/* * Copyright 2016 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dm_services.h" #include "dm_helpers.h" #include "core_types.h" #include "resource.h" #include "dccg.h" #include "dce/dce_hwseq.h" #include "dcn30/dcn30_cm_common.h" #include "reg_helper.h" #include "abm.h" #include "hubp.h" #include "dchubbub.h" #include "timing_generator.h" #include "opp.h" #include "ipp.h" #include "mpc.h" #include "mcif_wb.h" #include "dc_dmub_srv.h" #include "link_hwss.h" #include "dpcd_defs.h" #include "dcn32_hwseq.h" #include "clk_mgr.h" #include "dsc.h" #include "dcn20/dcn20_optc.h" #include "dmub_subvp_state.h" #include "dce/dmub_hw_lock_mgr.h" #include "dcn32_resource.h" #include "link.h" #include "dmub/inc/dmub_subvp_state.h" #define DC_LOGGER_INIT(logger) #define CTX \ hws->ctx #define REG(reg)\ hws->regs->reg #define DC_LOGGER \ dc->ctx->logger #undef FN #define FN(reg_name, field_name) \ hws->shifts->field_name, hws->masks->field_name void dcn32_dsc_pg_control( struct dce_hwseq *hws, unsigned int dsc_inst, bool power_on) { uint32_t power_gate = power_on ? 0 : 1; uint32_t pwr_status = power_on ? 0 : 2; uint32_t org_ip_request_cntl = 0; if (hws->ctx->dc->debug.disable_dsc_power_gate) return; REG_GET(DC_IP_REQUEST_CNTL, IP_REQUEST_EN, &org_ip_request_cntl); if (org_ip_request_cntl == 0) REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1); switch (dsc_inst) { case 0: /* DSC0 */ REG_UPDATE(DOMAIN16_PG_CONFIG, DOMAIN_POWER_GATE, power_gate); REG_WAIT(DOMAIN16_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 1: /* DSC1 */ REG_UPDATE(DOMAIN17_PG_CONFIG, DOMAIN_POWER_GATE, power_gate); REG_WAIT(DOMAIN17_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 2: /* DSC2 */ REG_UPDATE(DOMAIN18_PG_CONFIG, DOMAIN_POWER_GATE, power_gate); REG_WAIT(DOMAIN18_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 3: /* DSC3 */ REG_UPDATE(DOMAIN19_PG_CONFIG, DOMAIN_POWER_GATE, power_gate); REG_WAIT(DOMAIN19_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; default: BREAK_TO_DEBUGGER(); break; } if (org_ip_request_cntl == 0) REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0); } void dcn32_enable_power_gating_plane( struct dce_hwseq *hws, bool enable) { bool force_on = true; /* disable power gating */ uint32_t org_ip_request_cntl = 0; if (enable) force_on = false; REG_GET(DC_IP_REQUEST_CNTL, IP_REQUEST_EN, &org_ip_request_cntl); if (org_ip_request_cntl == 0) REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1); /* DCHUBP0/1/2/3 */ REG_UPDATE(DOMAIN0_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on); REG_UPDATE(DOMAIN1_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on); REG_UPDATE(DOMAIN2_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on); REG_UPDATE(DOMAIN3_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on); /* DCS0/1/2/3 */ REG_UPDATE(DOMAIN16_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on); REG_UPDATE(DOMAIN17_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on); REG_UPDATE(DOMAIN18_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on); REG_UPDATE(DOMAIN19_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on); if (org_ip_request_cntl == 0) REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0); } void dcn32_hubp_pg_control(struct dce_hwseq *hws, unsigned int hubp_inst, bool power_on) { uint32_t power_gate = power_on ? 0 : 1; uint32_t pwr_status = power_on ? 0 : 2; if (hws->ctx->dc->debug.disable_hubp_power_gate) return; if (REG(DOMAIN0_PG_CONFIG) == 0) return; switch (hubp_inst) { case 0: REG_SET(DOMAIN0_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate); REG_WAIT(DOMAIN0_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 1: REG_SET(DOMAIN1_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate); REG_WAIT(DOMAIN1_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 2: REG_SET(DOMAIN2_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate); REG_WAIT(DOMAIN2_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 3: REG_SET(DOMAIN3_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate); REG_WAIT(DOMAIN3_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; default: BREAK_TO_DEBUGGER(); break; } } static bool dcn32_check_no_memory_request_for_cab(struct dc *dc) { int i; /* First, check no-memory-request case */ for (i = 0; i < dc->current_state->stream_count; i++) { if ((dc->current_state->stream_status[i].plane_count) && (dc->current_state->streams[i]->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED)) /* Fail eligibility on a visible stream */ break; } if (i == dc->current_state->stream_count) return true; return false; } /* This function loops through every surface that needs to be cached in CAB for SS, * and calculates the total number of ways required to store all surfaces (primary, * meta, cursor). */ static uint32_t dcn32_calculate_cab_allocation(struct dc *dc, struct dc_state *ctx) { int i; uint8_t num_ways = 0; uint32_t mall_ss_size_bytes = 0; mall_ss_size_bytes = ctx->bw_ctx.bw.dcn.mall_ss_size_bytes; // TODO add additional logic for PSR active stream exclusion optimization // mall_ss_psr_active_size_bytes = ctx->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes; // Include cursor size for CAB allocation for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &ctx->res_ctx.pipe_ctx[i]; if (!pipe->stream || !pipe->plane_state) continue; mall_ss_size_bytes += dcn32_helper_calculate_mall_bytes_for_cursor(dc, pipe, false); } // Convert number of cache lines required to number of ways if (dc->debug.force_mall_ss_num_ways > 0) { num_ways = dc->debug.force_mall_ss_num_ways; } else { num_ways = dcn32_helper_mall_bytes_to_ways(dc, mall_ss_size_bytes); } return num_ways; } bool dcn32_apply_idle_power_optimizations(struct dc *dc, bool enable) { union dmub_rb_cmd cmd; uint8_t ways, i; int j; bool mall_ss_unsupported = false; struct dc_plane_state *plane = NULL; if (!dc->ctx->dmub_srv) return false; for (i = 