1, .gpuvm_max_page_table_levels = 4, .hostvm_enable = 0, .rob_buffer_size_kbytes = 128, .det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE, .config_return_buffer_size_in_kbytes = 1280, .compressed_buffer_segment_size_in_kbytes = 64, .meta_fifo_size_in_kentries = 22, .zero_size_buffer_entries = 512, .compbuf_reserved_space_64b = 256, .compbuf_reserved_space_zs = 64, .dpp_output_buffer_pixels = 2560, .opp_output_buffer_lines = 1, .pixel_chunk_size_kbytes = 8, .alpha_pixel_chunk_size_kbytes = 4, // not appearing in spreadsheet, match c code from hw team .min_pixel_chunk_size_bytes = 1024, .dcc_meta_buffer_size_bytes = 6272, .meta_chunk_size_kbytes = 2, .min_meta_chunk_size_bytes = 256, .writeback_chunk_size_kbytes = 8, .ptoi_supported = false, .num_dsc = 4, .maximum_dsc_bits_per_component = 12, .maximum_pixels_per_line_per_dsc_unit = 6016, .dsc422_native_support = true, .is_line_buffer_bpp_fixed = true, .line_buffer_fixed_bpp = 57, .line_buffer_size_bits = 1171920, //DPP doc, DCN3_2_DisplayMode_73.xlsm still shows as 986880 bits with 48 bpp .max_line_buffer_lines = 32, .writeback_interface_buffer_size_kbytes = 90, .max_num_dpp = 4, .max_num_otg = 4, .max_num_hdmi_frl_outputs = 1, .max_num_wb = 1, .max_dchub_pscl_bw_pix_per_clk = 4, .max_pscl_lb_bw_pix_per_clk = 2, .max_lb_vscl_bw_pix_per_clk = 4, .max_vscl_hscl_bw_pix_per_clk = 4, .max_hscl_ratio = 6, .max_vscl_ratio = 6, .max_hscl_taps = 8, .max_vscl_taps = 8, .dpte_buffer_size_in_pte_reqs_luma = 64, .dpte_buffer_size_in_pte_reqs_chroma = 34, .dispclk_ramp_margin_percent = 1, .max_inter_dcn_tile_repeaters = 8, .cursor_buffer_size = 16, .cursor_chunk_size = 2, .writeback_line_buffer_buffer_size = 0, .writeback_min_hscl_ratio = 1, .writeback_min_vscl_ratio = 1, .writeback_max_hscl_ratio = 1, .writeback_max_vscl_ratio = 1, .writeback_max_hscl_taps = 1, .writeback_max_vscl_taps = 1, .dppclk_delay_subtotal = 47, .dppclk_delay_scl = 50, .dppclk_delay_scl_lb_only = 16, .dppclk_delay_cnvc_formatter = 28, .dppclk_delay_cnvc_cursor = 6, .dispclk_delay_subtotal = 125, .dynamic_metadata_vm_enabled = false, .odm_combine_4to1_supported = false, .dcc_supported = true, .max_num_dp2p0_outputs = 2, .max_num_dp2p0_streams = 4, }; struct _vcs_dpi_soc_bounding_box_st dcn3_2_soc = { .clock_limits = { { .state = 0, .dcfclk_mhz = 1564.0, .fabricclk_mhz = 400.0, .dispclk_mhz = 2150.0, .dppclk_mhz = 2150.0, .phyclk_mhz = 810.0, .phyclk_d18_mhz = 667.0, .phyclk_d32_mhz = 625.0, .socclk_mhz = 1200.0, .dscclk_mhz = 716.667, .dram_speed_mts = 1600.0, .dtbclk_mhz = 1564.0, }, }, .num_states = 1, .sr_exit_time_us = 5.20, .sr_enter_plus_exit_time_us = 9.60, .sr_exit_z8_time_us = 285.0, .sr_enter_plus_exit_z8_time_us = 320, .writeback_latency_us = 12.0, .round_trip_ping_latency_dcfclk_cycles = 263, .urgent_latency_pixel_data_only_us = 4.0, .urgent_latency_pixel_mixed_with_vm_data_us = 4.0, .urgent_latency_vm_data_only_us = 4.0, .fclk_change_latency_us = 20, .usr_retraining_latency_us = 2, .smn_latency_us = 2, .mall_allocated_for_dcn_mbytes = 64, .urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096, .urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096, .urgent_out_of_order_return_per_channel_vm_only_bytes = 4096, .pct_ideal_sdp_bw_after_urgent = 100.0, .pct_ideal_fabric_bw_after_urgent = 67.0, .pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 20.0, .pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0, // N/A, for now keep as is until DML implemented .pct_ideal_dram_sdp_bw_after_urgent_vm_only = 30.0, // N/A, for now keep as is until DML implemented .pct_ideal_dram_bw_after_urgent_strobe = 67.0, .max_avg_sdp_bw_use_normal_percent = 80.0, .max_avg_fabric_bw_use_normal_percent = 60.0, .max_avg_dram_bw_use_normal_strobe_percent = 50.0, .max_avg_dram_bw_use_normal_percent = 15.0, .num_chans = 8, .dram_channel_width_bytes = 2, .fabric_datapath_to_dcn_data_return_bytes = 64, .return_bus_width_bytes = 64, .downspread_percent = 0.38, .dcn_downspread_percent = 0.5, .dram_clock_change_latency_us = 400, .dispclk_dppclk_vco_speed_mhz = 4300.0, .do_urgent_latency_adjustment = true, .urgent_latency_adjustment_fabric_clock_component_us = 1.0, .urgent_latency_adjustment_fabric_clock_reference_mhz = 1000, }; enum dcn32_clk_src_array_id { DCN32_CLK_SRC_PLL0, DCN32_CLK_SRC_PLL1, DCN32_CLK_SRC_PLL2, DCN32_CLK_SRC_PLL3, DCN32_CLK_SRC_PLL4, DCN32_CLK_SRC_TOTAL }; /* begin ********************* * macros to expend register list macro defined in HW object header file */ /* DCN */ /* TODO awful hack. fixup dcn20_dwb.h */ #undef BASE_INNER #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg #define BASE(seg) BASE_INNER(seg) #define SR(reg_name)\ .reg_name = BASE(reg ## reg_name ## _BASE_IDX) + \ reg ## reg_name #define SRI(reg_name, block, id)\ .reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ reg ## block ## id ## _ ## reg_name #define SRI2(reg_name, block, id)\ .reg_name = BASE(reg ## reg_name ## _BASE_IDX) + \ reg ## reg_name #define SRIR(var_name, reg_name, block, id)\ .var_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ reg ## block ## id ## _ ## reg_name #define SRII(reg_name, block, id)\ .reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ reg ## block ## id ## _ ## reg_name #define SRII_MPC_RMU(reg_name, block, id)\ .RMU##_##reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ reg ## block ## id ## _ ## reg_name #define SRII_DWB(reg_name, temp_name, block, id)\ .reg_name[id] = BASE(reg ## block ## id ## _ ## temp_name ## _BASE_IDX) + \ reg ## block ## id ## _ ## temp_name #define DCCG_SRII(reg_name, block, id)\ .block ## _ ## reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ reg ## block ## id ## _ ## reg_name #define VUPDATE_SRII(reg_name, block, id)\ .reg_name[id] = BASE(reg ## reg_name ## _ ## block ## id ## _BASE_IDX) + \ reg ## reg_name ## _ ## block ## id /* NBIO */ #define NBIO_BASE_INNER(seg) \ NBIO_BASE__INST0_SEG ## seg #define NBIO_BASE(seg) \ NBIO_BASE_INNER(seg) #define NBIO_SR(reg_name)\ .reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \ regBIF_BX0_ ## reg_name #define CTX ctx #define REG(reg_name) \ (DCN_BASE.instance[0].segment[reg ## reg_name ## _BASE_IDX] + reg ## reg_name) static const struct bios_registers bios_regs = { NBIO_SR(BIOS_SCRATCH_3), NBIO_SR(BIOS_SCRATCH_6) }; #define clk_src_regs(index, pllid)\ [index] = {\ CS_COMMON_REG_LIST_DCN3_0(index, pllid),\ } static const struct dce110_clk_src_regs clk_src_regs[] = { clk_src_regs(0, A), clk_src_regs(1, B), clk_src_regs(2, C), clk_src_regs(3, D), clk_src_regs(4, E) }; static const struct dce110_clk_src_shift cs_shift = { CS_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT) }; static const struct dce110_clk_src_mask cs_mask = { CS_COMMON_MASK_SH_LIST_DCN3_2(_MASK) }; #define abm_regs(id)\ [id] = {\ ABM_DCN32_REG_LIST(id)\ } static const struct dce_abm_registers abm_regs[] = { abm_regs(0), abm_regs(1), abm_regs(2), abm_regs(3), }; static const struct dce_abm_shift abm_shift = { ABM_MASK_SH_LIST_DCN32(__SHIFT) }; static const struct dce_abm_mask abm_mask = { ABM_MASK_SH_LIST_DCN32(_MASK) }; #define audio_regs(id)\ [id] = {\ AUD_COMMON_REG_LIST(id)\ } static const struct dce_audio_registers audio_regs[] = { audio_regs(0), audio_regs(1), audio_regs(2), audio_regs(3), audio_regs(4) }; #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\ SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\ SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\ AUD_COMMON_MASK_SH_LIST_BASE(mask_sh) static const struct dce_audio_shift audio_shift = { DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT) }; static const struct dce_audio_mask audio_mask = { DCE120_AUD_COMMON_MASK_SH_LIST(_MASK) }; #define vpg_regs(id)\ [id] = {\ VPG_DCN3_REG_LIST(id)\ } static const struct dcn30_vpg_registers vpg_regs[] = { vpg_regs(0), vpg_regs(1), vpg_regs(2), vpg_regs(3), vpg_regs(4), vpg_regs(5), vpg_regs(6), vpg_regs(7), vpg_regs(8), vpg_regs(9), }; static const struct dcn30_vpg_shift vpg_shift = { DCN3_VPG_MASK_SH_LIST(__SHIFT) }; static const struct dcn30_vpg_mask vpg_mask = { DCN3_VPG_MASK_SH_LIST(_MASK) }; #define afmt_regs(id)\ [id] = {\ AFMT_DCN3_REG_LIST(id)\ } static const struct dcn30_afmt_registers afmt_regs[] = { afmt_regs(0), afmt_regs(1), afmt_regs(2), afmt_regs(3), afmt_regs(4), afmt_regs(5) }; static const struct dcn30_afmt_shift afmt_shift = { DCN3_AFMT_MASK_SH_LIST(__SHIFT) }; static const struct dcn30_afmt_mask afmt_mask = { DCN3_AFMT_MASK_SH_LIST(_MASK) }; #define apg_regs(id)\ [id] = {\ APG_DCN31_REG_LIST(id)\ } static const struct dcn31_apg_registers apg_regs[] = { apg_regs(0), apg_regs(1), apg_regs(2), apg_regs(3) }; static const struct dcn31_apg_shift apg_shift = { DCN31_APG_MASK_SH_LIST(__SHIFT) }; static const struct dcn31_apg_mask apg_mask = { DCN31_APG_MASK_SH_LIST(_MASK) }; #define stream_enc_regs(id)\ [id] = {\ SE_DCN32_REG_LIST(id)\ } static const struct dcn10_stream_enc_registers stream_enc_regs[] = { stream_enc_regs(0), stream_enc_regs(1), stream_enc_regs(2), stream_enc_regs(3), stream_enc_regs(4) }; static const struct dcn10_stream_encoder_shift se_shift = { SE_COMMON_MASK_SH_LIST_DCN32(__SHIFT) }; static const struct dcn10_stream_encoder_mask se_mask = { SE_COMMON_MASK_SH_LIST_DCN32(_MASK) }; #define aux_regs(id)\ [id] = {\ DCN2_AUX_REG_LIST(id)\ } static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = { aux_regs(0), aux_regs(1), aux_regs(2), aux_regs(3), aux_regs(4) }; #define hpd_regs(id)\ [id] = {\ HPD_REG_LIST(id)\ } static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = { hpd_regs(0), hpd_regs(1), hpd_regs(2), hpd_regs(3), hpd_regs(4) }; #define link_regs(id, phyid)\ [id] = {\ LE_DCN31_REG_LIST(id), \ UNIPHY_DCN2_REG_LIST(phyid), \ /*DPCS_DCN31_REG_LIST(id),*/ \ } static const struct dcn10_link_enc_registers link_enc_regs[] = { link_regs(0, A), link_regs(1, B), link_regs(2, C), link_regs(3, D), link_regs(4, E) }; static const struct dcn10_link_enc_shift le_shift = { LINK_ENCODER_MASK_SH_LIST_DCN31(__SHIFT), \ //DPCS_DCN31_MASK_SH_LIST(__SHIFT) }; static const struct dcn10_link_enc_mask le_mask = { LINK_ENCODER_MASK_SH_LIST_DCN31(_MASK), \ //DPCS_DCN31_MASK_SH_LIST(_MASK) }; #define hpo_dp_stream_encoder_reg_list(id)\ [id] = {\ DCN3_1_HPO_DP_STREAM_ENC_REG_LIST(id)\ } static const struct dcn31_hpo_dp_stream_encoder_registers hpo_dp_stream_enc_regs[] = { hpo_dp_stream_encoder_reg_list(0), hpo_dp_stream_encoder_reg_list(1), hpo_dp_stream_encoder_reg_list(2), hpo_dp_stream_encoder_reg_list(3), }; static const struct dcn31_hpo_dp_stream_encoder_shift hpo_dp_se_shift = { DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(__SHIFT) }; static const struct dcn31_hpo_dp_stream_encoder_mask hpo_dp_se_mask = { DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(_MASK) }; #define hpo_dp_link_encoder_reg_list(id)\ [id] = {\ DCN3_1_HPO_DP_LINK_ENC_REG_LIST(id),\ /*DCN3_1_RDPCSTX_REG_LIST(0),*/\ /*DCN3_1_RDPCSTX_REG_LIST(1),*/\ /*DCN3_1_RDPCSTX_REG_LIST(2),*/\ /*DCN3_1_RDPCSTX_REG_LIST(3),*/\ /*DCN3_1_RDPCSTX_REG_LIST(4)*/\ } static const struct dcn31_hpo_dp_link_encoder_registers hpo_dp_link_enc_regs[] = { hpo_dp_link_encoder_reg_list(0), hpo_dp_link_encoder_reg_list(1), }; static const struct dcn31_hpo_dp_link_encoder_shift hpo_dp_le_shift = { DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(__SHIFT) }; static const struct dcn31_hpo_dp_link_encoder_mask hpo_dp_le_mask = { DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(_MASK) }; #define dpp_regs(id)\ [id] = {\ DPP_REG_LIST_DCN30_COMMON(id),\ } static const struct dcn3_dpp_registers dpp_regs[] = { dpp_regs(0), dpp_regs(1), dpp_regs(2), dpp_regs(3) }; static const struct dcn3_dpp_shift tf_shift = { DPP_REG_LIST_SH_MASK_DCN30_COMMON(__SHIFT) }; static const struct dcn3_dpp_mask tf_mask = { DPP_REG_LIST_SH_MASK_DCN30_COMMON(_MASK) }; #define opp_regs(id)\ [id] = {\ OPP_REG_LIST_DCN30(id),\ } static const struct dcn20_opp_registers opp_regs[] = { opp_regs(0), opp_regs(1), opp_regs(2), opp_regs(3) }; static const struct dcn20_opp_shift opp_shift = { OPP_MASK_SH_LIST_DCN20(__SHIFT) }; static const struct dcn20_opp_mask opp_mask = { OPP_MASK_SH_LIST_DCN20(_MASK) }; #define aux_engine_regs(id)\ [id] = {\ AUX_COMMON_REG_LIST0(id), \ .AUXN_IMPCAL = 0, \ .AUXP_IMPCAL = 0, \ .AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \ } static const struct dce110_aux_registers aux_engine_regs[] = { aux_engine_regs(0), aux_engine_regs(1), aux_engine_regs(2), aux_engine_regs(3), aux_engine_regs(4) }; static const struct dce110_aux_registers_shift aux_shift = { DCN_AUX_MASK_SH_LIST(__SHIFT) }; static const struct dce110_aux_registers_mask aux_mask = { DCN_AUX_MASK_SH_LIST(_MASK) }; #define dwbc_regs_dcn3(id)\ [id] = {\ DWBC_COMMON_REG_LIST_DCN30(id),\ } static const struct dcn30_dwbc_registers dwbc30_regs[] = { dwbc_regs_dcn3(0), }; static const struct dcn30_dwbc_shift dwbc30_shift = { DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) }; static const struct dcn30_dwbc_mask dwbc30_mask = { DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK) }; #define mcif_wb_regs_dcn3(id)\ [id] = {\ MCIF_WB_COMMON_REG_LIST_DCN32(id),\ } static const struct dcn30_mmhubbub_registers mcif_wb30_regs[] = { mcif_wb_regs_dcn3(0) }; static const struct dcn30_mmhubbub_shift mcif_wb30_shift = { MCIF_WB_COMMON_MASK_SH_LIST_DCN32(__SHIFT) }; static const struct dcn30_mmhubbub_mask mcif_wb30_mask = { MCIF_WB_COMMON_MASK_SH_LIST_DCN32(_MASK) }; #define dsc_regsDCN20(id)\ [id] = {\ DSC_REG_LIST_DCN20(id)\ } static const struct dcn20_dsc_registers dsc_regs[] = { dsc_regsDCN20(0), dsc_regsDCN20(1), dsc_regsDCN20(2), dsc_regsDCN20(3) }; static const struct dcn20_dsc_shift dsc_shift = { DSC_REG_LIST_SH_MASK_DCN20(__SHIFT) }; static const struct dcn20_dsc_mask dsc_mask = { DSC_REG_LIST_SH_MASK_DCN20(_MASK) }; static const struct dcn30_mpc_registers mpc_regs = { MPC_REG_LIST_DCN3_2(0), MPC_REG_LIST_DCN3_2(1), MPC_REG_LIST_DCN3_2(2), MPC_REG_LIST_DCN3_2(3), MPC_OUT_MUX_REG_LIST_DCN3_0(0), MPC_OUT_MUX_REG_LIST_DCN3_0(1), MPC_OUT_MUX_REG_LIST_DCN3_0(2), MPC_OUT_MUX_REG_LIST_DCN3_0(3), MPC_DWB_MUX_REG_LIST_DCN3_0(0), }; static const struct dcn30_mpc_shift mpc_shift = { MPC_COMMON_MASK_SH_LIST_DCN32(__SHIFT) }; static const struct dcn30_mpc_mask mpc_mask = { MPC_COMMON_MASK_SH_LIST_DCN32(_MASK) }; #define optc_regs(id)\ [id] = {OPTC_COMMON_REG_LIST_DCN3_2(id)} //#ifdef DIAGS_BUILD //static struct dcn_optc_registers optc_regs[] = { //#else static const struct dcn_optc_registers optc_regs[] = { //#endif optc_regs(0), optc_regs(1), optc_regs(2), optc_regs(3) }; static const struct dcn_optc_shift optc_shift = { OPTC_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT) }; static const struct dcn_optc_mask optc_mask = { OPTC_COMMON_MASK_SH_LIST_DCN3_2(_MASK) }; #define hubp_regs(id)\ [id] = {\ HUBP_REG_LIST_DCN32(id)\ } static const struct dcn_hubp2_registers hubp_regs[] = { hubp_regs(0), hubp_regs(1), hubp_regs(2), hubp_regs(3) }; static const struct dcn_hubp2_shift hubp_shift = { HUBP_MASK_SH_LIST_DCN32(__SHIFT) }; static const struct dcn_hubp2_mask hubp_mask = { HUBP_MASK_SH_LIST_DCN32(_MASK) }; static const struct dcn_hubbub_registers hubbub_reg = { HUBBUB_REG_LIST_DCN32(0) }; static const struct dcn_hubbub_shift hubbub_shift = { HUBBUB_MASK_SH_LIST_DCN32(__SHIFT) }; static const struct dcn_hubbub_mask hubbub_mask = { HUBBUB_MASK_SH_LIST_DCN32(_MASK) }; static