0; i < dc->current_state->stream_count; i++) { /* MALL SS messaging is not supported with PSR at this time */ if (dc->current_state->streams[i] != NULL && dc->current_state->streams[i]->link->psr_settings.psr_version != DC_PSR_VERSION_UNSUPPORTED) return false; } if (enable) { if (dc->current_state) { /* 1. Check no memory request case for CAB. * If no memory request case, send CAB_ACTION NO_DF_REQ DMUB message */ if (dcn32_check_no_memory_request_for_cab(dc)) { /* Enable no-memory-requests case */ memset(&cmd, 0, sizeof(cmd)); cmd.cab.header.type = DMUB_CMD__CAB_FOR_SS; cmd.cab.header.sub_type = DMUB_CMD__CAB_NO_DCN_REQ; cmd.cab.header.payload_bytes = sizeof(cmd.cab) - sizeof(cmd.cab.header); dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT); return true; } /* 2. Check if all surfaces can fit in CAB. * If surfaces can fit into CAB, send CAB_ACTION_ALLOW DMUB message * and configure HUBP's to fetch from MALL */ ways = dcn32_calculate_cab_allocation(dc, dc->current_state); /* MALL not supported with Stereo3D or TMZ surface. If any plane is using stereo, * or TMZ surface, don't try to enter MALL. */ for (i = 0; i < dc->current_state->stream_count; i++) { for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) { plane = dc->current_state->stream_status[i].plane_states[j]; if (plane->address.type == PLN_ADDR_TYPE_GRPH_STEREO || plane->address.tmz_surface) { mall_ss_unsupported = true; break; } } if (mall_ss_unsupported) break; } if (ways <= dc->caps.cache_num_ways && !mall_ss_unsupported) { memset(&cmd, 0, sizeof(cmd)); cmd.cab.header.type = DMUB_CMD__CAB_FOR_SS; cmd.cab.header.sub_type = DMUB_CMD__CAB_DCN_SS_FIT_IN_CAB; cmd.cab.header.payload_bytes = sizeof(cmd.cab) - sizeof(cmd.cab.header); cmd.cab.cab_alloc_ways = ways; dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT); return true; } } return false; } /* Disable CAB */ memset(&cmd, 0, sizeof(cmd)); cmd.cab.header.type = DMUB_CMD__CAB_FOR_SS; cmd.cab.header.sub_type = DMUB_CMD__CAB_NO_IDLE_OPTIMIZATION; cmd.cab.header.payload_bytes = sizeof(cmd.cab) - sizeof(cmd.cab.header); dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT); return true; } /* Send DMCUB message with SubVP pipe info * - For each pipe in context, populate payload with required SubVP information * if the pipe is using SubVP for MCLK switch * - This function must be called while the DMUB HW lock is acquired by driver */ void dcn32_commit_subvp_config(struct dc *dc, struct dc_state *context) { int i; bool enable_subvp = false; if (!dc->ctx || !dc->ctx->dmub_srv) return; for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; if (pipe_ctx->stream && pipe_ctx->stream->mall_stream_config.paired_stream && pipe_ctx->stream->mall_stream_config.type == SUBVP_MAIN) { // There is at least 1 SubVP pipe, so enable SubVP enable_subvp = true; break; } } dc_dmub_setup_subvp_dmub_command(dc, context, enable_subvp); } /* Sub-Viewport DMUB lock needs to be acquired by driver whenever SubVP is active and: * 1. Any full update for any SubVP main pipe * 2. Any immediate flip for any SubVP pipe * 3. Any flip for DRR pipe * 4. If SubVP was previously in use (i.e. in old context) */ void dcn32_subvp_pipe_control_lock(struct dc *dc, struct dc_state *context, bool lock, bool should_lock_all_pipes, struct pipe_ctx *top_pipe_to_program, bool subvp_prev_use) { unsigned int i = 0; bool subvp_immediate_flip = false; bool subvp_in_use = false; struct pipe_ctx *pipe; for (i = 0; i < dc->res_pool->pipe_count; i++) { pipe = &context->res_ctx.pipe_ctx[i]; if (pipe->stream && pipe->plane_state && pipe->stream->mall_stream_config.type == SUBVP_MAIN) { subvp_in_use = true; break; } } if (top_pipe_to_program && top_pipe_to_program->stream && top_pipe_to_program->plane_state) { if (top_pipe_to_program->stream->mall_stream_config.type == SUBVP_MAIN && top_pipe_to_program->plane_state->flip_immediate) subvp_immediate_flip = true; } // Don't need to lock for DRR VSYNC flips -- FW will wait for DRR pending update cleared. if ((subvp_in_use && (should_lock_all_pipes || subvp_immediate_flip)) || (!subvp_in_use && subvp_prev_use)) { union dmub_inbox0_cmd_lock_hw hw_lock_cmd = { 0 }; if (!lock) { for (i = 0; i < dc->res_pool->pipe_count; i++) { pipe = &context->res_ctx.pipe_ctx[i]; if (pipe->stream && pipe->plane_state && pipe->stream->mall_stream_config.type == SUBVP_MAIN && should_lock_all_pipes) pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK); } } hw_lock_cmd.bits.command_code = DMUB_INBOX0_CMD__HW_LOCK; hw_lock_cmd.bits.hw_lock_client = HW_LOCK_CLIENT_DRIVER; hw_lock_cmd.bits.lock = lock; hw_lock_cmd.bits.should_release = !lock; dmub_hw_lock_mgr_inbox0_cmd(dc->ctx->dmub_srv, hw_lock_cmd); } } void dcn32_subvp_pipe_control_lock_fast(union block_sequence_params *params) { struct dc *dc = params->subvp_pipe_control_lock_fast_params.dc; bool lock = params->subvp_pipe_control_lock_fast_params.lock; struct pipe_ctx *pipe_ctx = params->subvp_pipe_control_lock_fast_params.pipe_ctx; bool subvp_immediate_flip = false; if (pipe_ctx && pipe_ctx->stream && pipe_ctx->plane_state) { if (pipe_ctx->stream->mall_stream_config.type == SUBVP_MAIN && pipe_ctx->plane_state->flip_immediate) subvp_immediate_flip = true; } // Don't need to lock for DRR VSYNC flips -- FW will wait for DRR pending update cleared. if (subvp_immediate_flip) { union dmub_inbox0_cmd_lock_hw hw_lock_cmd = { 0 }; hw_lock_cmd.bits.command_code = DMUB_INBOX0_CMD__HW_LOCK; hw_lock_cmd.bits.hw_lock_client = HW_LOCK_CLIENT_DRIVER; hw_lock_cmd.bits.lock = lock; hw_lock_cmd.bits.should_release = !lock; dmub_hw_lock_mgr_inbox0_cmd(dc->ctx->dmub_srv, hw_lock_cmd); } } bool dcn32_set_mpc_shaper_3dlut( struct pipe_ctx *pipe_ctx, const struct dc_stream_state *stream) { struct dpp *dpp_base = pipe_ctx->plane_res.dpp; int mpcc_id = pipe_ctx->plane_res.hubp->inst; struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc; bool result = false; const