const struct dccg_registers dccg_regs = { DCCG_REG_LIST_DCN32() }; static const struct dccg_shift dccg_shift = { DCCG_MASK_SH_LIST_DCN32(__SHIFT) }; static const struct dccg_mask dccg_mask = { DCCG_MASK_SH_LIST_DCN32(_MASK) }; #define SRII2(reg_name_pre, reg_name_post, id)\ .reg_name_pre ## _ ## reg_name_post[id] = BASE(reg ## reg_name_pre \ ## id ## _ ## reg_name_post ## _BASE_IDX) + \ reg ## reg_name_pre ## id ## _ ## reg_name_post #define HWSEQ_DCN32_REG_LIST()\ SR(DCHUBBUB_GLOBAL_TIMER_CNTL), \ SR(DIO_MEM_PWR_CTRL), \ SR(ODM_MEM_PWR_CTRL3), \ SR(MMHUBBUB_MEM_PWR_CNTL), \ SR(DCCG_GATE_DISABLE_CNTL), \ SR(DCCG_GATE_DISABLE_CNTL2), \ SR(DCFCLK_CNTL),\ SR(DC_MEM_GLOBAL_PWR_REQ_CNTL), \ SRII(PIXEL_RATE_CNTL, OTG, 0), \ SRII(PIXEL_RATE_CNTL, OTG, 1),\ SRII(PIXEL_RATE_CNTL, OTG, 2),\ SRII(PIXEL_RATE_CNTL, OTG, 3),\ SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 0),\ SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 1),\ SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 2),\ SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 3),\ SR(MICROSECOND_TIME_BASE_DIV), \ SR(MILLISECOND_TIME_BASE_DIV), \ SR(DISPCLK_FREQ_CHANGE_CNTL), \ SR(RBBMIF_TIMEOUT_DIS), \ SR(RBBMIF_TIMEOUT_DIS_2), \ SR(DCHUBBUB_CRC_CTRL), \ SR(DPP_TOP0_DPP_CRC_CTRL), \ SR(DPP_TOP0_DPP_CRC_VAL_B_A), \ SR(DPP_TOP0_DPP_CRC_VAL_R_G), \ SR(MPC_CRC_CTRL), \ SR(MPC_CRC_RESULT_GB), \ SR(MPC_CRC_RESULT_C), \ SR(MPC_CRC_RESULT_AR), \ SR(DOMAIN0_PG_CONFIG), \ SR(DOMAIN1_PG_CONFIG), \ SR(DOMAIN2_PG_CONFIG), \ SR(DOMAIN3_PG_CONFIG), \ SR(DOMAIN16_PG_CONFIG), \ SR(DOMAIN17_PG_CONFIG), \ SR(DOMAIN18_PG_CONFIG), \ SR(DOMAIN19_PG_CONFIG), \ SR(DOMAIN0_PG_STATUS), \ SR(DOMAIN1_PG_STATUS), \ SR(DOMAIN2_PG_STATUS), \ SR(DOMAIN3_PG_STATUS), \ SR(DOMAIN16_PG_STATUS), \ SR(DOMAIN17_PG_STATUS), \ SR(DOMAIN18_PG_STATUS), \ SR(DOMAIN19_PG_STATUS), \ SR(D1VGA_CONTROL), \ SR(D2VGA_CONTROL), \ SR(D3VGA_CONTROL), \ SR(D4VGA_CONTROL), \ SR(D5VGA_CONTROL), \ SR(D6VGA_CONTROL), \ SR(DC_IP_REQUEST_CNTL), \ SR(AZALIA_AUDIO_DTO), \ SR(AZALIA_CONTROLLER_CLOCK_GATING) static const struct dce_hwseq_registers hwseq_reg = { HWSEQ_DCN32_REG_LIST() }; #define HWSEQ_DCN32_MASK_SH_LIST(mask_sh)\ HWSEQ_DCN_MASK_SH_LIST(mask_sh), \ HWS_SF(, DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, mask_sh), \ HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ HWS_SF(, DOMAIN0_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ HWS_SF(, DOMAIN1_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ HWS_SF(, DOMAIN2_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ HWS_SF(, DOMAIN3_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ HWS_SF(, DOMAIN16_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ HWS_SF(, DOMAIN17_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ HWS_SF(, DOMAIN18_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ HWS_SF(, DOMAIN19_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ HWS_SF(, DC_IP_REQUEST_CNTL, IP_REQUEST_EN, mask_sh), \ HWS_SF(, AZALIA_AUDIO_DTO, AZALIA_AUDIO_DTO_MODULE, mask_sh), \ HWS_SF(, HPO_TOP_CLOCK_CONTROL, HPO_HDMISTREAMCLK_G_GATE_DIS, mask_sh), \ HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_UNASSIGNED_PWR_MODE, mask_sh), \ HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_VBLANK_PWR_MODE, mask_sh), \ HWS_SF(, MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, mask_sh) static const struct dce_hwseq_shift hwseq_shift = { HWSEQ_DCN32_MASK_SH_LIST(__SHIFT) }; static const struct dce_hwseq_mask hwseq_mask = { HWSEQ_DCN32_MASK_SH_LIST(_MASK) }; #define vmid_regs(id)\ [id] = {\ DCN20_VMID_REG_LIST(id)\ } static const struct dcn_vmid_registers vmid_regs[] = { vmid_regs(0), vmid_regs(1), vmid_regs(2), vmid_regs(3), vmid_regs(4), vmid_regs(5), vmid_regs(6), vmid_regs(7), vmid_regs(8), vmid_regs(9), vmid_regs(10), vmid_regs(11), vmid_regs(12), vmid_regs(13), vmid_regs(14), vmid_regs(15) }; static const struct dcn20_vmid_shift vmid_shifts = { DCN20_VMID_MASK_SH_LIST(__SHIFT) }; static const struct dcn20_vmid_mask vmid_masks = { DCN20_VMID_MASK_SH_LIST(_MASK) }; static const struct resource_caps res_cap_dcn32 = { .num_timing_generator = 4, .num_opp = 4, .num_video_plane = 4, .num_audio = 5, .num_stream_encoder = 5, .num_hpo_dp_stream_encoder = 4, .num_hpo_dp_link_encoder = 2, .num_pll = 5, .num_dwb = 1, .num_ddc = 5, .num_vmid = 16, .num_mpc_3dlut = 4, .num_dsc = 4, }; static const struct dc_plane_cap plane_cap = { .type = DC_PLANE_TYPE_DCN_UNIVERSAL, .blends_with_above = true, .blends_with_below = true, .per_pixel_alpha = true, .pixel_format_support = { .argb8888 = true, .nv12 = true, .fp16 = true, .p010 = true, .ayuv = false, }, .max_upscale_factor = { .argb8888 = 16000, .nv12 = 16000, .fp16 = 16000 }, // 6:1 downscaling ratio: 1000/6 = 166.666 .max_downscale_factor = { .argb8888 = 167, .nv12 = 167, .fp16 = 167 }, 64, 64 }; static const struct dc_debug_options debug_defaults_drv = { .disable_dmcu = true, .force_abm_enable = false, .timing_trace = false, .clock_trace = true, .disable_pplib_clock_request = false, .disable_idle_power_optimizations = true, .pipe_split_policy = MPC_SPLIT_DYNAMIC, .force_single_disp_pipe_split = false, .disable_dcc = DCC_ENABLE, .vsr_support = true, .performance_trace = false, .max_downscale_src_width = 7680,/*upto 8K*/ .disable_pplib_wm_range = false, .scl_reset_length10 = true, .sanity_checks = false, .underflow_assert_delay_us = 0xFFFFFFFF, .dwb_fi_phase = -1, // -1 = disable, .dmub_command_table = true, .enable_mem_low_power = { .bits = { .vga = false, .i2c = false, .dmcu = false, // This is previously known to cause hang on S3 cycles if enabled .dscl = false, .cm = false, .mpc = false, .optc = true, } }, .use_max_lb = true, .force_disable_subvp = true, .enable_single_display_2to1_odm_policy = true, .enable_dp_dig_pixel_rate_div_policy = 1, }; static const struct dc_debug_options debug_defaults_diags = { .disable_dmcu = true, .force_abm_enable = false, .timing_trace = true, .clock_trace = true, .disable_dpp_power_gate = true, .disable_hubp_power_gate = true, .disable_dsc_power_gate = true, .disable_clock_gate = true, .disable_pplib_clock_request = true, .disable_pplib_wm_range = true, .disable_stutter = false, .scl_reset_length10 = true, .dwb_fi_phase = -1, // -1 = disable .dmub_command_table = true, .enable_tri_buf = true, .use_max_lb = true, .force_disable_subvp = true }; static struct dce_aux *dcn32_aux_engine_create( struct dc_context *ctx, uint32_t inst) { struct aux_engine_dce110 *aux_engine = kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL); if (!aux_engine) return NULL; dce110_aux_engine_construct(aux_engine, ctx, inst, SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD, &aux_engine_regs[inst], &aux_mask, &aux_shift, ctx->dc->caps.extended_aux_timeout_support); return &aux_engine->base; } #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST_DCN30(id) } static const struct dce_i2c_registers i2c_hw_regs[] = { i2c_inst_regs(1), i2c_inst_regs(2), i2c_inst_regs(3), i2c_inst_regs(4), i2c_inst_regs(5), }; static const struct dce_i2c_shift i2c_shifts = { I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT) }; static const struct dce_i2c_mask i2c_masks = { I2C_COMMON_MASK_SH_LIST_DCN30(_MASK) }; static struct dce_i2c_hw *dcn32_i2c_hw_create( struct dc_context *ctx, uint32_t inst) { struct dce_i2c_hw *dce_i2c_hw = kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL); if (!dce_i2c_hw) return NULL; dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst, &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks); return dce_i2c_hw; } static struct clock_source *dcn32_clock_source_create( struct dc_context *ctx, struct dc_bios *bios, enum clock_source_id id, const struct dce110_clk_src_regs *regs, bool dp_clk_src) { struct dce110_clk_src *clk_src = kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL); if (!clk_src) return NULL; if (dcn31_clk_src_construct(clk_src, ctx, bios, id, regs, &cs_shift, &cs_mask)) { clk_src->base.dp_clk_src = dp_clk_src; return &clk_src->base; } BREAK_TO_DEBUGGER(); return NULL; } static struct hubbub *dcn32_hubbub_create(struct dc_context *ctx) { int i; struct dcn20_hubbub *hubbub2 = kzalloc(sizeof(struct dcn20_hubbub), GFP_KERNEL); if (!hubbub2) return NULL; hubbub32_construct(hubbub2, ctx, &hubbub_reg, &hubbub_shift, &hubbub_mask, ctx->dc->dml.ip.det_buffer_size_kbytes, ctx->dc->dml.ip.pixel_chunk_size_kbytes, ctx->dc->dml.ip.config_return_buffer_size_in_kbytes); for (i = 0; i < res_cap_dcn32.num_vmid; i++) { struct dcn20_vmid *vmid = &hubbub2->vmid[i]; vmid->ctx = ctx; vmid->regs = &vmid_regs[i]; vmid->shifts = &vmid_shifts; vmid->masks = &vmid_masks; } return &hubbub2->base; } static struct hubp *dcn32_hubp_create( struct dc_context *ctx, uint32_t inst) { struct dcn20_hubp *hubp2 = kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL); if (!hubp2) return NULL; if (hubp32_construct(hubp2, ctx, inst, &hubp_regs[inst], &hubp_shift, &hubp_mask)) return &hubp2->base; BREAK_TO_DEBUGGER(); kfree(hubp2); return NULL; } static void dcn32_dpp_destroy(struct dpp **dpp) { kfree(TO_DCN30_DPP(*dpp)); *dpp = NULL; } static struct dpp *dcn32_dpp_create( struct dc_context *ctx, uint32_t inst) { struct dcn3_dpp *dpp3 = kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL); if (!dpp3) return NULL; if (dpp32_construct(dpp3, ctx, inst, &dpp_regs[inst], &tf_shift, &tf_mask)) return &dpp3->base; BREAK_TO_DEBUGGER(); kfree(dpp3); return NULL; } static struct mpc *dcn32_mpc_create( struct dc_context *ctx, int num_mpcc, int num_rmu) { struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc), GFP_KERNEL); if (!mpc30) return NULL; dcn32_mpc_construct(mpc30, ctx, &mpc_regs, &mpc_shift, &mpc_mask, num_mpcc, num_rmu); return &mpc30->base; } static struct output_pixel_processor *dcn32_opp_create( struct dc_context *ctx, uint32_t inst) { struct dcn20_opp *opp2 = kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL); if (!opp2) { BREAK_TO_DEBUGGER(); return NULL; } dcn20_opp_construct(opp2, ctx, inst, &opp_regs[inst], &opp_shift, &opp_mask); return &opp2->base; } static struct timing_generator *dcn32_timing_generator_create( struct dc_context *ctx, uint32_t instance) { struct optc *tgn10 = kzalloc(sizeof(struct optc), GFP_KERNEL); if (!tgn10) return NULL; tgn10->base.inst = instance; tgn10->base.ctx = ctx; tgn10->tg_regs = &optc_regs[instance]; tgn10->tg_shift = &optc_shift; tgn10->tg_mask = &optc_mask; dcn32_timing_generator_init(tgn10); return &tgn10->base; } static const struct encoder_feature_support link_enc_feature = { .max_hdmi_deep_color = COLOR_DEPTH_121212, .max_hdmi_pixel_clock = 600000, .hdmi_ycbcr420_supported = true, .dp_ycbcr420_supported = true, .fec_supported = true, .flags.bits.IS_HBR2_CAPABLE = true, .flags.bits.IS_HBR3_CAPABLE = true, .flags.bits.IS_TPS3_CAPABLE = true, .flags.bits.IS_TPS4_CAPABLE = true }; static struct link_encoder *dcn32_link_encoder_create( const struct encoder_init_data *enc_init_data) { struct dcn20_link_encoder *enc20 = kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL); if (!enc20) return NULL; dcn32_link_encoder_construct(enc20, enc_init_data, &link_enc_feature, &link_enc_regs[enc_init_data->transmitter], &link_enc_aux_regs[enc_init_data->channel - 1], &link_enc_hpd_regs[enc_init_data->hpd_source], &le_shift, &le_mask); return &enc20->enc10.base; } struct panel_cntl *dcn32_panel_cntl_create(const struct panel_cntl_init_data *init_data) { struct dcn31_panel_cntl *panel_cntl = kzalloc(sizeof(struct dcn31_panel_cntl), GFP_KERNEL); if (!panel_cntl) return NULL; dcn31_panel_cntl_construct(panel_cntl, init_data); return &panel_cntl->base; } static void read_dce_straps( struct dc_context *ctx, struct resource_straps *straps) { generic_reg_get(ctx, regDC_PINSTRAPS + BASE(regDC_PINSTRAPS_BASE_IDX), FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio); } static struct audio *dcn32_create_audio( struct dc_context *ctx, unsigned int inst) { return dce_audio_create(ctx, inst, &audio_regs[inst], &audio_shift, &audio_mask); } static struct vpg *dcn32_vpg_create( struct dc_context *ctx, uint32_t inst) { struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL); if (!vpg3) return NULL; vpg3_construct(vpg3, ctx, inst, &vpg_regs[inst], &vpg_shift, &vpg_mask); return &vpg3->base; } static struct afmt *dcn32_afmt_create( struct dc_context *ctx, uint32_t inst) { struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL); if (!afmt3) return NULL; afmt3_construct(afmt3, ctx, inst, &afmt_regs[inst], &afmt_shift, &afmt_mask); return &afmt3->base; } static struct apg *dcn31_apg_create( struct dc_context *ctx, uint32_t inst) { struct dcn31_apg *apg31 = kzalloc(sizeof(struct dcn31_apg), GFP_KERNEL); if (!apg31) return NULL; apg31_construct(apg31, ctx, inst, &apg_regs[inst], &apg_shift, &apg_mask); return &apg31->base; } static struct stream_encoder *dcn32_stream_encoder_create( enum engine_id eng_id, struct dc_context *ctx) { struct dcn10_stream_encoder *enc1; struct vpg *vpg; struct afmt *afmt; int vpg_inst; int afmt_inst; /* Mapping of VPG, AFMT, DME register blocks to DIO block instance */ if (eng_id <= ENGINE_ID_DIGF) { vpg_inst = eng_id; afmt_inst = eng_id; } else return NULL; enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL); vpg = dcn32_vpg_create(ctx, vpg_inst); afmt = dcn32_afmt_create(ctx, afmt_inst); if (!enc1 || !vpg || !afmt) { kfree(enc1); kfree(vpg); kfree(afmt); return NULL; } dcn32_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios, eng_id, vpg, afmt, &stream_enc_regs[eng_id], &se_shift, &se_mask); return &enc1->base; } static struct hpo_dp_stream_encoder *dcn32_hpo_dp_stream_encoder_create( enum engine_id eng_id, struct dc_context *ctx) { struct dcn31_hpo_dp_stream_encoder *hpo_dp_enc31; struct vpg *vpg; struct apg *apg; uint32_t hpo_dp_inst; uint32_t vpg_inst; uint32_t apg_inst; ASSERT((eng_id >= ENGINE_ID_HPO_DP_0) && (eng_id <= ENGINE_ID_HPO_DP_3)); hpo_dp_inst = eng_id - ENGINE_ID_HPO_DP_0; /* Mapping of VPG register blocks to HPO DP block instance: * VPG[6] -> HPO_DP[0] * VPG[7] -> HPO_DP[1] * VPG[8] -> HPO_DP[2] * VPG[9] -> HPO_DP[3] */ vpg_inst = hpo_dp_inst + 6; /* Mapping of APG register blocks to HPO DP block instance: * APG[0] -> HPO_DP[0] * APG[1] -> HPO_DP[1] * APG[2] -> HPO_DP[2] * APG[3] -> HPO_DP[3] */ apg_inst = hpo_dp_inst; /* allocate HPO stream encoder and create VPG sub-block */ hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_stream_encoder), GFP_KERNEL); vpg = dcn32_vpg_create(ctx, vpg_inst); apg = dcn31_apg_create(ctx, apg_inst); if (!hpo_dp_enc31 || !vpg || !apg) { kfree(hpo_dp_enc31); kfree(vpg); kfree(apg); return NULL; } dcn31_hpo_dp_stream_encoder_construct(hpo_dp_enc31, ctx, ctx->dc_bios, hpo_dp_inst, eng_id, vpg, apg, &hpo_dp_stream_enc_regs[hpo_dp_inst], &hpo_dp_se_shift, &hpo_dp_se_mask); return &hpo_dp_enc31->base; } static struct hpo_dp_link_encoder *dcn32_hpo_dp_link_encoder_create( uint8_t inst, struct dc_context *ctx) { struct dcn31_hpo_dp_link_encoder *hpo_dp_enc31; /* allocate HPO link encoder */ hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_link_encoder), GFP_KERNEL); hpo_dp_link_encoder32_construct(hpo_dp_enc31, ctx, inst, &hpo_dp_link_enc_regs[inst], &hpo_dp_le_shift, &hpo_dp_le_mask); return &hpo_dp_enc31->base; } static struct dce_hwseq *dcn32_hwseq_create( struct dc_context *ctx) { struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL); if (hws) { hws->ctx = ctx; hws->regs = &hwseq_reg; hws->shifts = &hwseq_shift; hws->masks = &hwseq_mask; } return hws; } static const struct resource_create_funcs res_create_funcs = { .read_dce_straps = read_dce_straps, .create_audio = dcn32_create_audio, .create_stream_encoder = dcn32_stream_encoder_create, .create_hpo_dp_stream_encoder = dcn32_hpo_dp_stream_encoder_create, .create_hpo_dp_link_encoder = dcn32_hpo_dp_link_encoder_create, .create_hwseq = dcn32_hwseq_create, }; static const struct resource_create_funcs res_create_maximus_funcs = { .read_dce_straps = NULL, .create_audio = NULL, .create_stream_encoder = NULL, .create_hpo_dp_stream_encoder = dcn32_hpo_dp_stream_encoder_create, .create_hpo_dp_link_encoder = dcn32_hpo_dp_link_encoder_create, .create_hwseq = dcn32_hwseq_create, }; static void dcn32_resource_destruct(struct dcn32_resource_pool *pool) { unsigned int i; for (i = 0; i < pool->base.stream_enc_count; i++) { if (pool->base.stream_enc[i] != NULL) { if (pool->base.stream_enc[i]->vpg != NULL) { kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg)); pool->base.stream_enc[i]->vpg = NULL; } if (pool->base.stream_enc[i]->afmt != NULL) { kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt)); pool->base.stream_enc[i]->afmt = NULL; } kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i])); pool->base.stream_enc[i] = NULL; } } for (i = 0; i < pool->base.hpo_dp_stream_enc_count; i++) { if (pool->base.hpo_dp_stream_enc[i] != NULL) { if (pool->base.hpo_dp_stream_enc[i]->vpg != NULL) { kfree(DCN30_VPG_FROM_VPG(pool->base.hpo_dp_stream_enc[i]->vpg)); pool->base.hpo_dp_stream_enc[i]->vpg = NULL; } if (pool->base.hpo_dp_stream_enc[i]->apg != NULL) { kfree(DCN31_APG_FROM_APG(pool->base.hpo_dp_stream_enc[i]->apg)); pool->base.hpo_dp_stream_enc[i]->apg = NULL; } kfree(DCN3_1_HPO_DP_STREAM_ENC_FROM_HPO_STREAM_ENC(pool->base.hpo_dp_stream_enc[i])); pool->base.hpo_dp_stream_enc[i] = NULL; } } for (i = 0; i < pool->base.hpo_dp_link_enc_count; i++) { if (pool->base.hpo_dp_link_enc[i] != NULL) { kfree(DCN3_1_HPO_DP_LINK_ENC_FROM_HPO_LINK_ENC(pool->base.hpo_dp_link_enc[i])); pool->base.hpo_dp_link_enc[i] = NULL; } } for (i = 0; i < pool->base.res_cap->num_dsc; i++) { if (pool->base.dscs[i] != NULL) dcn20_dsc_destroy(&pool->base.dscs[i]); } if (pool->base.mpc != NULL) { kfree(TO_DCN20_MPC(pool->base.mpc)); pool->base.mpc = NULL; } if (pool->base.hubbub != NULL) { kfree(TO_DCN20_HUBBUB(pool->base.hubbub)); pool->base.hubbub = NULL; } for (i = 0; i < pool->base.pipe_count; i++) { if (pool->base.dpps[i] != NULL) dcn32_dpp_destroy(&pool->base.dpps[i]); if (pool->base.ipps[i] != NULL) pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]); if (pool->base.hubps[i] != NULL) { kfree(TO_DCN20_HUBP(pool->base.hubps[i])); pool->base.hubps[i] = NULL; } if (pool->base.irqs != NULL) { dal_irq_service_destroy(&pool->base.irqs); } } for (i = 0; i < pool->base.res_cap->num_ddc; i++) { if (pool->base.engines[i] != NULL) dce110_engine_destroy(&pool->base.engines[i]); if (pool->base.hw_i2cs[i] != NULL) { kfree(pool->base.hw_i2cs[i]); pool->base.hw_i2cs[i] = NULL; } if (pool->base.sw_i2cs[i] != NULL) { kfree(pool->base.sw_i2cs[i]); pool->base.sw_i2cs[i] = NULL; } } for (i = 0; i < pool->base.res_cap->num_opp; i++) { if (pool->base.opps[i] != NULL) pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]); } for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { if (pool->base.timing_generators[i] != NULL) { kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i])); pool->base.timing_generators[i] = NULL; } } for (i = 0; i < pool->base.res_cap->num_dwb; i++) { if (pool->base.dwbc[i] != NULL) { kfree(TO_DCN30_DWBC(pool->base.dwbc[i])); pool->base.dwbc[i] = NULL; } if (pool->base.mcif_wb[i] != NULL) { kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i])); pool->base.mcif_wb[i] = NULL; } } for (i = 0; i < pool->base.audio_count; i++) { if (pool->base.audios[i]) dce_aud_destroy(&pool->base.audios[i]); } for (i = 0; i < pool->base.clk_src_count; i++) { if (pool->base.clock_sources[i] != NULL) { dcn20_clock_source_destroy(&pool->base.clock_sources[i]); pool->base.clock_sources[i] = NULL; } } for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) { if (pool->base.mpc_lut[i] != NULL) { dc_3dlut_func_release(pool->base.mpc_lut[i]); pool->base.mpc_lut[i] = NULL; } if (pool->base.mpc_shaper[i] != NULL) { dc_transfer_func_release(pool->base.mpc_shaper[i]); pool->base.mpc_shaper[i] = NULL; } } if (pool->base.dp_clock_source != NULL) { dcn20_clock_source_destroy(&pool->base.dp_clock_source); pool->base.dp_clock_source = NULL; } for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { if (pool->base.multiple_abms[i] != NULL) dce_abm_destroy(&pool->base.multiple_abms[i]); } if (pool->base.psr != NULL) dmub_psr_destroy(&pool->base.psr); if (pool->base.dccg != NULL) dcn_dccg_destroy(&pool->base.dccg); if (pool->base.oem_device != NULL) dal_ddc_service_destroy(&pool->base.oem_device); } static bool dcn32_dwbc_create(struct dc_context *ctx, struct resource_pool *pool) { int i; uint32_t dwb_count = pool->res_cap->num_dwb; for (i = 0; i < dwb_count; i++) { struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc), GFP_KERNEL); if (!dwbc30) { dm_error("DC: failed to create dwbc30!\n"); return false; } dcn30_dwbc_construct(dwbc30, ctx, &dwbc30_regs[i], &dwbc30_shift, &dwbc30_mask, i); pool->dwbc[i] = &dwbc30->base; } return true; } static bool dcn32_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool) { int i; uint32_t dwb_count = pool->res_cap->num_dwb; for (i = 0; i < dwb_count; i++) { struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub), GFP_KERNEL); if (!mcif_wb30) { dm_error("DC: failed to create mcif_wb30!\n"); return false; } dcn32_mmhubbub_construct(mcif_wb30, ctx, &mcif_wb30_regs[i], &mcif_wb30_shift, &mcif_wb30_mask, i); pool->mcif_wb[i] = &mcif_wb30->base; } return true; } static struct display_stream_compressor *dcn32_dsc_create( struct dc_context *ctx, uint32_t inst) { struct dcn20_dsc *dsc = kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL); if (!dsc) { BREAK_TO_DEBUGGER(); return NULL; } dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask); dsc->max_image_width = 6016; return &dsc->base; } static void dcn32_destroy_resource_pool(struct resource_pool **pool) { struct dcn32_resource_pool *dcn32_pool = TO_DCN32_RES_POOL(*pool); dcn32_resource_destruct(dcn32_pool); kfree(dcn32_pool); *pool = NULL; } bool dcn32_acquire_post_bldn_3dlut( struct resource_context *res_ctx, const struct resource_pool *pool, int mpcc_id, struct dc_3dlut **lut, struct dc_transfer_func **shaper) { bool ret = false; union dc_3dlut_state *state; ASSERT(*lut == NULL && *shaper == NULL); *lut = NULL; *shaper = NULL; if (!res_ctx->is_mpc_3dlut_acquired[mpcc_id]) { *lut = pool->mpc_lut[mpcc_id]; *shaper = pool->mpc_shaper[mpcc_id]; state = &pool->mpc_lut[mpcc_id]->state; res_ctx->is_mpc_3dlut_acquired[mpcc_id] = true; ret = true; } return ret; } bool dcn32_release_post_bldn_3dlut( struct resource_context *res_ctx, const struct resource_pool *pool, struct dc_3dlut **lut, struct dc_transfer_func **shaper) { int i; bool ret = false; for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) { if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) { res_ctx->is_mpc_3dlut_acquired[i] = false; pool->mpc_lut[i]->state.raw = 0; *lut = NULL; *shaper = NULL; ret = true; break; } } return ret; } /** ******************************************************************************************** * dcn32_get_num_free_pipes: Calculate number of free pipes * * This function assumes that a "used" pipe is a pipe that has * both a stream and a plane assigned to it. * * @param [in] dc: current dc state * @param [in] context: new dc state * * @return: Number of free pipes available in the context * ******************************************************************************************** */ static unsigned int dcn32_get_num_free_pipes(struct dc *dc, struct dc_state *context) { unsigned int i; unsigned int free_pipes = 0; unsigned int num_pipes = 0; for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; if (pipe->stream && !pipe->top_pipe) { while (pipe) { num_pipes++; pipe = pipe->bottom_pipe; } } } free_pipes = dc->res_pool->pipe_count - num_pipes; return free_pipes; } /** ******************************************************************************************** * dcn32_assign_subvp_pipe: Function to decide which pipe will use Sub-VP. * * We enter this function if we are Sub-VP capable (i.e. enough pipes available) * and regular P-State switching (i.e. VACTIVE/VBLANK) is not supported, or if * we are forcing SubVP P-State switching on the current config. * * The number of pipes used for the chosen surface must be less than or equal to the * number of free pipes available. * * In general we choose surfaces with the longest frame time first (better for SubVP + VBLANK). * For multi-display cases the ActiveDRAMClockChangeMargin doesn't provide enough info on its own * for determining which should be the SubVP pipe (need a way to determine if a pipe / plane doesn't * support MCLK switching naturally [i.e. ACTIVE or VBLANK]). * * @param [in] dc: current dc state * @param [in] context: new dc state * @param [out] index: dc pipe index for the pipe chosen to have phantom pipes assigned * * @return: True if a valid pipe assignment was found for Sub-VP. Otherwise false. * ******************************************************************************************** */ static bool dcn32_assign_subvp_pipe(struct dc *dc, struct dc_state *context, unsigned int *index) { unsigned int i, pipe_idx; unsigned int max_frame_time = 0; bool valid_assignment_found = false; unsigned int free_pipes = dcn32_get_num_free_pipes(dc, context); bool current_assignment_freesync = false; for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; unsigned int num_pipes = 0; if (!pipe->stream) continue; if (pipe->plane_state && !pipe->top_pipe && pipe->stream->mall_stream_config.type == SUBVP_NONE) { while (pipe) { num_pipes++; pipe = pipe->bottom_pipe; } pipe = &context->res_ctx.pipe_ctx[i]; if (num_pipes <= free_pipes) { struct dc_stream_state *stream = pipe->stream; unsigned int frame_us = (stream->timing.v_total * stream->timing.h_total / (double)(stream->timing.pix_clk_100hz * 100)) * 1000000; if (frame_us > max_frame_time && !stream->ignore_msa_timing_param) { *index = i; max_frame_time = frame_us; valid_assignment_found = true; current_assignment_freesync = false; /* For the 2-Freesync display case, still choose the one with the * longest frame time */ } else if (stream->ignore_msa_timing_param && (!valid_assignment_found || (current_assignment_freesync && frame_us > max_frame_time))) { *index = i; valid_assignment_found = true; current_assignment_freesync = true; } } } pipe_idx++; } return valid_assignment_found; } /** * *************************************************************************************** * dcn32_enough_pipes_for_subvp: Function to check if there are "enough" pipes for SubVP. * * This function returns true if there are enough free pipes * to create the required phantom pipes for any given stream * (that does not already have phantom pipe assigned). * * e.g. For a 2 stream config where the first stream uses one * pipe and the second stream uses 2 pipes (i.e. pipe split), * this function will return true because there is 1 remaining * pipe which can be used as the phantom pipe for the non pipe * split pipe. * * @param [in] dc: current dc state * @param [in] context: new dc state * * @return: True if there are enough free pipes to assign phantom pipes to at least one * stream that does not already have phantom pipes assigned. Otherwise false. * * *************************************************************************************** */ static bool dcn32_enough_pipes_for_subvp(struct dc *dc, struct dc_state *context) { unsigned int i, split_cnt, free_pipes; unsigned int min_pipe_split = dc->res_pool->pipe_count + 1; // init as max number of pipes + 1 bool subvp_possible = false; for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; // Find the minimum pipe split count for non SubVP pipes if (pipe->stream && !pipe->top_pipe && pipe->stream->mall_stream_config.type == SUBVP_NONE) { split_cnt = 0; while (pipe) { split_cnt++; pipe = pipe->bottom_pipe; } if (split_cnt < min_pipe_split) min_pipe_split = split_cnt; } } free_pipes = dcn32_get_num_free_pipes(dc, context); // SubVP only possible if at least one pipe is being used (i.e. free_pipes // should not equal to the pipe_count) if (free_pipes >= min_pipe_split && free_pipes < dc->res_pool->pipe_count) subvp_possible = true; return subvp_possible; } static void dcn32_enable_phantom_plane(struct dc *dc, struct dc_state *context, struct dc_stream_state *phantom_stream, unsigned int dc_pipe_idx) { struct dc_plane_state *phantom_plane = NULL; struct dc_plane_state *prev_phantom_plane = NULL; struct pipe_ctx *curr_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx]; while (curr_pipe) { if (curr_pipe->top_pipe && curr_pipe->top_pipe->plane_state == curr_pipe->plane_state) phantom_plane = prev_phantom_plane; else phantom_plane = dc_create_plane_state(dc); memcpy(&phantom_plane->address, &curr_pipe->plane_state->address, sizeof(phantom_plane->address)); memcpy(&phantom_plane->scaling_quality, &curr_pipe->plane_state->scaling_quality, sizeof(phantom_plane->scaling_quality)); memcpy(&phantom_plane->src_rect, &curr_pipe->plane_state->src_rect, sizeof(phantom_plane->src_rect)); memcpy(&phantom_plane->dst_rect, &curr_pipe->plane_state->dst_rect, sizeof(phantom_plane->dst_rect)); memcpy(&phantom_plane->clip_rect, &curr_pipe->plane_state->clip_rect, sizeof(phantom_plane->clip_rect)); memcpy(&phantom_plane->plane_size, &curr_pipe->plane_state->plane_size, sizeof(phantom_plane->plane_size)); memcpy(&phantom_plane->tiling_info, &curr_pipe->plane_state->tiling_info, sizeof(phantom_plane->tiling_info)); memcpy(&phantom_plane->dcc, &curr_pipe->plane_state->dcc, sizeof(phantom_plane->dcc)); phantom_plane->format = curr_pipe->plane_state->format; phantom_plane->rotation = curr_pipe->plane_state->rotation; phantom_plane->visible = curr_pipe->plane_state->visible; /* Shadow pipe has small viewport. */ phantom_plane->clip_rect.y = 0; phantom_plane->clip_rect.height = phantom_stream->timing.v_addressable; dc_add_plane_to_context(dc, phantom_stream, phantom_plane, context); curr_pipe = curr_pipe->bottom_pipe; prev_phantom_plane = phantom_plane; } } /** * *************************************************************************************** * dcn32_set_phantom_stream_timing: Set timing params for the phantom stream * * Set timing params of the phantom stream based on calculated output from DML. * This function first gets the DML pipe index using the DC pipe index, then * calls into DML (get_subviewport_lines_needed_in_mall) to get the number of * lines required for SubVP MCLK switching and assigns to the phantom stream * accordingly. * * - The number of SubVP lines calculated in DML does not take into account * FW processing delays and required pstate allow width, so we must include * that separately. * * - Set phantom backporch = vstartup of main pipe * * @param [in] dc: current dc state * @param [in] context: new dc state * @param [in] ref_pipe: Main pipe for the phantom stream * @param [in] pipes: DML pipe params * @param [in] pipe_cnt: number of DML pipes * @param [in] dc_pipe_idx: DC pipe index for the main pipe (i.e. ref_pipe) * * @return: void * * *************************************************************************************** */ static void dcn32_set_phantom_stream_timing(struct dc *dc, struct dc_state *context, struct pipe_ctx *ref_pipe, struct dc_stream_state *phantom_stream, display_e2e_pipe_params_st *pipes, unsigned int pipe_cnt, unsigned int dc_pipe_idx) { unsigned int i, pipe_idx; struct pipe_ctx *pipe; uint32_t phantom_vactive, phantom_bp, pstate_width_fw_delay_lines; unsigned int vlevel = context->bw_ctx.dml.vba.VoltageLevel; unsigned int dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; unsigned int socclk = context->bw_ctx.dml.vba.SOCCLKPerState[vlevel]; // Find DML pipe index (pipe_idx) using dc_pipe_idx for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { pipe = &context->res_ctx.pipe_ctx[i]; if (!pipe->stream) continue; if (i == dc_pipe_idx) break; pipe_idx++; } // Calculate lines required for pstate allow width and FW processing delays pstate_width_fw_delay_lines = ((double)(dc->caps.subvp_fw_processing_delay_us + dc->caps.subvp_pstate_allow_width_us) / 1000000) * (ref_pipe->stream->timing.pix_clk_100hz * 100) / (double)ref_pipe->stream->timing.h_total; // Update clks_cfg for calling into recalculate pipes[0].clks_cfg.voltage = vlevel; pipes[0].clks_cfg.dcfclk_mhz = dcfclk; pipes[0].clks_cfg.socclk_mhz = socclk; // DML calculation for MALL region doesn't take into account FW delay // and required pstate allow width for multi-display cases phantom_vactive = get_subviewport_lines_needed_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx) + pstate_width_fw_delay_lines; // For backporch of phantom pipe, use vstartup of the main pipe phantom_bp = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); phantom_stream->dst.y = 0; phantom_stream->dst.height = phantom_vactive; phantom_stream->src.y = 0; phantom_stream->src.height = phantom_vactive; phantom_stream->timing.v_addressable = phantom_vactive; phantom_stream->timing.v_front_porch = 1; phantom_stream->timing.v_total = phantom_stream->timing.v_addressable + phantom_stream->timing.v_front_porch + phantom_stream->timing.v_sync_width + phantom_bp; } static struct dc_stream_state *dcn32_enable_phantom_stream(struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, unsigned int pipe_cnt, unsigned int dc_pipe_idx) { struct dc_stream_state *phantom_stream = NULL; struct pipe_ctx *ref_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx]; phantom_stream = dc_create_stream_for_sink(ref_pipe->stream->sink); phantom_stream->signal = SIGNAL_TYPE_VIRTUAL; phantom_stream->dpms_off = true; phantom_stream->mall_stream_config.type = SUBVP_PHANTOM; phantom_stream->mall_stream_config.paired_stream = ref_pipe->stream; ref_pipe->stream->mall_stream_config.type = SUBVP_MAIN; ref_pipe->stream->mall_stream_config.paired_stream = phantom_stream; /* stream has limited viewport and small timing */ memcpy(&phantom_stream->timing, &ref_pipe->stream->timing, sizeof(phantom_stream->timing)); memcpy(&phantom_stream->src, &ref_pipe->stream->src, sizeof(phantom_stream->src)); memcpy(&phantom_stream->dst, &ref_pipe->stream->dst, sizeof(phantom_stream->dst)); dcn32_set_phantom_stream_timing(dc, context, ref_pipe, phantom_stream, pipes, pipe_cnt, dc_pipe_idx); dc_add_stream_to_ctx(dc, context, phantom_stream); return phantom_stream; } // return true if removed piped from ctx, false otherwise bool dcn32_remove_phantom_pipes(struct dc *dc, struct dc_state *context) { int i; bool removed_pipe = false; for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; // build scaling params for phantom pipes if (pipe->plane_state && pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) { dc_rem_all_planes_for_stream(dc, pipe->stream, context); dc_remove_stream_from_ctx(dc, context, pipe->stream); removed_pipe = true; } // Clear all phantom stream info if (pipe->stream) { pipe->stream->mall_stream_config.type = SUBVP_NONE; pipe->stream->mall_stream_config.paired_stream = NULL; } } return removed_pipe; } /* TODO: Input to this function should indicate which pipe indexes (or streams) * require a phantom pipe / stream */ void dcn32_add_phantom_pipes(struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, unsigned int pipe_cnt, unsigned int index) { struct dc_stream_state *phantom_stream = NULL; unsigned int i; // The index of the DC pipe passed into this function is guarenteed to // be a valid candidate for SubVP (i.e. has a plane, stream, doesn't // already have phantom pipe assigned, etc.) by previous checks. phantom_stream = dcn32_enable_phantom_stream(dc, context, pipes, pipe_cnt, index); dcn32_enable_phantom_plane(dc, context, phantom_stream, index); for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; // Build scaling params for phantom pipes which were newly added. // We determine which phantom pipes were added by comparing with // the phantom stream. if (pipe->plane_state && pipe->stream && pipe->stream == phantom_stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) { pipe->stream->use_dynamic_meta = false; pipe->plane_state->flip_immediate = false; if (!resource_build_scaling_params(pipe)) { // Log / remove phantom pipes since failed to build scaling params } } } } static bool dcn32_split_stream_for_mpc_or_odm( const struct dc *dc, struct resource_context *res_ctx, struct pipe_ctx *pri_pipe, struct pipe_ctx *sec_pipe, bool odm) { int pipe_idx = sec_pipe->pipe_idx; const struct resource_pool *pool = dc->res_pool; if (pri_pipe->plane_state) { /* ODM + window MPO, where MPO window is on left half only */ if (pri_pipe->plane_state->clip_rect.x + pri_pipe->plane_state->clip_rect.width <= pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) return true; /* ODM + window MPO, where MPO window is on right half only */ if (pri_pipe->plane_state->clip_rect.x >= pri_pipe->stream->src.width/2) return true; } *sec_pipe = *pri_pipe; sec_pipe->pipe_idx = pipe_idx; sec_pipe->plane_res.mi = pool->mis[pipe_idx]; sec_pipe->plane_res.hubp = pool->hubps[pipe_idx]; sec_pipe->plane_res.ipp = pool->ipps[pipe_idx]; sec_pipe->plane_res.xfm = pool->transforms[pipe_idx]; sec_pipe->plane_res.dpp = pool->dpps[pipe_idx]; sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst; sec_pipe->stream_res.dsc = NULL; if (odm) { if (pri_pipe->next_odm_pipe) { ASSERT(pri_pipe->next_odm_pipe != sec_pipe); sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe; sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe; } if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) { pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe; sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe; } if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) { pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe; sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe; } pri_pipe->next_odm_pipe = sec_pipe; sec_pipe->prev_odm_pipe = pri_pipe; ASSERT(sec_pipe->top_pipe == NULL); if (!sec_pipe->top_pipe) sec_pipe->stream_res.opp = pool->opps[pipe_idx]; else sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp; if (sec_pipe->stream->timing.flags.DSC == 1) { dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx); ASSERT(sec_pipe->stream_res.dsc); if (sec_pipe->stream_res.dsc == NULL) return false; } } else { if (pri_pipe->bottom_pipe) { ASSERT(pri_pipe->bottom_pipe != sec_pipe); sec_pipe->bottom_pipe = pri_pipe->bottom_pipe; sec_pipe->bottom_pipe->top_pipe = sec_pipe; } pri_pipe->bottom_pipe = sec_pipe; sec_pipe->top_pipe = pri_pipe; ASSERT(pri_pipe->plane_state); } return true; } static struct pipe_ctx *dcn32_find_split_pipe( struct dc *dc, struct dc_state *context, int old_index) { struct pipe_ctx *pipe = NULL; int i; if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) { pipe = &context->res_ctx.pipe_ctx[old_index]; pipe->pipe_idx = old_index; } if (!pipe) for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL && dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) { if (context->res_ctx.pipe_ctx[i].stream == NULL) { pipe = &context->res_ctx.pipe_ctx[i]; pipe->pipe_idx = i; break; } } } /* * May need to fix pipes getting tossed from 1 opp to another on flip * Add for debugging transient underflow during topology updates: * ASSERT(pipe); */ if (!pipe) for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { if (context->res_ctx.pipe_ctx[i].stream == NULL) { pipe = &context->res_ctx.pipe_ctx[i]; pipe->pipe_idx = i; break; } } return pipe; } /** * *************************************************************************************** * subvp_subvp_schedulable: Determine if SubVP + SubVP config is schedulable * * High level algorithm: * 1. Find longest microschedule length (in us) between the two SubVP pipes * 2. Check if the worst case overlap (VBLANK in middle of ACTIVE) for both * pipes still allows for the maximum microschedule to fit in the active * region for both pipes. * * @param [in] dc: current dc state * @param [in] context: new dc state * * @return: bool - True if the SubVP + SubVP config is schedulable, false otherwise * * *************************************************************************************** */ static bool subvp_subvp_schedulable(struct dc *dc, struct dc_state *context) { struct pipe_ctx *subvp_pipes[2]; struct dc_stream_state *phantom = NULL; uint32_t microschedule_lines = 0; uint32_t index = 0; uint32_t i; uint32_t max_microschedule_us = 0; int32_t vactive1_us, vactive2_us, vblank1_us, vblank2_us; for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; uint32_t time_us = 0; /* Loop to calculate the maximum microschedule time between the two SubVP pipes, * and also to store the two main SubVP pipe pointers in subvp_pipes[2]. */ if (pipe->stream && pipe->plane_state && !pipe->top_pipe && pipe->stream->mall_stream_config.type == SUBVP_MAIN) { phantom = pipe->stream->mall_stream_config.paired_stream; microschedule_lines = (phantom->timing.v_total - phantom->timing.v_front_porch) + phantom->timing.v_addressable; // Round up when calculating microschedule time (+ 1 at the end) time_us = (microschedule_lines * phantom->timing.h_total) / (double)(phantom->timing.pix_clk_100hz * 100) * 1000000 + dc->caps.subvp_prefetch_end_to_mall_start_us + dc->caps.subvp_fw_processing_delay_us + 1; if (time_us > max_microschedule_us) max_microschedule_us = time_us; subvp_pipes[index] = pipe; index++; // Maximum 2 SubVP pipes if (index == 2) break; } } vactive1_us = ((subvp_pipes[0]->stream->timing.v_addressable * subvp_pipes[0]->stream->timing.h_total) / (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000; vactive2_us = ((subvp_pipes[1]->stream->timing.v_addressable * subvp_pipes[1]->stream->timing.h_total) / (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000; vblank1_us = (((subvp_pipes[0]->stream->timing.v_total - subvp_pipes[0]->stream->timing.v_addressable) * subvp_pipes[0]->stream->timing.h_total) / (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000; vblank2_us = (((subvp_pipes[1]->stream->timing.v_total - subvp_pipes[1]->stream->timing.v_addressable) * subvp_pipes[1]->stream->timing.h_total) / (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000; if ((vactive1_us - vblank2_us) / 2 > max_microschedule_us && (vactive2_us - vblank1_us) / 2 > max_microschedule_us) return true; return false; } /** * *************************************************************************************** * subvp_drr_schedulable: Determine if SubVP + DRR config is schedulable * * High level algorithm: * 1. Get timing for SubVP pipe, phantom pipe, and DRR pipe * 2. Determine the frame time for the DRR display when adding required margin for MCLK switching * (the margin is equal to the MALL region + DRR margin (500us)) * 3.If (SubVP Active - Prefetch > Stretched DRR frame + max(MALL region, Stretched DRR frame)) * then report the configuration as supported * * @param [in] dc: current dc state * @param [in] context: new dc state * @param [in] drr_pipe: DRR pipe_ctx for the SubVP + DRR config * * @return: bool - True if the SubVP + DRR config is schedulable, false otherwise * * *************************************************************************************** */ static bool subvp_drr_schedulable(struct dc *dc, struct dc_state *context, struct pipe_ctx *drr_pipe) { bool schedulable = false; uint32_t i; struct pipe_ctx *pipe = NULL; struct dc_crtc_timing *main_timing = NULL; struct dc_crtc_timing *phantom_timing = NULL; struct dc_crtc_timing *drr_timing = NULL; int16_t prefetch_us = 0; int16_t mall_region_us = 0; int16_t drr_frame_us = 0; // nominal frame time int16_t subvp_active_us = 0; int16_t stretched_drr_us = 0; int16_t drr_stretched_vblank_us = 0; int16_t max_vblank_mallregion = 0; // Find SubVP pipe for (i = 0; i < dc->res_pool->pipe_count; i++) { pipe = &context->res_ctx.pipe_ctx[i]; // We check for master pipe, but it shouldn't matter since we only need // the pipe for timing info (stream should be same for any pipe splits) if (!pipe->stream || !pipe->plane_state || pipe->top_pipe || pipe->prev_odm_pipe) continue; // Find the SubVP pipe if (pipe->stream->mall_stream_config.type == SUBVP_MAIN) break; } main_timing = &pipe->stream->timing; phantom_timing = &pipe->stream->mall_stream_config.paired_stream->timing; drr_timing = &drr_pipe->stream->timing; prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total / (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 + dc->caps.subvp_prefetch_end_to_mall_start_us; subvp_active_us = main_timing->v_addressable * main_timing->h_total / (double)(main_timing->pix_clk_100hz * 100) * 1000000; drr_frame_us = drr_timing->v_total * drr_timing->h_total / (double)(drr_timing->pix_clk_100hz * 100) * 1000000; // P-State allow width and FW delays already included phantom_timing->v_addressable mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total / (double)(phantom_timing->pix_clk_100hz * 100) * 1000000; stretched_drr_us = drr_frame_us + mall_region_us + SUBVP_DRR_MARGIN_US; drr_stretched_vblank_us = (drr_timing->v_total - drr_timing->v_addressable) * drr_timing->h_total / (double)(drr_timing->pix_clk_100hz * 100) * 1000000 + (stretched_drr_us - drr_frame_us); max_vblank_mallregion = drr_stretched_vblank_us > mall_region_us ? drr_stretched_vblank_us : mall_region_us; /* We consider SubVP + DRR schedulable if the stretched frame duration of the DRR display (i.e. the * highest refresh rate + margin that can support UCLK P-State switch) passes the static analysis * for VBLANK: (VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time, * and the max of (VBLANK blanking time, MALL region)). */ if (stretched_drr_us < (1 / (double)drr_timing->min_refresh_in_uhz) * 1000000 * 1000000 && subvp_active_us - prefetch_us - stretched_drr_us - max_vblank_mallregion > 0) schedulable = true; return schedulable; } /** * *************************************************************************************** * subvp_vblank_schedulable: Determine if SubVP + VBLANK config is schedulable * * High level algorithm: * 1. Get timing for SubVP pipe, phantom pipe, and VBLANK pipe * 2. If (SubVP Active - Prefetch > Vblank Frame