struct pwl_params *shaper_lut = NULL; //get the shaper lut params if (stream->func_shaper) { if (stream->func_shaper->type == TF_TYPE_HWPWL) shaper_lut = &stream->func_shaper->pwl; else if (stream->func_shaper->type == TF_TYPE_DISTRIBUTED_POINTS) { cm_helper_translate_curve_to_hw_format(stream->ctx, stream->func_shaper, &dpp_base->shaper_params, true); shaper_lut = &dpp_base->shaper_params; } } if (stream->lut3d_func && stream->lut3d_func->state.bits.initialized == 1) { result = mpc->funcs->program_3dlut(mpc, &stream->lut3d_func->lut_3d, mpcc_id); result = mpc->funcs->program_shaper(mpc, shaper_lut, mpcc_id); } return result; } bool dcn32_set_mcm_luts( struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state) { struct dpp *dpp_base = pipe_ctx->plane_res.dpp; int mpcc_id = pipe_ctx->plane_res.hubp->inst; struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc; bool result = true; struct pwl_params *lut_params = NULL; // 1D LUT if (plane_state->blend_tf) { if (plane_state->blend_tf->type == TF_TYPE_HWPWL) lut_params = &plane_state->blend_tf->pwl; else if (plane_state->blend_tf->type == TF_TYPE_DISTRIBUTED_POINTS) { cm_helper_translate_curve_to_hw_format(plane_state->ctx, plane_state->blend_tf, &dpp_base->regamma_params, false); lut_params = &dpp_base->regamma_params; } } result = mpc->funcs->program_1dlut(mpc, lut_params, mpcc_id); // Shaper if (plane_state->in_shaper_func) { if (plane_state->in_shaper_func->type == TF_TYPE_HWPWL) lut_params = &plane_state->in_shaper_func->pwl; else if (plane_state->in_shaper_func->type == TF_TYPE_DISTRIBUTED_POINTS) { // TODO: dpp_base replace ASSERT(false); cm_helper_translate_curve_to_hw_format(plane_state->ctx, plane_state->in_shaper_func, &dpp_base->shaper_params, true); lut_params = &dpp_base->shaper_params; } } result = mpc->funcs->program_shaper(mpc, lut_params, mpcc_id); // 3D if (plane_state->lut3d_func && plane_state->lut3d_func->state.bits.initialized == 1) result = mpc->funcs->program_3dlut(mpc, &plane_state->lut3d_func->lut_3d, mpcc_id); else result = mpc->funcs->program_3dlut(mpc, NULL, mpcc_id); return result; } bool dcn32_set_input_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state) { struct dce_hwseq *hws = dc->hwseq; struct mpc *mpc = dc->res_pool->mpc; struct dpp *dpp_base = pipe_ctx->plane_res.dpp; enum dc_transfer_func_predefined tf; bool result = true; struct pwl_params *params = NULL; if (mpc == NULL || plane_state == NULL) return false; tf = TRANSFER_FUNCTION_UNITY; if (plane_state->in_transfer_func && plane_state->in_transfer_func->type == TF_TYPE_PREDEFINED) tf = plane_state->in_transfer_func->tf; dpp_base->funcs->dpp_set_pre_degam(dpp_base, tf); if (plane_state->in_transfer_func) { if (plane_state->in_transfer_func->type == TF_TYPE_HWPWL) params = &plane_state->in_transfer_func->pwl; else if (plane_state->in_transfer_func->type == TF_TYPE_DISTRIBUTED_POINTS && cm3_helper_translate_curve_to_hw_format(plane_state->in_transfer_func, &dpp_base->degamma_params, false)) params = &dpp_base->degamma_params; } dpp_base->funcs->dpp_program_gamcor_lut(dpp_base, params); if (pipe_ctx->stream_res.opp && pipe_ctx->stream_res.opp->ctx && hws->funcs.set_mcm_luts) result = hws->funcs.set_mcm_luts(pipe_ctx, plane_state); return result; } bool dcn32_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx, const struct dc_stream_state *stream) { int mpcc_id = pipe_ctx->plane_res.hubp->inst; struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc; struct pwl_params *params = NULL; bool ret = false; /* program OGAM or 3DLUT only for the top pipe*/ if (pipe_ctx->top_pipe == NULL) { /*program shaper and 3dlut in MPC*/ ret = dcn32_set_mpc_shaper_3dlut(pipe_ctx, stream); if (ret == false && mpc->funcs->set_output_gamma && stream->out_transfer_func) { if (stream->out_transfer_func->type == TF_TYPE_HWPWL) params = &stream->out_transfer_func->pwl; else if (pipe_ctx->stream->out_transfer_func->type == TF_TYPE_DISTRIBUTED_POINTS && cm3_helper_translate_curve_to_hw_format( stream->out_transfer_func, &mpc->blender_params, false)) params = &mpc->blender_params; /* there are no ROM LUTs in OUTGAM */ if (stream->out_transfer_func->type == TF_TYPE_PREDEFINED) BREAK_TO_DEBUGGER(); } } mpc->funcs->set_output_gamma(mpc, mpcc_id, params); return ret; } /* Program P-State force value according to if pipe is using SubVP / FPO or not: * 1. Reset P-State force on all pipes first * 2. For each main pipe, force P-State disallow (P-State allow moderated by DMUB) */ void dcn32_update_force_pstate(struct dc *dc, struct dc_state *context) { int i; /* Unforce p-state for each pipe if it is not FPO or SubVP. * For FPO and SubVP, if it's already forced disallow, leave * it as disallow. */ for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; struct hubp *hubp = pipe->plane_res.hubp; if (!pipe->stream || !(pipe->stream->mall_stream_config.type == SUBVP_MAIN || pipe->stream->fpo_in_use)) { if (hubp && hubp->funcs->hubp_update_force_pstate_disallow) hubp->funcs->hubp_update_force_pstate_disallow(hubp, false); } /* Today only FPO uses cursor P-State force. Only clear cursor P-State force * if it's not FPO. */ if (!pipe->stream || !pipe->stream->fpo_in_use) { if (hubp && hubp->funcs->hubp_update_force_cursor_pstate_disallow) hubp->funcs->hubp_update_force_cursor_pstate_disallow(hubp, false); } } /* Loop through each pipe -- for each subvp main pipe force p-state allow equal to false. */ for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; struct hubp *hubp = pipe->plane_res.hubp; if (pipe->stream && pipe->plane_state && pipe->stream->mall_stream_config.type == SUBVP_MAIN) { if (hubp && hubp->funcs->hubp_update_force_pstate_disallow) hubp->funcs->hubp_update_force_pstate_disallow(hubp, true); } if (pipe->stream && pipe->stream->fpo_in_use) { if (hubp && hubp->funcs->hubp_update_force_pstate_disallow) hubp->funcs->hubp_update_force_pstate_disallow(hubp, true); /* For