Time + max(MALL region, Vblank blanking time)) * then report the configuration as supported * 3. If the VBLANK display is DRR, then take the DRR static schedulability path * * @param [in] dc: current dc state * @param [in] context: new dc state * * @return: bool - True if the SubVP + VBLANK/DRR config is schedulable, false otherwise * * *************************************************************************************** */ static bool subvp_vblank_schedulable(struct dc *dc, struct dc_state *context) { struct pipe_ctx *pipe = NULL; struct pipe_ctx *subvp_pipe = NULL; bool found = false; bool schedulable = false; uint32_t i = 0; uint8_t vblank_index = 0; uint16_t prefetch_us = 0; uint16_t mall_region_us = 0; uint16_t vblank_frame_us = 0; uint16_t subvp_active_us = 0; uint16_t vblank_blank_us = 0; uint16_t max_vblank_mallregion = 0; struct dc_crtc_timing *main_timing = NULL; struct dc_crtc_timing *phantom_timing = NULL; struct dc_crtc_timing *vblank_timing = NULL; /* For SubVP + VBLANK/DRR cases, we assume there can only be * a single VBLANK/DRR display. If DML outputs SubVP + VBLANK * is supported, it is either a single VBLANK case or two VBLANK * displays which are synchronized (in which case they have identical * timings). */ for (i = 0; i < dc->res_pool->pipe_count; i++) { pipe = &context->res_ctx.pipe_ctx[i]; // We check for master pipe, but it shouldn't matter since we only need // the pipe for timing info (stream should be same for any pipe splits) if (!pipe->stream || !pipe->plane_state || pipe->top_pipe || pipe->prev_odm_pipe) continue; if (!found && pipe->stream->mall_stream_config.type == SUBVP_NONE) { // Found pipe which is not SubVP or Phantom (i.e. the VBLANK pipe). vblank_index = i; found = true; } if (!subvp_pipe && pipe->stream->mall_stream_config.type == SUBVP_MAIN) subvp_pipe = pipe; } // Use ignore_msa_timing_param flag to identify as DRR if (found && context->res_ctx.pipe_ctx[vblank_index].stream->ignore_msa_timing_param) { // SUBVP + DRR case schedulable = subvp_drr_schedulable(dc, context, &context->res_ctx.pipe_ctx[vblank_index]); } else if (found) { main_timing = &subvp_pipe->stream->timing; phantom_timing = &subvp_pipe->stream->mall_stream_config.paired_stream->timing; vblank_timing = &context->res_ctx.pipe_ctx[vblank_index].stream->timing; // Prefetch time is equal to VACTIVE + BP + VSYNC of the phantom pipe // Also include the prefetch end to mallstart delay time prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total / (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 + dc->caps.subvp_prefetch_end_to_mall_start_us; // P-State allow width and FW delays already included phantom_timing->v_addressable mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total / (double)(phantom_timing->pix_clk_100hz * 100) * 1000000; vblank_frame_us = vblank_timing->v_total * vblank_timing->h_total / (double)(vblank_timing->pix_clk_100hz * 100) * 1000000; vblank_blank_us = (vblank_timing->v_total - vblank_timing->v_addressable) * vblank_timing->h_total / (double)(vblank_timing->pix_clk_100hz * 100) * 1000000; subvp_active_us = main_timing->v_addressable * main_timing->h_total / (double)(main_timing->pix_clk_100hz * 100) * 1000000; max_vblank_mallregion = vblank_blank_us > mall_region_us ? vblank_blank_us : mall_region_us; // Schedulable if VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time, // and the max of (VBLANK blanking time, MALL region) // TODO: Possibly add some margin (i.e. the below conditions should be [...] > X instead of [...] > 0) if (subvp_active_us - prefetch_us - vblank_frame_us - max_vblank_mallregion > 0) schedulable = true; } return schedulable; } /** * ******************************************************************************************** * subvp_validate_static_schedulability: Check which SubVP case is calculated and handle * static analysis based on the case. * * Three cases: * 1. SubVP + SubVP * 2. SubVP + VBLANK (DRR checked internally) * 3. SubVP + VACTIVE (currently unsupported) * * @param [in] dc: current dc state * @param [in] context: new dc state * @param [in] vlevel: Voltage level calculated by DML * * @return: bool - True if statically schedulable, false otherwise * * ******************************************************************************************** */ static bool subvp_validate_static_schedulability(struct dc *dc, struct dc_state *context, int vlevel) { bool schedulable = true; // true by default for single display case struct vba_vars_st *vba = &context->bw_ctx.dml.vba; uint32_t i, pipe_idx; uint8_t subvp_count = 0; uint8_t vactive_count = 0; for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; if (!pipe->stream) continue; if (pipe->plane_state && !pipe->top_pipe && pipe->stream->mall_stream_config.type == SUBVP_MAIN) subvp_count++; // Count how many planes are capable of VACTIVE switching (SubVP + VACTIVE unsupported) if (vba->ActiveDRAMClockChangeLatencyMargin[vba->pipe_plane[pipe_idx]] > 0) { vactive_count++; } pipe_idx++; } if (subvp_count == 2) { // Static schedulability check for SubVP + SubVP case schedulable = subvp_subvp_schedulable(dc, context); } else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vblank_w_mall_sub_vp) { // Static schedulability check for SubVP + VBLANK case. Also handle the case where // DML outputs SubVP + VBLANK + VACTIVE (DML will report as SubVP + VBLANK) if (vactive_count > 0) schedulable = false; else schedulable = subvp_vblank_schedulable(dc, context); } else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vactive_w_mall_sub_vp) { // SubVP + VACTIVE currently unsupported schedulable = false; } return schedulable; } static void dcn32_full_validate_bw_helper(struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, int *vlevel, int *split, bool *merge, int *pipe_cnt) { struct vba_vars_st *vba = &context->bw_ctx.dml.vba; unsigned int dc_pipe_idx = 0; bool found_supported_config = false; struct pipe_ctx *pipe = NULL; uint32_t non_subvp_pipes = 0; bool drr_pipe_found = false; uint32_t drr_pipe_index = 0; uint32_t i = 0; /* * DML favors voltage over p-state, but we're more interested in * supporting p-state over voltage. We can't support p-state in * prefetch mode > 0 so try capping the prefetch mode to start. */ context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = dm_prefetch_support_uclk_fclk_and_stutter; *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt); /* This may adjust vlevel and maxMpcComb */ if (*vlevel < context->bw_ctx.dml.soc.num_states) *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge); /* Conditions for setting up phantom pipes for SubVP: * 1. Not force disable SubVP * 2. Full update (i.e. !fast_validate) * 3. Enough pipes are available to support SubVP (TODO: Which pipes will use VACTIVE / VBLANK / SUBVP?) * 4. Display configuration passes validation * 5. (Config doesn't support MCLK in VACTIVE/VBLANK || dc->debug.force_subvp_mclk_switch) */ if (!dc->debug.force_disable_subvp && dcn32_all_pipes_have_stream_and_plane(dc, context) && (*vlevel == context->bw_ctx.dml.soc.num_states || vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported || dc->debug.force_subvp_mclk_switch)) { dcn32_merge_pipes_for_subvp(dc, context); while (!found_supported_config && dcn32_enough_pipes_for_subvp(dc, context) && dcn32_assign_subvp_pipe(dc, context, &dc_pipe_idx)) { /* For the case where *vlevel = num_states, bandwidth validation has failed for this config. * Adding phantom pipes won't change the validation result, so change the DML input param * for P-State support before adding phantom pipes and recalculating the DML result. * However, this case is only applicable for SubVP + DRR cases because the prefetch mode * will not allow for switch in VBLANK. The DRR display must have it's VBLANK stretched * enough to support support MCLK switching. */ if (*vlevel == context->bw_ctx.dml.soc.num_states) { context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = dm_prefetch_support_stutter; /* There are params (such as FabricClock) that need to be recalculated * after validation fails (otherwise it will be 0). Calculation for * phantom vactive requires call into DML, so we must ensure all the * vba params are valid otherwise we'll get incorrect phantom vactive. */ *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt); } dc->res_pool->funcs->add_phantom_pipes(dc, context, pipes, *pipe_cnt, dc_pipe_idx); *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false); *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt); if (*vlevel < context->bw_ctx.dml.soc.num_states && vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported && subvp_validate_static_schedulability(dc, context, *vlevel)) { found_supported_config = true; } else if (*vlevel < context->bw_ctx.dml.soc.num_states && vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported) { /* Case where 1 SubVP is added, and DML reports MCLK unsupported. This handles * the case for SubVP + DRR, where the DRR display does not support MCLK switch * at it's native refresh rate / timing. */ for (i = 0; i < dc->res_pool->pipe_count; i++) { pipe = &context->res_ctx.pipe_ctx[i]; if (pipe->stream && pipe->plane_state && !pipe->top_pipe && pipe->stream->mall_stream_config.type == SUBVP_NONE) { non_subvp_pipes++; // Use ignore_msa_timing_param flag to identify as DRR if (pipe->stream->ignore_msa_timing_param) { drr_pipe_found = true; drr_pipe_index = i; } } } // If there is only 1 remaining non SubVP pipe that is DRR, check static // schedulability for SubVP + DRR. if (non_subvp_pipes == 1 && drr_pipe_found) { found_supported_config = subvp_drr_schedulable(dc, context, &context->res_ctx.pipe_ctx[drr_pipe_index]); } } } // If SubVP pipe config is unsupported (or cannot be used for UCLK switching) // remove phantom pipes and repopulate dml pipes if (!found_supported_config) { dc->res_pool->funcs->remove_phantom_pipes(dc, context); vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] = dm_dram_clock_change_unsupported; *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false); } else { // only call dcn20_validate_apply_pipe_split_flags if we found a supported config memset(split, 0, MAX_PIPES * sizeof(int)); memset(merge, 0, MAX_PIPES * sizeof(bool)); *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge); // Note: We can't apply the phantom pipes to hardware at this time. We have to wait // until driver has acquired the DMCUB lock to do it safely. } } } static bool dcn32_internal_validate_bw( struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, int *pipe_cnt_out, int *vlevel_out, bool fast_validate) { bool out = false; bool repopulate_pipes = false; int split[MAX_PIPES] = { 0 }; bool merge[MAX_PIPES] = { false }; bool newly_split[MAX_PIPES] = { false }; int pipe_cnt, i, pipe_idx, vlevel; struct vba_vars_st *vba = &context->bw_ctx.dml.vba; ASSERT(pipes); if (!pipes) return false; // For each full update, remove all existing phantom pipes first dc->res_pool->funcs->remove_phantom_pipes(dc, context); dc->res_pool->funcs->update_soc_for_wm_a(dc, context); pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); if (!pipe_cnt) { out = true; goto validate_out; } dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt); if (!fast_validate) { dcn32_full_validate_bw_helper(dc, context, pipes, &vlevel, split, merge, &pipe_cnt); } if (fast_validate || vlevel == context->bw_ctx.dml.soc.num_states || vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported) { /* * If mode is unsupported or there's still no p-state support then * fall back to favoring voltage. * * We don't actually support prefetch mode 2, so require that we * at least support prefetch mode 1. */ context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = dm_prefetch_support_stutter; vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); if (vlevel < context->bw_ctx.dml.soc.num_states) { memset(split, 0, MAX_PIPES * sizeof(int)); memset(merge, 0, MAX_PIPES * sizeof(bool)); vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge); } } dml_log_mode_support_params(&context->bw_ctx.dml); if (vlevel == context->bw_ctx.dml.soc.num_states) goto validate_fail; for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; struct pipe_ctx *mpo_pipe = pipe->bottom_pipe; if (!pipe->stream) continue; /* We only support full screen mpo with ODM */ if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled && pipe->plane_state && mpo_pipe && memcmp(&mpo_pipe->plane_res.scl_data.recout, &pipe->plane_res.scl_data.recout, sizeof(struct rect)) != 0) { ASSERT(mpo_pipe->plane_state != pipe->plane_state); goto validate_fail; } pipe_idx++; } /* merge pipes if necessary */ for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; /*skip pipes that don't need merging*/ if (!merge[i]) continue; /* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */ if (pipe->prev_odm_pipe) { /*split off odm pipe*/ pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe; if (pipe->next_odm_pipe) pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe; pipe->bottom_pipe = NULL; pipe->next_odm_pipe = NULL; pipe->plane_state = NULL; pipe->stream = NULL; pipe->top_pipe = NULL; pipe->prev_odm_pipe = NULL; if (pipe->stream_res.dsc) dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc); memset(&pipe->plane_res, 0, sizeof(pipe->plane_res)); memset(&pipe->stream_res, 0, sizeof(pipe->stream_res)); repopulate_pipes = true; } else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) { struct pipe_ctx *top_pipe = pipe->top_pipe; struct pipe_ctx *bottom_pipe = pipe->bottom_pipe; top_pipe->bottom_pipe = bottom_pipe; if (bottom_pipe) bottom_pipe->top_pipe = top_pipe; pipe->top_pipe = NULL; pipe->bottom_pipe = NULL; pipe->plane_state = NULL; pipe->stream = NULL; memset(&pipe->plane_res, 0, sizeof(pipe->plane_res)); memset(&pipe->stream_res, 0, sizeof(pipe->stream_res)); repopulate_pipes = true; } else ASSERT(0); /* Should never try to merge master pipe */ } for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i]; struct pipe_ctx *hsplit_pipe = NULL; bool odm; int old_index = -1; if (!pipe->stream || newly_split[i]) continue; pipe_idx++; odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled; if (!pipe->plane_state && !odm) continue; if (split[i]) { if (odm) { if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe) old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx; else if (old_pipe->next_odm_pipe) old_index = old_pipe->next_odm_pipe->pipe_idx; } else { if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state) old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx; else if (old_pipe->bottom_pipe && old_pipe->bottom_pipe->plane_state == old_pipe->plane_state) old_index = old_pipe->bottom_pipe->pipe_idx; } hsplit_pipe = dcn32_find_split_pipe(dc, context, old_index); ASSERT(hsplit_pipe); if (!hsplit_pipe) goto validate_fail; if (!dcn32_split_stream_for_mpc_or_odm( dc, &context->res_ctx, pipe, hsplit_pipe, odm)) goto validate_fail; newly_split[hsplit_pipe->pipe_idx] = true; repopulate_pipes = true; } if (split[i] == 4) { struct pipe_ctx *pipe_4to1; if (odm && old_pipe->next_odm_pipe) old_index = old_pipe->next_odm_pipe->pipe_idx; else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->plane_state == old_pipe->plane_state) old_index = old_pipe->bottom_pipe->pipe_idx; else old_index = -1; pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index); ASSERT(pipe_4to1); if (!pipe_4to1) goto validate_fail; if (!dcn32_split_stream_for_mpc_or_odm( dc, &context->res_ctx, pipe, pipe_4to1, odm)) goto validate_fail; newly_split[pipe_4to1->pipe_idx] = true; if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe) old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx; else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state) old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx; else old_index = -1; pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index); ASSERT(pipe_4to1); if (!pipe_4to1) goto validate_fail; if (!dcn32_split_stream_for_mpc_or_odm( dc, &context->res_ctx, hsplit_pipe, pipe_4to1, odm)) goto validate_fail; newly_split[pipe_4to1->pipe_idx] = true; } if (odm) dcn20_build_mapped_resource(dc, context, pipe->stream); } for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; if (pipe->plane_state) { if (!resource_build_scaling_params(pipe)) goto validate_fail; } } /* Actual dsc count per stream dsc validation*/ if (!dcn20_validate_dsc(dc, context)) { vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE; goto validate_fail; } if (repopulate_pipes) pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); *vlevel_out = vlevel; *pipe_cnt_out = pipe_cnt; out = true; goto validate_out; validate_fail: out = false; validate_out: return out; } bool dcn32_validate_bandwidth(struct dc *dc, struct dc_state *context, bool fast_validate) { bool out = false; BW_VAL_TRACE_SETUP(); int vlevel = 0; int pipe_cnt = 0; display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL); DC_LOGGER_INIT(dc->ctx->logger); BW_VAL_TRACE_COUNT(); DC_FP_START(); out = dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate); DC_FP_END(); if (pipe_cnt == 0) goto validate_out; if (!out) goto validate_fail; BW_VAL_TRACE_END_VOLTAGE_LEVEL(); if (fast_validate) { BW_VAL_TRACE_SKIP(fast); goto validate_out; } dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel); BW_VAL_TRACE_END_WATERMARKS(); goto validate_out; validate_fail: DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n", dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states])); BW_VAL_TRACE_SKIP(fail); out = false; validate_out: kfree(pipes); BW_VAL_TRACE_FINISH(); return out; } static bool is_dual_plane(enum surface_pixel_format format) { return format >= SURFACE_PIXEL_FORMAT_VIDEO_BEGIN || format == SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA; } int dcn32_populate_dml_pipes_from_context( struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, bool fast_validate) { int i, pipe_cnt; struct resource_context *res_ctx = &context->res_ctx; struct pipe_ctx *pipe; dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate); for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) { struct dc_crtc_timing *timing; if (!res_ctx->pipe_ctx[i].stream) continue; pipe = &res_ctx->pipe_ctx[i]; timing = &pipe->stream->timing; pipes[pipe_cnt].pipe.src.gpuvm = true; pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_luma = 0; pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_chroma = 0; pipes[pipe_cnt].pipe.dest.vfront_porch = timing->v_front_porch; pipes[pipe_cnt].pipe.src.gpuvm_min_page_size_kbytes = 256; // according to spreadsheet pipes[pipe_cnt].pipe.src.unbounded_req_mode = false; pipes[pipe_cnt].pipe.scale_ratio_depth.lb_depth = dm_lb_19; switch (pipe->stream->mall_stream_config.type) { case SUBVP_MAIN: pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_sub_viewport; break; case SUBVP_PHANTOM: pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_phantom_pipe; pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable; // Disallow unbounded req for SubVP according to DCHUB programming guide pipes[pipe_cnt].pipe.src.unbounded_req_mode = false; break; case SUBVP_NONE: pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_disable; pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable; break; default: break; } pipes[pipe_cnt].dout.dsc_input_bpc = 0; if (pipes[pipe_cnt].dout.dsc_enable) { switch (timing->display_color_depth) { case COLOR_DEPTH_888: pipes[pipe_cnt].dout.dsc_input_bpc = 8; break; case COLOR_DEPTH_101010: pipes[pipe_cnt].dout.dsc_input_bpc = 10; break; case COLOR_DEPTH_121212: pipes[pipe_cnt].dout.dsc_input_bpc = 12; break; default: ASSERT(0); break; } } pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_dal; if (context->stream_count == 1) { if (dc->debug.enable_single_display_2to1_odm_policy) pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_2to1; } pipe_cnt++; } /* For DET allocation, we don't want to use DML policy (not optimal for utilizing all * the DET available for each pipe). Use the DET override input to maintain our driver * policy. */ switch (pipe_cnt) { case 1: pipes[0].pipe.src.det_size_override = DCN3_2_MAX_DET_SIZE; if (pipe->plane_state && !dc->debug.disable_z9_mpc) { if (!is_dual_plane(pipe->plane_state->format)) { pipes[0].pipe.src.det_size_override = DCN3_2_DEFAULT_DET_SIZE; pipes[0].pipe.src.unbounded_req_mode = true; if (pipe->plane_state->src_rect.width >= 5120 && pipe->plane_state->src_rect.height >= 2880) pipes[0].pipe.src.det_size_override = 320; // 5K or higher } } break; case 2: case 3: case 4: // For 2 and 3 pipes, use (MAX_DET_SIZE / pipe_cnt), for 4 pipes use default size for each pipe for (i = 0; i < pipe_cnt; i++) { pipes[i].pipe.src.det_size_override = (pipe_cnt < 4) ? (DCN3_2_MAX_DET_SIZE / pipe_cnt) : DCN3_2_DEFAULT_DET_SIZE; } break; } dcn32_update_det_override_for_mpo(dc, context, pipes); return pipe_cnt; } void dcn32_calculate_wm_and_dlg_fp( struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, int pipe_cnt, int vlevel) { int i, pipe_idx, vlevel_temp = 0; double dcfclk = dcn3_2_soc.clock_limits[0].dcfclk_mhz; double dcfclk_from_validation = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed; bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] != dm_dram_clock_change_unsupported; // Override DRAMClockChangeSupport for SubVP + DRR case where the DRR cannot switch without stretching it's VBLANK if (!pstate_en && dcn32_subvp_in_use(dc, context)) { context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp; pstate_en = true; } /* Set B: * For Set B calculations use clocks from clock_limits[2] when available i.e. when SMU is present, * otherwise use arbitrary low value from spreadsheet for DCFCLK as lower is safer for watermark * calculations to cover bootup clocks. * DCFCLK: soc.clock_limits[2] when available * UCLK: soc.clock_limits[2] when available */ if (dcn3_2_soc.num_states > 2) { vlevel_temp = 2; dcfclk = dcn3_2_soc.clock_limits[2].dcfclk_mhz; } else dcfclk = 615; //DCFCLK Vmin_lv pipes[0].clks_cfg.voltage = vlevel_temp; pipes[0].clks_cfg.dcfclk_mhz = dcfclk; pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz; if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) { context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us; context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us; context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us; context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us; } context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.b.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; /* Set D: * All clocks min. * DCFCLK: Min, as reported by PM FW when available * UCLK : Min, as reported by PM FW when available * sr_enter_exit/sr_exit should be lower than used for DRAM (TBD after bringup or later, use as decided in Clk Mgr) */ if (dcn3_2_soc.num_states > 2) { vlevel_temp = 0; dcfclk = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz; } else dcfclk = 615; //DCFCLK Vmin_lv pipes[0].clks_cfg.voltage = vlevel_temp; pipes[0].clks_cfg.dcfclk_mhz = dcfclk; pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz; if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) { context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us; context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us; context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us; context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us; } context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.d.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; /* Set C, for Dummy P-State: * All clocks min. * DCFCLK: Min, as reported by PM FW, when available * UCLK : Min, as reported by PM FW, when available * pstate latency as per UCLK state dummy pstate latency */ // For Set A and Set C use values from validation pipes[0].clks_cfg.voltage = vlevel; pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_validation; pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz; if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) { unsigned int min_dram_speed_mts_margin = 160; if ((!pstate_en)) min_dram_speed_mts = dc->clk_mgr->bw_params->clk_table.entries[dc->clk_mgr->bw_params->clk_table.num_entries - 1].memclk_mhz * 16; /* find largest table entry that is lower than dram speed, but lower than DPM0 still uses DPM0 */ for (i = 3; i > 0; i--) if (min_dram_speed_mts + min_dram_speed_mts_margin > dc->clk_mgr->bw_params->dummy_pstate_table[i].dram_speed_mts) break; context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->dummy_pstate_table[i].dummy_pstate_latency_us; context->bw_ctx.dml.soc.dummy_pstate_latency_us = dc->clk_mgr->bw_params->dummy_pstate_table[i].dummy_pstate_latency_us; context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us; context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us; context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us; } context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.c.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; if ((!pstate_en) && (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid)) { /* The only difference between A and C is p-state latency, if p-state is not supported * with full p-state latency we want to calculate DLG based on dummy p-state latency, * Set A p-state watermark set to 0 on DCN32, when p-state unsupported, for now keep as DCN32. */ context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c; context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0; } else { /* Set A: * All clocks min. * DCFCLK: Min, as reported by PM FW, when available * UCLK: Min, as reported by PM FW, when available */ dc->res_pool->funcs->update_soc_for_wm_a(dc, context); context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.a.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; } for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { if (!context->res_ctx.pipe_ctx[i].stream) continue; pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt); pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); if (dc->config.forced_clocks) { pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz; pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz; } if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000) pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0; if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000) pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0; pipe_idx++; } context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod; dcn32_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel); if (!pstate_en) /* Restore full p-state latency */ context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us; } static struct dc_cap_funcs cap_funcs = { .get_dcc_compression_cap = dcn20_get_dcc_compression_cap }; static void dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts, unsigned int *optimal_dcfclk, unsigned int *optimal_fclk) { double bw_from_dram, bw_from_dram1, bw_from_dram2; bw_from_dram1 = uclk_mts * dcn3_2_soc.num_chans * dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_dram_bw_use_normal_percent / 100); bw_from_dram2 = uclk_mts * dcn3_2_soc.num_chans * dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100); bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2; if (optimal_fclk) *optimal_fclk = bw_from_dram / (dcn3_2_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100)); if (optimal_dcfclk) *optimal_dcfclk = bw_from_dram / (dcn3_2_soc.return_bus_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100)); } void dcn32_calculate_wm_and_dlg( struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, int pipe_cnt, int vlevel) { DC_FP_START(); dcn32_calculate_wm_and_dlg_fp( dc, context, pipes, pipe_cnt, vlevel); DC_FP_END(); } static bool is_dtbclk_required(struct dc *dc, struct dc_state *context) { int i; for (i = 0; i < dc->res_pool->pipe_count; i++) { if (!context->res_ctx.pipe_ctx[i].stream) continue; if (is_dp_128b_132b_signal(&context->res_ctx.pipe_ctx[i])) return true; } return false; } void dcn32_calculate_dlg_params(struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, int pipe_cnt, int vlevel) { int i, pipe_idx; bool usr_retraining_support = false; /* Writeback MCIF_WB arbitration parameters */ dc->res_pool->funcs->set_mcif_arb_params(dc, context, pipes, pipe_cnt); context->bw_ctx.bw.dcn.clk.dispclk_khz = context->bw_ctx.dml.vba.DISPCLK * 1000; context->bw_ctx.bw.dcn.clk.dcfclk_khz = context->bw_ctx.dml.vba.DCFCLK * 1000; context->bw_ctx.bw.dcn.clk.socclk_khz = context->bw_ctx.dml.vba.SOCCLK * 1000; context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16; context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = context->bw_ctx.dml.vba.DCFCLKDeepSleep * 1000; context->bw_ctx.bw.dcn.clk.fclk_khz = context->bw_ctx.dml.vba.FabricClock * 1000; context->bw_ctx.bw.dcn.clk.p_state_change_support = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] != dm_dram_clock_change_unsupported; context->bw_ctx.bw.dcn.clk.num_ways = dcn32_helper_calculate_num_ways_for_subvp(dc, context); /* * * TODO: needs FAMS * Pstate change might not be supported by hardware, but it might be * possible with firmware driven vertical blank stretching. */ // context->bw_ctx.bw.dcn.clk.p_state_change_support |= context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching; context->bw_ctx.bw.dcn.clk.dppclk_khz = 0; context->bw_ctx.bw.dcn.clk.dtbclk_en = is_dtbclk_required(dc, context); context->bw_ctx.bw.dcn.clk.ref_dtbclk_khz = context->bw_ctx.dml.vba.DTBCLKPerState[vlevel] * 1000; if (context->bw_ctx.dml.vba.FCLKChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_fclock_change_unsupported) context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = false; else context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true; usr_retraining_support = context->bw_ctx.dml.vba.USRRetrainingSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; ASSERT(usr_retraining_support); if (context->bw_ctx.bw.dcn.clk.dispclk_khz < dc->debug.min_disp_clk_khz) context->bw_ctx.bw.dcn.clk.dispclk_khz = dc->debug.min_disp_clk_khz; for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { if (!context->res_ctx.pipe_ctx[i].stream) continue; pipes[pipe_idx].pipe.dest.vstartup_start = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); pipes[pipe_idx].pipe.dest.vupdate_offset = get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); pipes[pipe_idx].pipe.dest.vupdate_width = get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); pipes[pipe_idx].pipe.dest.vready_offset = get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); if (context->res_ctx.pipe_ctx[i].stream->mall_stream_config.type == SUBVP_PHANTOM) { // Phantom pipe requires that DET_SIZE = 0 and no unbounded requests context->res_ctx.pipe_ctx[i].det_buffer_size_kb = 0; context->res_ctx.pipe_ctx[i].unbounded_req = false; } else { context->res_ctx.pipe_ctx[i].det_buffer_size_kb = get_det_buffer_size_kbytes(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); context->res_ctx.pipe_ctx[i].unbounded_req = pipes[pipe_idx].pipe.src.unbounded_req_mode; } if (context->bw_ctx.bw.dcn.clk.dppclk_khz < pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000) context->bw_ctx.bw.dcn.clk.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000; context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000; context->res_ctx.pipe_ctx[i].pipe_dlg_param = pipes[pipe_idx].pipe.dest; pipe_idx++; } /*save a original dppclock copy*/ context->bw_ctx.bw.dcn.clk.bw_dppclk_khz = context->bw_ctx.bw.dcn.clk.dppclk_khz; context->bw_ctx.bw.dcn.clk.bw_dispclk_khz = context->bw_ctx.bw.dcn.clk.dispclk_khz; context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dppclk_mhz * 1000; context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dispclk_mhz * 1000; context->bw_ctx.bw.dcn.compbuf_size_kb = context->bw_ctx.dml.ip.config_return_buffer_size_in_kbytes; for (i = 0; i < dc->res_pool->pipe_count; i++) { if (context->res_ctx.pipe_ctx[i].stream) context->bw_ctx.bw.dcn.compbuf_size_kb -= context->res_ctx.pipe_ctx[i].det_buffer_size_kb; } for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { if (!context->res_ctx.pipe_ctx[i].stream) continue; context->bw_ctx.dml.funcs.rq_dlg_get_dlg_reg_v2(&context->bw_ctx.dml, &context->res_ctx.pipe_ctx[i].dlg_regs, &context->res_ctx.pipe_ctx[i].ttu_regs, pipes, pipe_cnt, pipe_idx); context->bw_ctx.dml.funcs.rq_dlg_get_rq_reg_v2(&context->res_ctx.pipe_ctx[i].rq_regs, &context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); pipe_idx++; } } static void get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st *entry) { if (entry->dcfclk_mhz > 0) { float bw_on_sdp = entry->dcfclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100); entry->fabricclk_mhz = bw_on_sdp / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100)); entry->dram_speed_mts = bw_on_sdp / (dcn3_2_soc.num_chans * dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100)); } else if (entry->fabricclk_mhz > 0) { float bw_on_fabric = entry->fabricclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100); entry->dcfclk_mhz = bw_on_fabric / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100)); entry->dram_speed_mts = bw_on_fabric / (dcn3_2_soc.num_chans * dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100)); } else if (entry->dram_speed_mts > 0) { float bw_on_dram = entry->dram_speed_mts * dcn3_2_soc.num_chans * dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100); entry->fabricclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100)); entry->dcfclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100)); } } static float calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st *entry) { float memory_bw_kbytes_sec = entry->dram_speed_mts * dcn3_2_soc.num_chans * dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100); float fabric_bw_kbytes_sec = entry->fabricclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100); float sdp_bw_kbytes_sec = entry->dcfclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100); float limiting_bw_kbytes_sec = memory_bw_kbytes_sec; if (fabric_bw_kbytes_sec < limiting_bw_kbytes_sec) limiting_bw_kbytes_sec = fabric_bw_kbytes_sec; if (sdp_bw_kbytes_sec < limiting_bw_kbytes_sec) limiting_bw_kbytes_sec = sdp_bw_kbytes_sec; return limiting_bw_kbytes_sec; } static void insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries, struct _vcs_dpi_voltage_scaling_st *entry) { int index = 0; int i = 0; float net_bw_of_new_state = 0; if (*num_entries == 0) { table[0] = *entry; (*num_entries)++; } else { net_bw_of_new_state = calculate_net_bw_in_kbytes_sec(entry); while (net_bw_of_new_state > calculate_net_bw_in_kbytes_sec(&table[index])) { index++; if (index >= *num_entries) break; } for (i = *num_entries; i > index; i--) { table[i] = table[i - 1]; } table[index] = *entry; (*num_entries)++; } } static void remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries, unsigned int index) { int i; if (*num_entries == 0) return; for (i = index; i < *num_entries - 1; i++) { table[i] = table[i + 1]; } memset(&table[--(*num_entries)], 0, sizeof(struct _vcs_dpi_voltage_scaling_st)); } static int build_synthetic_soc_states(struct clk_bw_params *bw_params, struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries) { int i, j; struct _vcs_dpi_voltage_scaling_st entry = {0}; unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0; unsigned int min_dcfclk_mhz = 199, min_fclk_mhz = 299; static const unsigned int num_dcfclk_stas = 5; unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564}; unsigned int num_uclk_dpms = 0; unsigned int num_fclk_dpms = 0; unsigned int num_dcfclk_dpms = 0; for (i = 0; i < MAX_NUM_DPM_LVL; i++) { if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz) max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz; if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz) max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz; if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz) max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz; if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz) max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz; if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz) max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz; if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz) max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz; if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz) max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz; if (bw_params->clk_table.entries[i].memclk_mhz > 0) num_uclk_dpms++; if (bw_params->clk_table.entries[i].fclk_mhz > 0) num_fclk_dpms++; if (bw_params->clk_table.entries[i].dcfclk_mhz > 0) num_dcfclk_dpms++; } if (!max_dcfclk_mhz || !max_dispclk_mhz || !max_dtbclk_mhz) return -1; if (max_dppclk_mhz == 0) max_dppclk_mhz = max_dispclk_mhz; if (max_fclk_mhz == 0) max_fclk_mhz = max_dcfclk_mhz * dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / dcn3_2_soc.pct_ideal_fabric_bw_after_urgent; if (max_phyclk_mhz == 0) max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz; *num_entries = 0; entry.dispclk_mhz = max_dispclk_mhz; entry.dscclk_mhz = max_dispclk_mhz / 3; entry.dppclk_mhz = max_dppclk_mhz; entry.dtbclk_mhz = max_dtbclk_mhz; entry.phyclk_mhz = max_phyclk_mhz; entry.phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz; entry.phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz; // Insert all the DCFCLK STAs for (i = 0; i < num_dcfclk_stas; i++) { entry.dcfclk_mhz = dcfclk_sta_targets[i]; entry.fabricclk_mhz = 0; entry.dram_speed_mts = 0; get_optimal_ntuple(&entry); insert_entry_into_table_sorted(table, num_entries, &entry); } // Insert the max DCFCLK entry.dcfclk_mhz = max_dcfclk_mhz; entry.fabricclk_mhz = 0; entry.dram_speed_mts = 0; get_optimal_ntuple(&entry); insert_entry_into_table_sorted(table, num_entries, &entry); // Insert the UCLK DPMS for (i = 0; i < num_uclk_dpms; i++) { entry.dcfclk_mhz = 0; entry.fabricclk_mhz = 0; entry.dram_speed_mts = bw_params->clk_table.entries[i].memclk_mhz * 16; get_optimal_ntuple(&entry); insert_entry_into_table_sorted(table, num_entries, &entry); } // If FCLK is coarse grained, insert individual DPMs. if (num_fclk_dpms > 2) { for (i = 0; i < num_fclk_dpms; i++) { entry.dcfclk_mhz = 0; entry.fabricclk_mhz = bw_params->clk_table.entries[i].fclk_mhz; entry.dram_speed_mts = 0; get_optimal_ntuple(&entry); insert_entry_into_table_sorted(table, num_entries, &entry); } } // If FCLK fine grained, only insert max else { entry.dcfclk_mhz = 0; entry.fabricclk_mhz = max_fclk_mhz; entry.dram_speed_mts = 0; get_optimal_ntuple(&entry); insert_entry_into_table_sorted(table, num_entries, &entry); } // At this point, the table contains all "points of interest" based on // DPMs from PMFW, and STAs. Table is sorted by BW, and all clock // ratios (by derate, are exact). // Remove states that require higher clocks than are supported for (i = *num_entries - 1; i >= 0 ; i--) { if (table[i].dcfclk_mhz > max_dcfclk_mhz || table[i].fabricclk_mhz > max_fclk_mhz || table[i].dram_speed_mts > max_uclk_mhz * 16) remove_entry_from_table_at_index(table, num_entries, i); } // At this point, the table only contains supported points of interest // it could be used as is, but some states may be redundant due to // coarse grained nature of some clocks, so we want to round up to // coarse grained DPMs and remove duplicates. // Round up UCLKs for (i = *num_entries - 1; i >= 0 ; i--) { for (j = 0; j < num_uclk_dpms; j++) { if (bw_params->clk_table.entries[j].memclk_mhz * 16 >= table[i].dram_speed_mts) { table[i].dram_speed_mts = bw_params->clk_table.entries[j].memclk_mhz * 16; break; } } } // If FCLK is coarse grained, round up to next DPMs if (num_fclk_dpms > 2) { for (i = *num_entries - 1; i >= 0 ; i--) { for (j = 0; j < num_fclk_dpms; j++) { if (bw_params->clk_table.entries[j].fclk_mhz >= table[i].fabricclk_mhz) { table[i].fabricclk_mhz = bw_params->clk_table.entries[j].fclk_mhz; break; } } } } // Otherwise, round up to minimum. else { for (i = *num_entries - 1; i >= 0 ; i--) { if (table[i].fabricclk_mhz < min_fclk_mhz) { table[i].fabricclk_mhz = min_fclk_mhz; break; } } } // Round DCFCLKs up to minimum for (i = *num_entries - 1; i >= 0 ; i--) { if (table[i].dcfclk_mhz < min_dcfclk_mhz) { table[i].dcfclk_mhz = min_dcfclk_mhz; break; } } // Remove duplicate states, note duplicate states are always neighbouring since table is sorted. i = 0; while (i < *num_entries - 1) { if (table[i].dcfclk_mhz == table[i + 1].dcfclk_mhz && table[i].fabricclk_mhz == table[i + 1].fabricclk_mhz && table[i].dram_speed_mts == table[i + 1].dram_speed_mts) remove_entry_from_table_at_index(table, num_entries, i + 1); else i++; } // Fix up the state indicies for (i = *num_entries - 1; i >= 0 ; i--) { table[i].state = i; } return 0; } /* dcn32_update_bw_bounding_box * This would override some dcn3_2 ip_or_soc initial parameters hardcoded from spreadsheet * with actual values as per dGPU SKU: * -with passed few options from dc->config * -with dentist_vco_frequency from Clk Mgr (currently hardcoded, but might need to get it from PM FW) * -with passed latency values (passed in ns units) in dc-> bb override for debugging purposes * -with passed latencies from VBIOS (in 100_ns units) if available for certain dGPU SKU * -with number of DRAM channels from VBIOS (which differ for certain dGPU SKU of the same ASIC) * -clocks levels with passed clk_table entries from Clk Mgr as reported by PM FW for different * clocks (which might differ for certain dGPU SKU of the same ASIC) */ static void dcn32_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params) { if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) { /* Overrides from dc->config options */ dcn3_2_ip.clamp_min_dcfclk = dc->config.clamp_min_dcfclk; /* Override from passed dc->bb_overrides if available*/ if ((int)(dcn3_2_soc.sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns && dc->bb_overrides.sr_exit_time_ns) { dcn3_2_soc.sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0; } if ((int)(dcn3_2_soc.sr_enter_plus_exit_time_us * 1000) != dc->bb_overrides.sr_enter_plus_exit_time_ns && dc->bb_overrides.sr_enter_plus_exit_time_ns) { dcn3_2_soc.sr_enter_plus_exit_time_us = dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0; } if ((int)(dcn3_2_soc.urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns && dc->bb_overrides.urgent_latency_ns) { dcn3_2_soc.urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0; } if ((int)(dcn3_2_soc.dram_clock_change_latency_us * 1000) != dc->bb_overrides.dram_clock_change_latency_ns && dc->bb_overrides.dram_clock_change_latency_ns) { dcn3_2_soc.dram_clock_change_latency_us = dc->bb_overrides.dram_clock_change_latency_ns / 1000.0; } if ((int)(dcn3_2_soc.dummy_pstate_latency_us * 1000) != dc->bb_overrides.dummy_clock_change_latency_ns && dc->bb_overrides.dummy_clock_change_latency_ns) { dcn3_2_soc.dummy_pstate_latency_us = dc->bb_overrides.dummy_clock_change_latency_ns / 1000.0; } /* Override from VBIOS if VBIOS bb_info available */ if (dc->ctx->dc_bios->funcs->get_soc_bb_info) { struct bp_soc_bb_info bb_info = {0}; if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) { if (bb_info.dram_clock_change_latency_100ns > 0) dcn3_2_soc.dram_clock_change_latency_us = bb_info.dram_clock_change_latency_100ns * 10; if (bb_info.dram_sr_enter_exit_latency_100ns > 0) dcn3_2_soc.sr_enter_plus_exit_time_us = bb_info.dram_sr_enter_exit_latency_100ns * 10; if (bb_info.dram_sr_exit_latency_100ns > 0) dcn3_2_soc.sr_exit_time_us = bb_info.dram_sr_exit_latency_100ns * 10; } } /* Override from VBIOS for num_chan */ if (dc->ctx->dc_bios->vram_info.num_chans) dcn3_2_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans; if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes) dcn3_2_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes; } /* Override dispclk_dppclk_vco_speed_mhz from Clk Mgr */ dcn3_2_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0; dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0; /* Overrides Clock levelsfrom CLK Mgr table entries as reported by PM FW */ if ((!