now only force cursor p-state disallow for FPO * Needs to be added for subvp once FW side gets updated */ if (hubp && hubp->funcs->hubp_update_force_cursor_pstate_disallow) hubp->funcs->hubp_update_force_cursor_pstate_disallow(hubp, true); } } } /* Update MALL_SEL register based on if pipe / plane * is a phantom pipe, main pipe, and if using MALL * for SS. */ void dcn32_update_mall_sel(struct dc *dc, struct dc_state *context) { int i; unsigned int num_ways = dcn32_calculate_cab_allocation(dc, context); bool cache_cursor = false; for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; struct hubp *hubp = pipe->plane_res.hubp; if (pipe->stream && pipe->plane_state && hubp && hubp->funcs->hubp_update_mall_sel) { int cursor_size = hubp->curs_attr.pitch * hubp->curs_attr.height; switch (hubp->curs_attr.color_format) { case CURSOR_MODE_MONO: cursor_size /= 2; break; case CURSOR_MODE_COLOR_1BIT_AND: case CURSOR_MODE_COLOR_PRE_MULTIPLIED_ALPHA: case CURSOR_MODE_COLOR_UN_PRE_MULTIPLIED_ALPHA: cursor_size *= 4; break; case CURSOR_MODE_COLOR_64BIT_FP_PRE_MULTIPLIED: case CURSOR_MODE_COLOR_64BIT_FP_UN_PRE_MULTIPLIED: default: cursor_size *= 8; break; } if (cursor_size > 16384) cache_cursor = true; if (pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) { hubp->funcs->hubp_update_mall_sel(hubp, 1, false); } else { // MALL not supported with Stereo3D hubp->funcs->hubp_update_mall_sel(hubp, num_ways <= dc->caps.cache_num_ways && pipe->stream->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED && pipe->plane_state->address.type != PLN_ADDR_TYPE_GRPH_STEREO && !pipe->plane_state->address.tmz_surface ? 2 : 0, cache_cursor); } } } } /* Program the sub-viewport pipe configuration after the main / phantom pipes * have been programmed in hardware. * 1. Update force P-State for all the main pipes (disallow P-state) * 2. Update MALL_SEL register * 3. Program FORCE_ONE_ROW_FOR_FRAME for main subvp pipes */ void dcn32_program_mall_pipe_config(struct dc *dc, struct dc_state *context) { int i; struct dce_hwseq *hws = dc->hwseq; // Don't force p-state disallow -- can't block dummy p-state // Update MALL_SEL register for each pipe if (hws && hws->funcs.update_mall_sel) hws->funcs.update_mall_sel(dc, context); // Program FORCE_ONE_ROW_FOR_FRAME and CURSOR_REQ_MODE for main subvp pipes for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; struct hubp *hubp = pipe->plane_res.hubp; if (pipe->stream && hubp && hubp->funcs->hubp_prepare_subvp_buffering) { /* TODO - remove setting CURSOR_REQ_MODE to 0 for legacy cases * - need to investigate single pipe MPO + SubVP case to * see if CURSOR_REQ_MODE will be back to 1 for SubVP * when it should be 0 for MPO */ if (pipe->stream->mall_stream_config.type == SUBVP_MAIN) { hubp->funcs->hubp_prepare_subvp_buffering(hubp, true); } } } } static void dcn32_initialize_min_clocks(struct dc *dc) { struct dc_clocks *clocks = &dc->current_state->bw_ctx.bw.dcn.clk; clocks->dcfclk_deep_sleep_khz = DCN3_2_DCFCLK_DS_INIT_KHZ; clocks->dcfclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz * 1000; clocks->socclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].socclk_mhz * 1000; clocks->dramclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].memclk_mhz * 1000; clocks->dppclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].dppclk_mhz * 1000; clocks->ref_dtbclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].dtbclk_mhz * 1000; clocks->fclk_p_state_change_support = true; clocks->p_state_change_support = true; if (dc->debug.disable_boot_optimizations) { clocks->dispclk_khz = dc->clk_mgr->bw_params->clk_table.entries[0].dispclk_mhz * 1000; } else { /* Even though DPG_EN = 1 for the connected display, it still requires the * correct timing so we cannot set DISPCLK to min freq or it could cause * audio corruption. Read current DISPCLK from DENTIST and request the same * freq to ensure that the timing is valid and unchanged. */ clocks->dispclk_khz = dc->clk_mgr->funcs->get_dispclk_from_dentist(dc->clk_mgr); } dc->clk_mgr->funcs->update_clocks( dc->clk_mgr, dc->current_state, true); } void dcn32_init_hw(struct dc *dc) { struct abm **abms = dc->res_pool->multiple_abms; struct dce_hwseq *hws = dc->hwseq; struct dc_bios *dcb = dc->ctx->dc_bios; struct resource_pool *res_pool = dc->res_pool; int i; int edp_num; uint32_t backlight = MAX_BACKLIGHT_LEVEL; if (dc->clk_mgr && dc->clk_mgr->funcs->init_clocks) dc->clk_mgr->funcs->init_clocks(dc->clk_mgr); // Initialize the dccg if (res_pool->dccg->funcs->dccg_init) res_pool->dccg->funcs->dccg_init(res_pool->dccg); if (!dcb->funcs->is_accelerated_mode(dcb)) { hws->funcs.bios_golden_init(dc); hws->funcs.disable_vga(dc->hwseq); } // Set default OPTC memory power states if (dc->debug.enable_mem_low_power.bits.optc) { // Shutdown when unassigned and light sleep in VBLANK REG_SET_2(ODM_MEM_PWR_CTRL3, 0, ODM_MEM_UNASSIGNED_PWR_MODE, 3, ODM_MEM_VBLANK_PWR_MODE, 1); } if (dc->debug.enable_mem_low_power.bits.vga) { // Power down VGA memory REG_UPDATE(MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, 1); } if (dc->ctx->dc_bios->fw_info_valid) { res_pool->ref_clocks.xtalin_clock_inKhz = dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency; if (res_pool->dccg && res_pool->hubbub) { (res_pool->dccg->funcs->get_dccg_ref_freq)(res_pool->dccg, dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency, &res_pool->ref_clocks.dccg_ref_clock_inKhz); (res_pool->hubbub->funcs->get_dchub_ref_freq)(res_pool->hubbub, res_pool->ref_clocks.dccg_ref_clock_inKhz, &res_pool->ref_clocks.dchub_ref_clock_inKhz); } else { // Not all ASICs have DCCG sw component res_pool->ref_clocks.dccg_ref_clock_inKhz = res_pool->ref_clocks.xtalin_clock_inKhz; res_pool->ref_clocks.dchub_ref_clock_inKhz = res_pool->ref_clocks.xtalin_clock_inKhz; } } else ASSERT_CRITICAL(false); for (i = 0; i < dc->link_count; i++) { /* Power up AND update implementation according