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) && (bw_params->clk_table.entries[0].memclk_mhz)) { if (dc->debug.use_legacy_soc_bb_mechanism) { unsigned int i = 0, j = 0, num_states = 0; unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0}; unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0}; unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0}; unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0}; unsigned int min_dcfclk = UINT_MAX; /* Set 199 as first value in STA target array to have a minimum DCFCLK value. * For DCN32 we set min to 199 so minimum FCLK DPM0 (300Mhz can be achieved) */ unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564}; unsigned int num_dcfclk_sta_targets = 4, num_uclk_states = 0; unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0; for (i = 0; i < MAX_NUM_DPM_LVL; i++) { if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz) max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz; if (bw_params->clk_table.entries[i].dcfclk_mhz != 0 && bw_params->clk_table.entries[i].dcfclk_mhz < min_dcfclk) min_dcfclk = bw_params->clk_table.entries[i].dcfclk_mhz; if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz) max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz; if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz) max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz; if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz) max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz; } if (min_dcfclk > dcfclk_sta_targets[0]) dcfclk_sta_targets[0] = min_dcfclk; if (!max_dcfclk_mhz) max_dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz; if (!max_dispclk_mhz) max_dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz; if (!max_dppclk_mhz) max_dppclk_mhz = dcn3_2_soc.clock_limits[0].dppclk_mhz; if (!max_phyclk_mhz) max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz; if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { // If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz; num_dcfclk_sta_targets++; } else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { // If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates for (i = 0; i < num_dcfclk_sta_targets; i++) { if (dcfclk_sta_targets[i] > max_dcfclk_mhz) { dcfclk_sta_targets[i] = max_dcfclk_mhz; break; } } // Update size of array since we "removed" duplicates num_dcfclk_sta_targets = i + 1; } num_uclk_states = bw_params->clk_table.num_entries; // Calculate optimal dcfclk for each uclk for (i = 0; i < num_uclk_states; i++) { dcn32_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16, &optimal_dcfclk_for_uclk[i], NULL); if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) { optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz; } } // Calculate optimal uclk for each dcfclk sta target for (i = 0; i < num_dcfclk_sta_targets; i++) { for (j = 0; j < num_uclk_states; j++) { if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) { optimal_uclk_for_dcfclk_sta_targets[i] = bw_params->clk_table.entries[j].memclk_mhz * 16; break; } } } i = 0; j = 0; // create the final dcfclk and uclk table while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) { if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) { dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; } else { if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) { dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; } else { j = num_uclk_states; } } } while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) { dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; } while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) { dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; } dcn3_2_soc.num_states = num_states; for (i = 0; i < dcn3_2_soc.num_states; i++) { dcn3_2_soc.clock_limits[i].state = i; dcn3_2_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i]; dcn3_2_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i]; /* Fill all states with max values of all these clocks */ dcn3_2_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz; dcn3_2_soc.clock_limits[i].dppclk_mhz = max_dppclk_mhz; dcn3_2_soc.clock_limits[i].phyclk_mhz = max_phyclk_mhz; dcn3_2_soc.clock_limits[i].dscclk_mhz = max_dispclk_mhz / 3; /* Populate from bw_params for DTBCLK, SOCCLK */ if (i > 0) { if (!bw_params->clk_table.entries[i].dtbclk_mhz) { dcn3_2_soc.clock_limits[i].dtbclk_mhz = dcn3_2_soc.clock_limits[i-1].dtbclk_mhz; } else { dcn3_2_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz; } } else if (bw_params->clk_table.entries[i].dtbclk_mhz) { dcn3_2_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz; } if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0) dcn3_2_soc.clock_limits[i].socclk_mhz = dcn3_2_soc.clock_limits[i-1].socclk_mhz; else dcn3_2_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz; if (!dram_speed_mts[i] && i > 0) dcn3_2_soc.clock_limits[i].dram_speed_mts = dcn3_2_soc.clock_limits[i-1].dram_speed_mts; else dcn3_2_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i]; /* These clocks cannot come from bw_params, always fill from dcn3_2_soc[0] */ /* PHYCLK_D18, PHYCLK_D32 */ dcn3_2_soc.clock_limits[i].phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz; dcn3_2_soc.clock_limits[i].phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz; } } else { build_synthetic_soc_states(bw_params, dcn3_2_soc.clock_limits, &dcn3_2_soc.num_states); } /* Re-init DML with updated bb */ dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32); if (dc->current_state) dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32); } } static struct resource_funcs dcn32_res_pool_funcs = { .destroy = dcn32_destroy_resource_pool, .link_enc_create = dcn32_link_encoder_create, .link_enc_create_minimal = NULL, .panel_cntl_create = dcn32_panel_cntl_create, .validate_bandwidth = dcn32_validate_bandwidth, .calculate_wm_and_dlg = dcn32_calculate_wm_and_dlg, .populate_dml_pipes = dcn32_populate_dml_pipes_from_context, .acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer, .add_stream_to_ctx = dcn30_add_stream_to_ctx, .add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource, .remove_stream_from_ctx = dcn20_remove_stream_from_ctx, .populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context, .set_mcif_arb_params = dcn30_set_mcif_arb_params, .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link, .acquire_post_bldn_3dlut = dcn32_acquire_post_bldn_3dlut, .release_post_bldn_3dlut = dcn32_release_post_bldn_3dlut, .update_bw_bounding_box = dcn32_update_bw_bounding_box, .patch_unknown_plane_state = dcn20_patch_unknown_plane_state, .update_soc_for_wm_a = dcn30_update_soc_for_wm_a, .add_phantom_pipes = dcn32_add_phantom_pipes, .remove_phantom_pipes = dcn32_remove_phantom_pipes, }; static bool dcn32_resource_construct( uint8_t num_virtual_links, struct dc *dc, struct dcn32_resource_pool *pool) { int i, j; struct dc_context *ctx = dc->ctx; struct irq_service_init_data init_data; struct ddc_service_init_data ddc_init_data = {0}; uint32_t pipe_fuses = 0; uint32_t num_pipes = 4; DC_FP_START(); ctx->dc_bios->regs = &bios_regs; pool->base.res_cap = &res_cap_dcn32; /* max number of pipes for ASIC before checking for pipe fuses */ num_pipes = pool->base.res_cap->num_timing_generator; pipe_fuses = REG_READ(CC_DC_PIPE_DIS); for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) if (pipe_fuses & 1 << i) num_pipes--; if (pipe_fuses & 1) ASSERT(0); //Unexpected - Pipe 0 should always be fully functional! if (pipe_fuses & CC_DC_PIPE_DIS__DC_FULL_DIS_MASK) ASSERT(0); //Entire DCN is harvested! /* within dml lib, initial value is hard coded, if ASIC pipe is fused, the * value will be changed, update max_num_dpp and max_num_otg for dml. */ dcn3_2_ip.max_num_dpp = num_pipes; dcn3_2_ip.max_num_otg = num_pipes; pool->base.funcs = &dcn32_res_pool_funcs; /************************************************* * Resource + asic cap harcoding * *************************************************/ pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE; pool->base.timing_generator_count = num_pipes; pool->base.pipe_count = num_pipes; pool->base.mpcc_count = num_pipes; dc->caps.max_downscale_ratio = 600; dc->caps.i2c_speed_in_khz = 100; dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a applied by default*/ dc->caps.max_cursor_size = 256; dc->caps.min_horizontal_blanking_period = 80; dc->caps.dmdata_alloc_size = 2048; dc->caps.mall_size_per_mem_channel = 0; dc->caps.mall_size_total = 0; dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8; dc->caps.cache_line_size = 64; dc->caps.cache_num_ways = 16; dc->caps.max_cab_allocation_bytes = 67108864; // 64MB = 1024 * 1024 * 64 dc->caps.subvp_fw_processing_delay_us = 15; dc->caps.subvp_prefetch_end_to_mall_start_us = 15; dc->caps.subvp_pstate_allow_width_us = 20; dc->caps.subvp_vertical_int_margin_us = 30; dc->caps.max_slave_planes = 2; dc->caps.max_slave_yuv_planes = 2; dc->caps.max_slave_rgb_planes = 2; dc->caps.post_blend_color_processing = true; dc->caps.force_dp_tps4_for_cp2520 = true; dc->caps.dp_hpo = true; dc->caps.dp_hdmi21_pcon_support = true; dc->caps.edp_dsc_support = true; dc->caps.extended_aux_timeout_support = true; dc->caps.dmcub_support = true; /* Color pipeline capabilities */ dc->caps.color.dpp.dcn_arch = 1; dc->caps.color.dpp.input_lut_shared = 0; dc->caps.color.dpp.icsc = 1; dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr dc->caps.color.dpp.dgam_rom_caps.srgb = 1; dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1; dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1; dc->caps.color.dpp.dgam_rom_caps.pq = 1; dc->caps.color.dpp.dgam_rom_caps.hlg = 1; dc->caps.color.dpp.post_csc = 1; dc->caps.color.dpp.gamma_corr = 1; dc->caps.color.dpp.dgam_rom_for_yuv = 0; dc->caps.color.dpp.hw_3d_lut = 1; dc->caps.color.dpp.ogam_ram = 0; // no OGAM in DPP since DCN1 // no OGAM ROM on DCN2 and later ASICs dc->caps.color.dpp.ogam_rom_caps.srgb = 0; dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0; dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0; dc->caps.color.dpp.ogam_rom_caps.pq = 0; dc->caps.color.dpp.ogam_rom_caps.hlg = 0; dc->caps.color.dpp.ocsc = 0; dc->caps.color.mpc.gamut_remap = 1; dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //4, configurable to be before or after BLND in MPCC dc->caps.color.mpc.ogam_ram = 1; dc->caps.color.mpc.ogam_rom_caps.srgb = 0; dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0; dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0; dc->caps.color.mpc.ogam_rom_caps.pq = 0; dc->caps.color.mpc.ogam_rom_caps.hlg = 0; dc->caps.color.mpc.ocsc = 1; /* Use pipe context based otg sync logic */ dc->config.use_pipe_ctx_sync_logic = true; /* read VBIOS LTTPR caps */ { if (ctx->dc_bios->funcs->get_lttpr_caps) { enum bp_result bp_query_result; uint8_t is_vbios_lttpr_enable = 0; bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable); dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable; } /* interop bit is implicit */ { dc->caps.vbios_lttpr_aware = true; } } if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV) dc->debug = debug_defaults_drv; else if (dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS) { dc->debug = debug_defaults_diags; } else dc->debug = debug_defaults_diags; // Init the vm_helper if (dc->vm_helper) vm_helper_init(dc->vm_helper, 16); /************************************************* * Create resources * *************************************************/ /* Clock Sources for Pixel Clock*/ pool->base.clock_sources[DCN32_CLK_SRC_PLL0] = dcn32_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL0, &clk_src_regs[0], false); pool->base.clock_sources[DCN32_CLK_SRC_PLL1] = dcn32_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL1, &clk_src_regs[1], false); pool->base.clock_sources[DCN32_CLK_SRC_PLL2] = dcn32_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL2, &clk_src_regs[2], false); pool->base.clock_sources[DCN32_CLK_SRC_PLL3] = dcn32_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL3, &clk_src_regs[3], false); pool->base.clock_sources[DCN32_CLK_SRC_PLL4] = dcn32_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL4, &clk_src_regs[4], false); pool->base.clk_src_count = DCN32_CLK_SRC_TOTAL; /* todo: not reuse phy_pll registers */ pool->base.dp_clock_source = dcn32_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_ID_DP_DTO, &clk_src_regs[0], true); for (i = 0; i < pool->base.clk_src_count; i++) { if (pool->base.clock_sources[i] == NULL) { dm_error("DC: failed to create clock sources!\n"); BREAK_TO_DEBUGGER(); goto create_fail; } } /* DCCG */ pool->base.dccg = dccg32_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask); if (pool->base.dccg == NULL) { dm_error("DC: failed to create dccg!\n"); BREAK_TO_DEBUGGER(); goto create_fail; } /* DML */ if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32); /* IRQ Service */ init_data.ctx = dc->ctx; pool->base.irqs = dal_irq_service_dcn32_create(&init_data); if (!pool->base.irqs) goto create_fail; /* HUBBUB */ pool->base.hubbub = dcn32_hubbub_create(ctx); if (pool->base.hubbub == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create hubbub!\n"); goto create_fail; } /* HUBPs, DPPs, OPPs, TGs, ABMs */ for (i = 0, j = 0; i < pool->base.res_cap->num_timing_generator; i++) { /* if pipe is disabled, skip instance of HW pipe, * i.e, skip ASIC register instance */ if (pipe_fuses & 1 << i) continue; /* HUBPs */ pool->base.hubps[j] = dcn32_hubp_create(ctx, i); if (pool->base.hubps[j] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create hubps!\n"); goto create_fail; } /* DPPs */ pool->base.dpps[j] = dcn32_dpp_create(ctx, i); if (pool->base.dpps[j] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create dpps!\n"); goto create_fail; } /* OPPs */ pool->base.opps[j] = dcn32_opp_create(ctx, i); if (pool->base.opps[j] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create output pixel processor!\n"); goto create_fail; } /* TGs */ pool->base.timing_generators[j] = dcn32_timing_generator_create( ctx, i); if (pool->base.timing_generators[j] == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create tg!\n"); goto create_fail; } /* ABMs */ pool->base.multiple_abms[j] = dmub_abm_create(ctx, &abm_regs[i], &abm_shift, &abm_mask); if (pool->base.multiple_abms[j] == NULL) { dm_error("DC: failed to create abm for pipe %d!\n", i); BREAK_TO_DEBUGGER(); goto create_fail; } /* index for resource pool arrays for next valid pipe */ j++; } /* PSR */ pool->base.psr = dmub_psr_create(ctx); if (pool->base.psr == NULL) { dm_error("DC: failed to create psr obj!\n"); BREAK_TO_DEBUGGER(); goto create_fail; } /* MPCCs */ pool->base.mpc = dcn32_mpc_create(ctx, pool->base.res_cap->num_timing_generator, pool->base.res_cap->num_mpc_3dlut); if (pool->base.mpc == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create mpc!\n"); goto create_fail; } /* DSCs */ for (i = 0; i < pool->base.res_cap->num_dsc; i++) { pool->base.dscs[i] = dcn32_dsc_create(ctx, i); if (pool->base.dscs[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create display stream compressor %d!\n", i); goto create_fail; } } /* DWB */ if (!dcn32_dwbc_create(ctx, &pool->base)) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create dwbc!\n"); goto create_fail; } /* MMHUBBUB */ if (!dcn32_mmhubbub_create(ctx, &pool->base)) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create mcif_wb!\n"); goto create_fail; } /* AUX and I2C */ for (i = 0; i < pool->base.res_cap->num_ddc; i++) { pool->base.engines[i] = dcn32_aux_engine_create(ctx, i); if (pool->base.engines[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC:failed to create aux engine!!\n"); goto create_fail; } pool->base.hw_i2cs[i] = dcn32_i2c_hw_create(ctx, i); if (pool->base.hw_i2cs[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC:failed to create hw i2c!!\n"); goto create_fail; } pool->base.sw_i2cs[i] = NULL; } /* Audio, HWSeq, Stream Encoders including HPO and virtual, MPC 3D LUTs */ if (!resource_construct(num_virtual_links, dc, &pool->base, (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ? &res_create_funcs : &res_create_maximus_funcs))) goto create_fail; /* HW Sequencer init functions and Plane caps */ dcn32_hw_sequencer_init_functions(dc); dc->caps.max_planes = pool->base.pipe_count; for (i = 0; i < dc->caps.max_planes; ++i) dc->caps.planes[i] = plane_cap; dc->cap_funcs = cap_funcs; if (dc->ctx->dc_bios->fw_info.oem_i2c_present) { ddc_init_data.ctx = dc->ctx; ddc_init_data.link = NULL; ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id; ddc_init_data.id.enum_id = 0; ddc_init_data.id.type = OBJECT_TYPE_GENERIC; pool->base.oem_device = dal_ddc_service_create(&ddc_init_data); } else { pool->base.oem_device = NULL; } DC_FP_END(); return true; create_fail: DC_FP_END(); dcn32_resource_destruct(pool); return false; } struct resource_pool *dcn32_create_resource_pool( const struct dc_init_data *init_data, struct dc *dc) { struct dcn32_resource_pool *pool = kzalloc(sizeof(struct dcn32_resource_pool), GFP_KERNEL); if (!pool) return NULL; if (dcn32_resource_construct(init_data->num_virtual_links, dc, pool)) return &pool->base; BREAK_TO_DEBUGGER(); kfree(pool); return NULL; }