to the * required signal (which may be different from the * default signal on connector). */ struct dc_link *link = dc->links[i]; link->link_enc->funcs->hw_init(link->link_enc); /* Check for enabled DIG to identify enabled display */ if (link->link_enc->funcs->is_dig_enabled && link->link_enc->funcs->is_dig_enabled(link->link_enc)) { link->link_status.link_active = true; link->phy_state.symclk_state = SYMCLK_ON_TX_ON; if (link->link_enc->funcs->fec_is_active && link->link_enc->funcs->fec_is_active(link->link_enc)) link->fec_state = dc_link_fec_enabled; } } /* enable_power_gating_plane before dsc_pg_control because * FORCEON = 1 with hw default value on bootup, resume from s3 */ if (hws->funcs.enable_power_gating_plane) hws->funcs.enable_power_gating_plane(dc->hwseq, true); /* we want to turn off all dp displays before doing detection */ dc->link_srv->blank_all_dp_displays(dc); /* If taking control over from VBIOS, we may want to optimize our first * mode set, so we need to skip powering down pipes until we know which * pipes we want to use. * Otherwise, if taking control is not possible, we need to power * everything down. */ if (dcb->funcs->is_accelerated_mode(dcb) || !dc->config.seamless_boot_edp_requested) { /* Disable boot optimizations means power down everything including PHY, DIG, * and OTG (i.e. the boot is not optimized because we do a full power down). */ if (dc->hwss.enable_accelerated_mode && dc->debug.disable_boot_optimizations) dc->hwss.enable_accelerated_mode(dc, dc->current_state); else hws->funcs.init_pipes(dc, dc->current_state); if (dc->res_pool->hubbub->funcs->allow_self_refresh_control) dc->res_pool->hubbub->funcs->allow_self_refresh_control(dc->res_pool->hubbub, !dc->res_pool->hubbub->ctx->dc->debug.disable_stutter); dcn32_initialize_min_clocks(dc); /* On HW init, allow idle optimizations after pipes have been turned off. * * In certain D3 cases (i.e. BOCO / BOMACO) it's possible that hardware state * is reset (i.e. not in idle at the time hw init is called), but software state * still has idle_optimizations = true, so we must disable idle optimizations first * (i.e. set false), then re-enable (set true). */ dc_allow_idle_optimizations(dc, false); dc_allow_idle_optimizations(dc, true); } /* In headless boot cases, DIG may be turned * on which causes HW/SW discrepancies. * To avoid this, power down hardware on boot * if DIG is turned on and seamless boot not enabled */ if (!dc->config.seamless_boot_edp_requested) { struct dc_link *edp_links[MAX_NUM_EDP]; struct dc_link *edp_link; dc_get_edp_links(dc, edp_links, &edp_num); if (edp_num) { for (i = 0; i < edp_num; i++) { edp_link = edp_links[i]; if (edp_link->link_enc->funcs->is_dig_enabled && edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) && dc->hwss.edp_backlight_control && dc->hwss.power_down && dc->hwss.edp_power_control) { dc->hwss.edp_backlight_control(edp_link, false); dc->hwss.power_down(dc); dc->hwss.edp_power_control(edp_link, false); } } } else { for (i = 0; i < dc->link_count; i++) { struct dc_link *link = dc->links[i]; if (link->link_enc->funcs->is_dig_enabled && link->link_enc->funcs->is_dig_enabled(link->link_enc) && dc->hwss.power_down) { dc->hwss.power_down(dc); break; } } } } for (i = 0; i < res_pool->audio_count; i++) { struct audio *audio = res_pool->audios[i]; audio->funcs->hw_init(audio); } for (i = 0; i < dc->link_count; i++) { struct dc_link *link = dc->links[i]; if (link->panel_cntl) backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl); } for (i = 0; i < dc->res_pool->pipe_count; i++) { if (abms[i] != NULL && abms[i]->funcs != NULL) abms[i]->funcs->abm_init(abms[i], backlight); } /* power AFMT HDMI memory TODO: may move to dis/en output save power*/ REG_WRITE(DIO_MEM_PWR_CTRL, 0); if (!dc->debug.disable_clock_gate) { /* enable all DCN clock gating */ REG_WRITE(DCCG_GATE_DISABLE_CNTL, 0); REG_WRITE(DCCG_GATE_DISABLE_CNTL2, 0); REG_UPDATE(DCFCLK_CNTL, DCFCLK_GATE_DIS, 0); } if (!dcb->funcs->is_accelerated_mode(dcb) && dc->res_pool->hubbub->funcs->init_watermarks) dc->res_pool->hubbub->funcs->init_watermarks(dc->res_pool->hubbub); if (dc->clk_mgr->funcs->notify_wm_ranges) dc->clk_mgr->funcs->notify_wm_ranges(dc->clk_mgr); if (dc->clk_mgr->funcs->set_hard_max_memclk && !dc->clk_mgr->dc_mode_softmax_enabled) dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr); if (dc->res_pool->hubbub->funcs->force_pstate_change_control) dc->res_pool->hubbub->funcs->force_pstate_change_control( dc->res_pool->hubbub, false, false); if (dc->res_pool->hubbub->funcs->init_crb) dc->res_pool->hubbub->funcs->init_crb(dc->res_pool->hubbub); if (dc->res_pool->hubbub->funcs->set_request_limit && dc->config.sdpif_request_limit_words_per_umc > 0) dc->res_pool->hubbub->funcs->set_request_limit(dc->res_pool->hubbub, dc->ctx->dc_bios->vram_info.num_chans, dc->config.sdpif_request_limit_words_per_umc); // Get DMCUB capabilities if (dc->ctx->dmub_srv) { dc_dmub_srv_query_caps_cmd(dc->ctx->dmub_srv); dc->caps.dmub_caps.psr = dc->ctx->dmub_srv->dmub->feature_caps.psr; dc->caps.dmub_caps.subvp_psr = dc->ctx->dmub_srv->dmub->feature_caps.subvp_psr_support; dc->caps.dmub_caps.gecc_enable = dc->ctx->dmub_srv->dmub->feature_caps.gecc_enable; dc->caps.dmub_caps.mclk_sw = dc->ctx->dmub_srv->dmub->feature_caps.fw_assisted_mclk_switch; } } static int calc_mpc_flow_ctrl_cnt(const struct dc_stream_state *stream, int opp_cnt) { bool hblank_halved = optc2_is_two_pixels_per_containter(&stream->timing); int flow_ctrl_cnt; if (opp_cnt >= 2) hblank_halved = true; flow_ctrl_cnt = stream->timing.h_total - stream->timing.h_addressable - stream->timing.h_border_left - stream->timing.h_border_right; if (hblank_halved) flow_ctrl_cnt /= 2; /* ODM combine 4:1 case */ if (opp_cnt == 4) flow_ctrl_cnt /= 2; return flow_ctrl_cnt; } static void update_dsc_on_stream(struct pipe_ctx *pipe_ctx, bool enable) { struct display_stream_compressor *dsc = pipe_ctx->stream_res.dsc; struct dc_stream_state *stream = pipe_ctx->stream; struct pipe_ctx *odm_pipe; int opp_cnt = 1; ASSERT(dsc); for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) opp_cnt++; if (enable) { struct dsc_config dsc_cfg; struct dsc_optc_config dsc_optc_cfg; enum optc_dsc_mode optc_dsc_mode; /* Enable DSC hw block */ dsc_cfg.pic_width = (stream->timing.h_addressable + stream->timing.h_border_left + stream->timing.h_border_right) / opp_cnt; dsc_cfg.pic_height = stream->timing.v_addressable + stream->timing.v_border_top + stream->timing.v_border_bottom; dsc_cfg.pixel_encoding = stream->timing.pixel_encoding; dsc_cfg.color_depth = stream->timing.display_color_depth; dsc_cfg.is_odm = pipe_ctx->next_odm_pipe ? true : false; dsc_cfg.dc_dsc_cfg = stream->timing.dsc_cfg; ASSERT(dsc_cfg.dc_dsc_cfg.num_slices_h % opp_cnt == 0); dsc_cfg.dc_dsc_cfg.num_slices_h /= opp_cnt; dsc->funcs->dsc_set_config(dsc, &dsc_cfg, &dsc_optc_cfg); dsc->funcs->dsc_enable(dsc, pipe_ctx->stream_res.opp->inst); for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) { struct display_stream_compressor *odm_dsc = odm_pipe->stream_res.dsc; ASSERT(odm_dsc); odm_dsc->funcs->dsc_set_config(odm_dsc, &dsc_cfg, &dsc_optc_cfg); odm_dsc->funcs->dsc_enable(odm_dsc, odm_pipe->stream_res.opp->inst); } dsc_cfg.dc_dsc_cfg.num_slices_h *= opp_cnt; dsc_cfg.pic_width *= opp_cnt; optc_dsc_mode = dsc_optc_cfg.is_pixel_format_444 ? OPTC_DSC_ENABLED_444 : OPTC_DSC_ENABLED_NATIVE_SUBSAMPLED; /* Enable DSC in OPTC */ DC_LOG_DSC("Setting optc DSC config for tg instance %d:", pipe_ctx->stream_res.tg->inst); pipe_ctx->stream_res.tg->funcs->set_dsc_config(pipe_ctx->stream_res.tg, optc_dsc_mode, dsc_optc_cfg.bytes_per_pixel, dsc_optc_cfg.slice_width); } else { /* disable DSC in OPTC */ pipe_ctx->stream_res.tg->funcs->set_dsc_config( pipe_ctx->stream_res.tg, OPTC_DSC_DISABLED, 0, 0); /* disable DSC block */ dsc->funcs->dsc_disable(pipe_ctx->stream_res.dsc); for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) { ASSERT(odm_pipe->stream_res.dsc); odm_pipe->stream_res.dsc->funcs->dsc_disable(odm_pipe->stream_res.dsc); } } } /* * Given any pipe_ctx, return the total ODM combine factor, and optionally return * the OPPids which are used * */ static unsigned int get_odm_config(struct pipe_ctx *pipe_ctx, unsigned int *opp_instances) { unsigned int opp_count = 1; struct pipe_ctx *odm_pipe; /* First get to the top pipe */ for (odm_pipe = pipe_ctx; odm_pipe->prev_odm_pipe; odm_pipe = odm_pipe->prev_odm_pipe) ; /* First pipe is always used */ if (opp_instances) opp_instances[0] = odm_pipe->stream_res.opp->inst; /* Find and count odm pipes, if any */ for (odm_pipe = odm_pipe->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) { if (opp_instances) opp_instances[opp_count] = odm_pipe->stream_res.opp->inst; opp_count++; } return opp_count; } void dcn32_update_odm(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx) { struct pipe_ctx *odm_pipe; int opp_cnt = 0; int opp_inst[MAX_PIPES] = {0}; bool rate_control_2x_pclk = (pipe_ctx->stream->timing.flags.INTERLACE || optc2_is_two_pixels_per_containter(&pipe_ctx->stream->timing)); struct mpc_dwb_flow_control flow_control; struct mpc *mpc = dc->res_pool->mpc; int i; opp_cnt = get_odm_config(pipe_ctx, opp_inst); if (opp_cnt > 1) pipe_ctx->stream_res.tg->funcs->set_odm_combine( pipe_ctx->stream_res.tg, opp_inst, opp_cnt, &pipe_ctx->stream->timing); else pipe_ctx->stream_res.tg->funcs->set_odm_bypass( pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing); rate_control_2x_pclk = rate_control_2x_pclk || opp_cnt > 1; flow_control.flow_ctrl_mode = 0; flow_control.flow_ctrl_cnt0 = 0x80; flow_control.flow_ctrl_cnt1 = calc_mpc_flow_ctrl_cnt(pipe_ctx->stream, opp_cnt); if (mpc->funcs->set_out_rate_control) { for (i = 0; i < opp_cnt; ++i) { mpc->funcs->set_out_rate_control( mpc, opp_inst[i], true, rate_control_2x_pclk, &flow_control); } } for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) { odm_pipe->stream_res.opp->funcs->opp_pipe_clock_control( odm_pipe->stream_res.opp, true); } if (pipe_ctx->stream_res.dsc) { struct pipe_ctx *current_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[pipe_ctx->pipe_idx]; update_dsc_on_stream(pipe_ctx, pipe_ctx->stream->timing.flags.DSC); /* Check if no longer using pipe for ODM, then need to disconnect DSC for that pipe */ if (!pipe_ctx->next_odm_pipe && current_pipe_ctx->next_odm_pipe && current_pipe_ctx->next_odm_pipe->stream_res.dsc) { struct display_stream_compressor *dsc = current_pipe_ctx->next_odm_pipe->stream_res.dsc; /* disconnect DSC block from stream */ dsc->funcs->dsc_disconnect(dsc); } } } unsigned int dcn32_calculate_dccg_k1_k2_values(struct pipe_ctx *pipe_ctx, unsigned int *k1_div, unsigned int *k2_div) { struct dc_stream_state *stream = pipe_ctx->stream; unsigned int odm_combine_factor = 0; bool two_pix_per_container = false; two_pix_per_container = optc2_is_two_pixels_per_containter(&stream->timing); odm_combine_factor = get_odm_config(pipe_ctx, NULL); if (stream->ctx->dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) { *k1_div = PIXEL_RATE_DIV_BY_1; *k2_div = PIXEL_RATE_DIV_BY_1; } else if (dc_is_hdmi_tmds_signal(stream->signal) || dc_is_dvi_signal(stream->signal)) { *k1_div = PIXEL_RATE_DIV_BY_1; if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420) *k2_div = PIXEL_RATE_DIV_BY_2; else *k2_div = PIXEL_RATE_DIV_BY_4; } else if (dc_is_dp_signal(stream->signal) || dc_is_virtual_signal(stream->signal)) { if (two_pix_per_container) { *k1_div = PIXEL_RATE_DIV_BY_1; *k2_div = PIXEL_RATE_DIV_BY_2; } else { *k1_div = PIXEL_RATE_DIV_BY_1; *k2_div = PIXEL_RATE_DIV_BY_4; if ((odm_combine_factor == 2) || dcn32_is_dp_dig_pixel_rate_div_policy(pipe_ctx)) *k2_div = PIXEL_RATE_DIV_BY_2; } } if ((*k1_div == PIXEL_RATE_DIV_NA) && (*k2_div == PIXEL_RATE_DIV_NA)) ASSERT(false); return odm_combine_factor; } void dcn32_set_pixels_per_cycle(struct pipe_ctx *pipe_ctx) { uint32_t pix_per_cycle = 1; uint32_t odm_combine_factor = 1; if (!pipe_ctx || !pipe_ctx->stream || !pipe_ctx->stream_res.stream_enc) return; odm_combine_factor = get_odm_config(pipe_ctx, NULL); if (optc2_is_two_pixels_per_containter(&pipe_ctx->stream->timing) || odm_combine_factor > 1 || dcn32_is_dp_dig_pixel_rate_div_policy(pipe_ctx)) pix_per_cycle = 2; if (pipe_ctx->stream_res.stream_enc->funcs->set_input_mode) pipe_ctx->stream_res.stream_enc->funcs->set_input_mode(pipe_ctx->stream_res.stream_enc, pix_per_cycle); } void dcn32_resync_fifo_dccg_dio(struct dce_hwseq *hws, struct dc *dc, struct dc_state *context) { unsigned int i; struct pipe_ctx *pipe = NULL; bool otg_disabled[MAX_PIPES] = {false}; for (i = 0; i < dc->res_pool->pipe_count; i++) { pipe = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe->top_pipe || pipe->prev_odm_pipe) continue; if (pipe->stream && (pipe->stream->dpms_off || dc_is_virtual_signal(pipe->stream->signal)) && pipe->stream->mall_stream_config.type != SUBVP_PHANTOM) { pipe->stream_res.tg->funcs->disable_crtc(pipe->stream_res.tg); reset_sync_context_for_pipe(dc, context, i); otg_disabled[i] = true; } } hws->ctx->dc->res_pool->dccg->funcs->trigger_dio_fifo_resync(hws->ctx->dc->res_pool->dccg); for (i = 0; i < dc->res_pool->pipe_count; i++) { pipe = &dc->current_state->res_ctx.pipe_ctx[i]; if (otg_disabled[i]) pipe->stream_res.tg->funcs->enable_crtc(pipe->stream_res.tg); } } void dcn32_unblank_stream(struct pipe_ctx *pipe_ctx, struct dc_link_settings *link_settings) { struct encoder_unblank_param params = {0}; struct dc_stream_state *stream = pipe_ctx->stream; struct dc_link *link = stream->link; struct dce_hwseq *hws = link->dc->hwseq; struct pipe_ctx *odm_pipe; uint32_t pix_per_cycle = 1; params.opp_cnt = 1; for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) params.opp_cnt++; /* only 3 items below are used by unblank */ params.timing = pipe_ctx->stream->timing; params.link_settings.link_rate = link_settings->link_rate; if (link->dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) { /* TODO - DP2.0 HW: Set ODM mode in dp hpo encoder here */ pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_unblank( pipe_ctx->stream_res.hpo_dp_stream_enc, pipe_ctx->stream_res.tg->inst); } else if (dc_is_dp_signal(pipe_ctx->stream->signal)) { if (optc2_is_two_pixels_per_containter(&stream->timing) || params.opp_cnt > 1 || dcn32_is_dp_dig_pixel_rate_div_policy(pipe_ctx)) { params.timing.pix_clk_100hz /= 2; pix_per_cycle = 2; } pipe_ctx->stream_res.stream_enc->funcs->dp_set_odm_combine( pipe_ctx->stream_res.stream_enc, pix_per_cycle > 1); pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, ¶ms); } if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) hws->funcs.edp_backlight_control(link, true); } bool dcn32_is_dp_dig_pixel_rate_div_policy(struct pipe_ctx *pipe_ctx) { struct dc *dc = pipe_ctx->stream->ctx->dc; if (!is_h_timing_divisible_by_2(pipe_ctx->stream)) return false; if (dc_is_dp_signal(pipe_ctx->stream->signal) && !dc->link_srv->dp_is_128b_132b_signal(pipe_ctx) && dc->debug.enable_dp_dig_pixel_rate_div_policy) return true; return false; } static void apply_symclk_on_tx_off_wa(struct dc_link *link) { /* There are use cases where SYMCLK is referenced by OTG. For instance * for TMDS signal, OTG relies SYMCLK even if TX video output is off. * However current link interface will power off PHY when disabling link * output. This will turn off SYMCLK generated by PHY. The workaround is * to identify such case where SYMCLK is still in use by OTG when we * power off PHY. When this is detected, we will temporarily power PHY * back on and move PHY's SYMCLK state to SYMCLK_ON_TX_OFF by calling * program_pix_clk interface. When OTG is disabled, we will then power * off PHY by calling disable link output again. * * In future dcn generations, we plan to rework transmitter control * interface so that we could have an option to set SYMCLK ON TX OFF * state in one step without this workaround */ struct dc *dc = link->ctx->dc; struct pipe_ctx *pipe_ctx = NULL; uint8_t i; if (link->phy_state.symclk_ref_cnts.otg > 0) { for (i = 0; i < MAX_PIPES; i++) { pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe_ctx->stream && pipe_ctx->stream->link == link && pipe_ctx->top_pipe == NULL) { pipe_ctx->clock_source->funcs->program_pix_clk( pipe_ctx->clock_source, &pipe_ctx->stream_res.pix_clk_params, dc->link_srv->dp_get_encoding_format( &pipe_ctx->link_config.dp_link_settings), &pipe_ctx->pll_settings); link->phy_state.symclk_state = SYMCLK_ON_TX_OFF; break; } } } } void dcn32_disable_link_output(struct dc_link *link, const struct link_resource *link_res, enum signal_type signal) { struct dc *dc = link->ctx->dc; const struct link_hwss *link_hwss = get_link_hwss(link, link_res); struct dmcu *dmcu = dc->res_pool->dmcu; if (signal == SIGNAL_TYPE_EDP && link->dc->hwss.edp_backlight_control) link->dc->hwss.edp_backlight_control(link, false); else if (dmcu != NULL && dmcu->funcs->lock_phy) dmcu->funcs->lock_phy(dmcu); link_hwss->disable_link_output(link, link_res, signal); link->phy_state.symclk_state = SYMCLK_OFF_TX_OFF; if (signal == SIGNAL_TYPE_EDP && link->dc->hwss.edp_backlight_control) link->dc->hwss.edp_power_control(link, false); else if (dmcu != NULL && dmcu->funcs->lock_phy) dmcu->funcs->unlock_phy(dmcu); dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_DISABLE_LINK_PHY); apply_symclk_on_tx_off_wa(link); } /* For SubVP the main pipe can have a viewport position change * without a full update. In this case we must also update the * viewport positions for the phantom pipe accordingly. */ void dcn32_update_phantom_vp_position(struct dc *dc, struct dc_state *context, struct pipe_ctx *phantom_pipe) { uint32_t i; struct dc_plane_state *phantom_plane = phantom_pipe->plane_state; for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_MAIN && pipe->stream->mall_stream_config.paired_stream == phantom_pipe->stream) { if (pipe->plane_state && pipe->plane_state->update_flags.bits.position_change) { phantom_plane->src_rect.x = pipe->plane_state->src_rect.x; phantom_plane->src_rect.y = pipe->plane_state->src_rect.y; phantom_plane->clip_rect.x = pipe->plane_state->clip_rect.x; phantom_plane->dst_rect.x = pipe->plane_state->dst_rect.x; phantom_plane->dst_rect.y = pipe->plane_state->dst_rect.y; phantom_pipe->plane_state->update_flags.bits.position_change = 1; resource_build_scaling_params(phantom_pipe); return; } } } } /* Treat the phantom pipe as if it needs to be fully enabled. * If the pipe was previously in use but not phantom, it would * have been disabled earlier in the sequence so we need to run * the full enable sequence. */ void dcn32_apply_update_flags_for_phantom(struct pipe_ctx *phantom_pipe) { phantom_pipe->update_flags.raw = 0; if (phantom_pipe->stream && phantom_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) { if (phantom_pipe->stream && phantom_pipe->plane_state) { phantom_pipe->update_flags.bits.enable = 1; phantom_pipe->update_flags.bits.mpcc = 1; phantom_pipe->update_flags.bits.dppclk = 1; phantom_pipe->update_flags.bits.hubp_interdependent = 1; phantom_pipe->update_flags.bits.hubp_rq_dlg_ttu = 1; phantom_pipe->update_flags.bits.gamut_remap = 1; phantom_pipe->update_flags.bits.scaler = 1; phantom_pipe->update_flags.bits.viewport = 1; phantom_pipe->update_flags.bits.det_size = 1; if (!phantom_pipe->top_pipe && !phantom_pipe->prev_odm_pipe) { phantom_pipe->update_flags.bits.odm = 1; phantom_pipe->update_flags.bits.global_sync = 1; } } } } bool dcn32_dsc_pg_status( struct dce_hwseq *hws, unsigned int dsc_inst) { uint32_t pwr_status = 0; switch (dsc_inst) { case 0: /* DSC0 */ REG_GET(DOMAIN16_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, &pwr_status); break; case 1: /* DSC1 */ REG_GET(DOMAIN17_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, &pwr_status); break; case 2: /* DSC2 */ REG_GET(DOMAIN18_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, &pwr_status); break; case 3: /* DSC3 */ REG_GET(DOMAIN19_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, &pwr_status); break; default: BREAK_TO_DEBUGGER(); break; } return pwr_status == 0; } void dcn32_update_dsc_pg(struct dc *dc, struct dc_state *context, bool safe_to_disable) { struct dce_hwseq *hws = dc->hwseq; int i; for (i = 0; i < dc->res_pool->res_cap->num_dsc; i++) { struct display_stream_compressor *dsc = dc->res_pool->dscs[i]; bool is_dsc_ungated = hws->funcs.dsc_pg_status(hws, dsc->inst); if (context->res_ctx.is_dsc_acquired[i]) { if (!is_dsc_ungated) { hws->funcs.dsc_pg_control(hws, dsc->inst, true); } } else if (safe_to_disable) { if (is_dsc_ungated) { hws->funcs.dsc_pg_control(hws, dsc->inst, false); } } } } void dcn32_enable_phantom_streams(struct dc *dc, struct dc_state *context) { unsigned int i; for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i]; /* If an active, non-phantom pipe is being transitioned into a phantom * pipe, wait for the double buffer update to complete first before we do * ANY phantom pipe programming. */ if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM && old_pipe->stream && old_pipe->stream->mall_stream_config.type != SUBVP_PHANTOM) { old_pipe->stream_res.tg->funcs->wait_for_state( old_pipe->stream_res.tg, CRTC_STATE_VBLANK); old_pipe->stream_res.tg->funcs->wait_for_state( old_pipe->stream_res.tg, CRTC_STATE_VACTIVE); } } for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i]; if (new_pipe->stream && new_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) { // If old context or new context has phantom pipes, apply // the phantom timings now. We can't change the phantom // pipe configuration safely without driver acquiring // the DMCUB lock first. dc->hwss.apply_ctx_to_hw(dc, context); break; } } } /* Blank pixel data during initialization */ void dcn32_init_blank( struct dc *dc, struct timing_generator *tg) { struct dce_hwseq *hws = dc->hwseq; enum dc_color_space color_space; struct tg_color black_color = {0}; struct output_pixel_processor *opp = NULL; struct output_pixel_processor *bottom_opp = NULL; uint32_t num_opps, opp_id_src0, opp_id_src1; uint32_t otg_active_width, otg_active_height; uint32_t i; /* program opp dpg blank color */ color_space = COLOR_SPACE_SRGB; color_space_to_black_color(dc, color_space, &black_color); /* get the OTG active size */ tg->funcs->get_otg_active_size(tg, &otg_active_width, &otg_active_height); /* get the OPTC source */ tg->funcs->get_optc_source(tg, &num_opps, &opp_id_src0, &opp_id_src1); if (opp_id_src0 >= dc->res_pool->res_cap->num_opp) { ASSERT(false); return; } for (i = 0; i < dc->res_pool->res_cap->num_opp; i++) { if (dc->res_pool->opps[i] != NULL && dc->res_pool->opps[i]->inst == opp_id_src0) { opp = dc->res_pool->opps[i]; break; } } if (num_opps == 2) { otg_active_width = otg_active_width / 2; if (opp_id_src1 >= dc->res_pool->res_cap->num_opp) { ASSERT(false); return; } for (i = 0; i < dc->res_pool->res_cap->num_opp; i++) { if (dc->res_pool->opps[i] != NULL && dc->res_pool->opps[i]->inst == opp_id_src1) { bottom_opp = dc->res_pool->opps[i]; break; } } } if (opp && opp->funcs->opp_set_disp_pattern_generator) opp->funcs->opp_set_disp_pattern_generator( opp, CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR, CONTROLLER_DP_COLOR_SPACE_UDEFINED, COLOR_DEPTH_UNDEFINED, &black_color, otg_active_width, otg_active_height, 0); if (num_opps == 2) { if (bottom_opp && bottom_opp->funcs->opp_set_disp_pattern_generator) { bottom_opp->funcs->opp_set_disp_pattern_generator( bottom_opp, CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR, CONTROLLER_DP_COLOR_SPACE_UDEFINED, COLOR_DEPTH_UNDEFINED, &black_color, otg_active_width, otg_active_height, 0); hws->funcs.wait_for_blank_complete(bottom_opp); } } if (opp) hws->funcs.wait_for_blank_complete(opp); }